Research Article
BibTex RIS Cite

Damage Identification Analyses of a Historic Masonry Structure in T-F Domain

Year 2021, Volume: 32 Issue: 2, 10577 - 10610, 01.03.2021
https://doi.org/10.18400/tekderg.426728

Abstract

Fatih mosque, a landmark structure in Istanbul, has suffered structural damage during 1999 Kocaeli earthquake. Using spectral, time-domain (OKID/ERA for SISO and MIMO models) and T-F domain (WT, HHT) techniques on ambient vibrations, damage identification has been performed. Results of parametric and spectral analyses indicate close global peaks. Northwest arch (O3) that was expected to move in harmony with other arches cannot display such a consistent behavior and produces additional local frequency at 24Hz due to damage. Southeast arch (O1) also has comparable damage producing another locality at 38Hz. Extending linear approaches into nonlinear-nonstationary methods, decompositions in WT and HHT improved the results in the temporal-frequency energy distribution. Estimated individual and global structural behavior are consistent with visually inspected damage states for O3 and O1. On a global scale, damage additionally generates significant nonstationarity on the neighbors in touch. Northeast arch (O2) is affected strongly by the anomalies appeared at stations O3 and O1. Especially neighbor stations O6 and O7 located at the springing points of the arch (O3) and others O5 and O6 located at the springing points of the arch (O2) are strongly affected due to tension rod failure causing the dome base to open outwards. T-F analysis detects and localizes any anomalous system behavior and can adequately capture the system dynamics of any instrumented part of the structure at any particular time epoch. For historical masonry structures with vulnerable components like large central dome and arches that have low redundancy, there is a need to develop automatic signal/image processing through, machine vision, and pattern recognition for early diagnosis and warning of gradual deteriorations.

References

  • Goodwin, Godfrey (1971), Gaspare Fossati Di Morcote and His Brother Giuseppe, A history of Ottoman Architecture, London.
  • Hrvoje Smoljanović, Nikolina Živaljić, Željana Nikolić, Overview of the methods for the modelling of historical masonry structures, GRAĐEVINAR 65 (2013) 7, 603-618.
  • Lourenço, P.B. 1998. Experimental and numerical issues in the modelling of the mechanical behavior of masonry. In: P. Roca et al. (Ed) Structural Analysis of Historical Constructions, p. 57-91, Barcelona: CIMNE.
  • Allemang, R.J. 1984: Experimental Modal Analysis Bibliography. Proceedings of the 2nd International Modal Analysis Conference, Orlando, Florida, 1085–1097.
  • Doebling, S. W., Farrar, C. R., Prime, M B. and D W. Shevitz (1996), Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: a literature review, Los Alamos National Loboratory report LA-13070-MS.
  • Aktan, A. E., Hunt, V. J., Lally, M. J., Stillmaker, R. B.,Brown, D. L., and Shelley, S.J., (1995), “Field Laboratory for Modal Analysis and Condition Assessment of Highway Bridges', Proceedings of International Modal Analysis Conference XV, Honolulu, Hi., Pages 718–727.
  • Straser, E.G. and Kiremijdian, A.S. (1996), A Modular Visual Approach to Damage Monitoring for Civil Structures. Proceedings of SPIE Smart Structures and Materials, 2719, 112-122.
  • P.B. Lourenço, Computations on historic masonry structures, Prog. Struct. Eng. Mater. 4 (2002) 301–319.
  • E. Quagliarini, G. Maracchini, F. Clementi, Uses and limits of the equivalent frame model on existing unreinforced masonry buildings for assessing their seismic risk: a review, J. Build. Eng. 10 (2017) 166–182.
  • Daniele Pellegrini, Maria Girardi, Paulo B. Lourenço, Maria Giovanna Masciotta, Nuno Mendes, Cristina Padovani, Luis F. Ramos, Modal analysis of historical masonry structures: Linear perturbation and software benchmarking, Construction and Building Materials 189 (2018) 1232–1250
  • A. Cabboi, C. Gentile, A. Saisi, From continuous vibration monitoring to FEM-based damage assessment: application on a stone-masonry tower, Constr. Build. Mater. 156 (2017) 252–265.
  • B. Conde, L.F. Ramos, D.V. Oliveira, B. Riveiro, M. Solla, Structural assessment of masonry arch bridges by combination of non-destructive testing techniques and three-dimensional numerical modelling: application to Vilanova bridge, Eng. Struct. 148 (2017) 621–638.
  • L.F. Ramos, L. Marques, P.B. Lourenço, G. De Roeck, A. Campos-Costa, J. Roque, Monitoring historical masonry structures with operational modal analysis: two case studies, Mech. Syst. Signal Process. 24 (2010) 1291–1305.
  • P. Pineda, Collapse and upgrading mechanisms associated to the structural materials of a deteriorated masonry tower. Nonlinear assessment under different damage and loading levels, Eng. Fail. Anal. 63 (2016) 72–93. Elsevier.
  • Alemdar Bayraktar, Ahmet Can Altunisik, Baris Sevim, Temel Türker, Seismic response of a historical masonry minaret using a finite element model updated with operational modal testing, J. Vib. Control 17 (1) (2011) 129–149.
  • Dascotte, E. (2007), “Modal Updating for Structural Dynamics; Past, Present and Future Outlook”, Int. Conf. on Engee. Dynamics (ICED), Algarve, Portugal.
  • E. Bassoli, L. Vincenzi, A.M. D’Altri, S. De Miranda, M. Forghieri, G. Castellazzi, Ambient vibration-based finite element model updating of an earthquake-damaged masonry tower, Struct. Control Health Monit. 25 (5) (2018) e2150.
  • M. Mistler, C. Butenweg, K. Meskouris, Modelling methods of historic masonry buildings under seismic excitation, J. Seismol. 10 (2006) 497–510.
  • W. Torres, J.L. Almazán, C. Sandoval, R. Boroschek, Operational modal analysis and FE model updating of the Metropolitan Cathedral of Santiago, Chile, Eng. Struct. 143 (2017) 169–188.
  • M.G. Masciotta, L.F. Ramos, P.B. Lourenço, The importance of structural monitoring as a diagnosis and control tool in the restoration process of heritage structures: a case study in Portugal, J. Cultral Heritage 27 (2017) 36–47.
  • M.G. Masciotta, L.F. Ramos, P.B. Lourenço, M. Vasta, Damage identification and seismic vulnerability assessment of a historic masonry chimney, Ann. Geophys. 60 (4) (2017) 2017, https://doi.org/10.4401/ag-7126.
  • B. Pantò, F. Cannizzaro, I. Caliò, P.B. Lourenço, Numerical and experimental validation of a 3D macro-model for the in-plane and out-of-plane behavior of unreinforced masonry walls, Int. J. Archit. Heritage 11 (7) (2017) 946–964.
  • Ewins, D. J. (2000), Adjustment or Updating of Models, International Winter School on Optimum Dynamic Design Using Modal Testing and Structural Dynamic Modification, Indian Academy Sciences, 235-245.
  • Beyen, K., 2005, ‘Fatih Camii Yapısal Davranışının Ve Dinamik Özelliklerinin Çevrel Ölçümler Işığında Tanımlanması’, T.C. İstanbul Büyük Şehir Belediyesi İski Genel Müd., Mimtaş ile T.C. Boğaziçi Ü., T.C. Yıldız Teknik Ü. arasında İstanbul Fatih Camii ve Külliyesi Alt ve Üst Yapı Onarım – Restorasyon Projesi, İstanbul (in Turkish).
  • Ceylan, Oğuz, Ocakcan, Tuğba Keleş, Fatih Camii 2007-2012 Restorasyonu Uygulamaları - The Restoration of Fatih Mosque Between 2007-2012, Vakıf Restorasyon Yıllığı, Yıl: 2013, Sayı: 7, (in Turkish).
  • Beyen, K. (2008), “Structural Identification for Post-Earthquake Safety Analysis of the Fatih Mosque after the 17 August 1999 Kocaeli Earthquake”, Engineering Structures, 30.
  • Farrar, C. R., Doebling S. W., Cornwell, P. J., and E. G. Straser (1997), “Variability of modal parameters measured on the Alamosa Canyon Bridge”, in Proc., 15th Int. Modal Analysis Conf., Orlando, FL.
  • Goodwin, Godfrey (1997), A History of Ottoman Architecture, Thames and Hudson, London, 121-131.
  • Ayverdi, Ekrem Hakki (1973), Fatih Era in Ottoman Architecture - Osmanli Mimarisinde Fatih Devri: (1451-1481), Volume III, Baha Matbaasi, Istanbul, 356-387 (Turkish).
  • Sakin, Orhan (2002), “Tarihsel kaynaklarıyla İstanbul Depremleri”, İstanbul, referenced Gregoras Nikephoros Historia, 2, p. 694.
  • William S. Ginell and E. Leroy Tolles (2000), “Seismic Stabilization of Historic Adobe Structures”, JAIC, Vol. 39, No: 1, 147-163.
  • Bariola, J. B. (1991), “Dynamic stability of adobe walls”, Ph.D. dissertation, University of Illinois, Urbana, Ill.
  • Çılı, F. and Yıldız, H., 2013, ‘Fatih Camii ve I. Mahmut Kütüphanesi Güçlendirme Çalışmaları – Strengthening Works of The Fatih Mosque and Mahmut I. Library’, Vakıf Restorasyon Yıllığı, No: 7, pgs: 66 – 84.
  • Yılmaz Yapı Taah. Ve Tic. Ltd. Şti. Özel Fatih Camii Restorasyon Arşivi, 2019.
  • Fatih Sultan Mehmet Camii ve Sultan I. Mahmut Kütüphanesi Restorasyonu (2008-2012), 2019, Yılmaz Yapı Taah. Ve Tic. Ltd. Şti. Yayınları, (baskıya hazırlanıyor in press).
  • Durukal, E., Cimilli, S. and Erdik, M. (2003), “Dynamic Response of Two Historical Monuments in Istanbul Deduced from the Recordings of Kocaeli and Düzce Earthquakes”, BSSA, Vol. 93, no. 2, 694-712.
  • Rahmatalla, S., Eun, Hee-Chang, Lee, Eun_Taik (2012), “Damage detection from the variation of parameter matrices estimated by incomplete FRF data”, Smart Structures and Systems, Vol. 9, No. 1, 55-70.
  • Lus, H., De Angelis M, Betti, R., and Longman, R.W. (2003), “Obtaining Physical Parameters of Mechanical Systems from Identified State Space Models”, ASCE, Journal of Engineering Mechanics, V. 129 (5), 477-488.
  • Inman, D. J. and Minas, C. (1986), “Matching analytical models with experimental modal data in mechanical systems”, Control and Dynamics Systems, Vol. 37, 327-363.
  • Liu, S. C. and Yao, J. T. P. (1978), “Structural Identification Concept”, ASCE Journal of the Structural Division, Vol. 104, No. ST12, 1845-1858.
  • Law, S. and Li, X. (1993), “Structural damage detection based on higher order analysis”, Procedings of Asia Pacific Vibration Conference, 640/3, Japan.
  • Lim, T. W. (1990), “Submatrix approach to stiffness matrix correction using modal test data”, AIAA Journal, Vol. 28, No.6, 1123-1130.
  • Bendat, J. S. and Piersol, A. G. (2004), Random Data, Analysis and Measurement Procedures, JW, USA.
  • Juang, J. N. (1994), “Applied System Identification”, Prentice Hall, Englewood Cliffs, New Jersey.
  • Juang, J. N., Pappa, R. S. (1985), “An Eigen system Realization Algorithm for Modal Parameter Identification and Model Reduction”, J. of Guidance, Control and Dynamics, 8, No.5.
  • Bendat, J. S. (1990), Nonlinear System Analysis and Identification from Random Data, Wiley-Interscience, USA.
  • Mathworks (2013), Signal Processing Toolbox for Matlab, Release 2012b, The MathWorks Inc., Natick, MA.
  • Huang, N. E., Zheng, S., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N.-C., Tung, C. C., and Liu, H. H. (1998), ‘‘The empirical mode decomposition and Hilbert spectrum for nonlinear And nonstationary time series analysis.’’ Proc. R. Soc. London, Ser. A, 454.

Damage Identification Analyses of a Historic Masonry Structure in T-F Domain

Year 2021, Volume: 32 Issue: 2, 10577 - 10610, 01.03.2021
https://doi.org/10.18400/tekderg.426728

Abstract

Fatih mosque, a landmark structure in Istanbul, has suffered structural damage during 1999 Kocaeli earthquake. Using spectral, time-domain (OKID/ERA for SISO and MIMO models) and T-F domain (WT, HHT) techniques on ambient vibrations, damage identification has been performed. Results of parametric and spectral analyses indicate close global peaks. Northwest arch (O3) that was expected to move in harmony with other arches cannot display such a consistent behavior and produces additional local frequency at 24Hz due to damage. Southeast arch (O1) also has comparable damage producing another locality at 38Hz. Extending linear approaches into nonlinear-nonstationary methods, decompositions in WT and HHT improved the results in the temporal-frequency energy distribution. Estimated individual and global structural behavior are consistent with visually inspected damage states for O3 and O1. On a global scale, damage additionally generates significant nonstationarity on the neighbors in touch. Northeast arch (O2) is affected strongly by the anomalies appeared at stations O3 and O1. Especially neighbor stations O6 and O7 located at the springing points of the arch (O3) and others O5 and O6 located at the springing points of the arch (O2) are strongly affected due to tension rod failure causing the dome base to open outwards. T-F analysis detects and localizes any anomalous system behavior and can adequately capture the system dynamics of any instrumented part of the structure at any particular time epoch. For historical masonry structures with vulnerable components like large central dome and arches that have low redundancy, there is a need to develop automatic signal/image processing through, machine vision, and pattern recognition for early diagnosis and warning of gradual deteriorations.

References

  • Goodwin, Godfrey (1971), Gaspare Fossati Di Morcote and His Brother Giuseppe, A history of Ottoman Architecture, London.
  • Hrvoje Smoljanović, Nikolina Živaljić, Željana Nikolić, Overview of the methods for the modelling of historical masonry structures, GRAĐEVINAR 65 (2013) 7, 603-618.
  • Lourenço, P.B. 1998. Experimental and numerical issues in the modelling of the mechanical behavior of masonry. In: P. Roca et al. (Ed) Structural Analysis of Historical Constructions, p. 57-91, Barcelona: CIMNE.
  • Allemang, R.J. 1984: Experimental Modal Analysis Bibliography. Proceedings of the 2nd International Modal Analysis Conference, Orlando, Florida, 1085–1097.
  • Doebling, S. W., Farrar, C. R., Prime, M B. and D W. Shevitz (1996), Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: a literature review, Los Alamos National Loboratory report LA-13070-MS.
  • Aktan, A. E., Hunt, V. J., Lally, M. J., Stillmaker, R. B.,Brown, D. L., and Shelley, S.J., (1995), “Field Laboratory for Modal Analysis and Condition Assessment of Highway Bridges', Proceedings of International Modal Analysis Conference XV, Honolulu, Hi., Pages 718–727.
  • Straser, E.G. and Kiremijdian, A.S. (1996), A Modular Visual Approach to Damage Monitoring for Civil Structures. Proceedings of SPIE Smart Structures and Materials, 2719, 112-122.
  • P.B. Lourenço, Computations on historic masonry structures, Prog. Struct. Eng. Mater. 4 (2002) 301–319.
  • E. Quagliarini, G. Maracchini, F. Clementi, Uses and limits of the equivalent frame model on existing unreinforced masonry buildings for assessing their seismic risk: a review, J. Build. Eng. 10 (2017) 166–182.
  • Daniele Pellegrini, Maria Girardi, Paulo B. Lourenço, Maria Giovanna Masciotta, Nuno Mendes, Cristina Padovani, Luis F. Ramos, Modal analysis of historical masonry structures: Linear perturbation and software benchmarking, Construction and Building Materials 189 (2018) 1232–1250
  • A. Cabboi, C. Gentile, A. Saisi, From continuous vibration monitoring to FEM-based damage assessment: application on a stone-masonry tower, Constr. Build. Mater. 156 (2017) 252–265.
  • B. Conde, L.F. Ramos, D.V. Oliveira, B. Riveiro, M. Solla, Structural assessment of masonry arch bridges by combination of non-destructive testing techniques and three-dimensional numerical modelling: application to Vilanova bridge, Eng. Struct. 148 (2017) 621–638.
  • L.F. Ramos, L. Marques, P.B. Lourenço, G. De Roeck, A. Campos-Costa, J. Roque, Monitoring historical masonry structures with operational modal analysis: two case studies, Mech. Syst. Signal Process. 24 (2010) 1291–1305.
  • P. Pineda, Collapse and upgrading mechanisms associated to the structural materials of a deteriorated masonry tower. Nonlinear assessment under different damage and loading levels, Eng. Fail. Anal. 63 (2016) 72–93. Elsevier.
  • Alemdar Bayraktar, Ahmet Can Altunisik, Baris Sevim, Temel Türker, Seismic response of a historical masonry minaret using a finite element model updated with operational modal testing, J. Vib. Control 17 (1) (2011) 129–149.
  • Dascotte, E. (2007), “Modal Updating for Structural Dynamics; Past, Present and Future Outlook”, Int. Conf. on Engee. Dynamics (ICED), Algarve, Portugal.
  • E. Bassoli, L. Vincenzi, A.M. D’Altri, S. De Miranda, M. Forghieri, G. Castellazzi, Ambient vibration-based finite element model updating of an earthquake-damaged masonry tower, Struct. Control Health Monit. 25 (5) (2018) e2150.
  • M. Mistler, C. Butenweg, K. Meskouris, Modelling methods of historic masonry buildings under seismic excitation, J. Seismol. 10 (2006) 497–510.
  • W. Torres, J.L. Almazán, C. Sandoval, R. Boroschek, Operational modal analysis and FE model updating of the Metropolitan Cathedral of Santiago, Chile, Eng. Struct. 143 (2017) 169–188.
  • M.G. Masciotta, L.F. Ramos, P.B. Lourenço, The importance of structural monitoring as a diagnosis and control tool in the restoration process of heritage structures: a case study in Portugal, J. Cultral Heritage 27 (2017) 36–47.
  • M.G. Masciotta, L.F. Ramos, P.B. Lourenço, M. Vasta, Damage identification and seismic vulnerability assessment of a historic masonry chimney, Ann. Geophys. 60 (4) (2017) 2017, https://doi.org/10.4401/ag-7126.
  • B. Pantò, F. Cannizzaro, I. Caliò, P.B. Lourenço, Numerical and experimental validation of a 3D macro-model for the in-plane and out-of-plane behavior of unreinforced masonry walls, Int. J. Archit. Heritage 11 (7) (2017) 946–964.
  • Ewins, D. J. (2000), Adjustment or Updating of Models, International Winter School on Optimum Dynamic Design Using Modal Testing and Structural Dynamic Modification, Indian Academy Sciences, 235-245.
  • Beyen, K., 2005, ‘Fatih Camii Yapısal Davranışının Ve Dinamik Özelliklerinin Çevrel Ölçümler Işığında Tanımlanması’, T.C. İstanbul Büyük Şehir Belediyesi İski Genel Müd., Mimtaş ile T.C. Boğaziçi Ü., T.C. Yıldız Teknik Ü. arasında İstanbul Fatih Camii ve Külliyesi Alt ve Üst Yapı Onarım – Restorasyon Projesi, İstanbul (in Turkish).
  • Ceylan, Oğuz, Ocakcan, Tuğba Keleş, Fatih Camii 2007-2012 Restorasyonu Uygulamaları - The Restoration of Fatih Mosque Between 2007-2012, Vakıf Restorasyon Yıllığı, Yıl: 2013, Sayı: 7, (in Turkish).
  • Beyen, K. (2008), “Structural Identification for Post-Earthquake Safety Analysis of the Fatih Mosque after the 17 August 1999 Kocaeli Earthquake”, Engineering Structures, 30.
  • Farrar, C. R., Doebling S. W., Cornwell, P. J., and E. G. Straser (1997), “Variability of modal parameters measured on the Alamosa Canyon Bridge”, in Proc., 15th Int. Modal Analysis Conf., Orlando, FL.
  • Goodwin, Godfrey (1997), A History of Ottoman Architecture, Thames and Hudson, London, 121-131.
  • Ayverdi, Ekrem Hakki (1973), Fatih Era in Ottoman Architecture - Osmanli Mimarisinde Fatih Devri: (1451-1481), Volume III, Baha Matbaasi, Istanbul, 356-387 (Turkish).
  • Sakin, Orhan (2002), “Tarihsel kaynaklarıyla İstanbul Depremleri”, İstanbul, referenced Gregoras Nikephoros Historia, 2, p. 694.
  • William S. Ginell and E. Leroy Tolles (2000), “Seismic Stabilization of Historic Adobe Structures”, JAIC, Vol. 39, No: 1, 147-163.
  • Bariola, J. B. (1991), “Dynamic stability of adobe walls”, Ph.D. dissertation, University of Illinois, Urbana, Ill.
  • Çılı, F. and Yıldız, H., 2013, ‘Fatih Camii ve I. Mahmut Kütüphanesi Güçlendirme Çalışmaları – Strengthening Works of The Fatih Mosque and Mahmut I. Library’, Vakıf Restorasyon Yıllığı, No: 7, pgs: 66 – 84.
  • Yılmaz Yapı Taah. Ve Tic. Ltd. Şti. Özel Fatih Camii Restorasyon Arşivi, 2019.
  • Fatih Sultan Mehmet Camii ve Sultan I. Mahmut Kütüphanesi Restorasyonu (2008-2012), 2019, Yılmaz Yapı Taah. Ve Tic. Ltd. Şti. Yayınları, (baskıya hazırlanıyor in press).
  • Durukal, E., Cimilli, S. and Erdik, M. (2003), “Dynamic Response of Two Historical Monuments in Istanbul Deduced from the Recordings of Kocaeli and Düzce Earthquakes”, BSSA, Vol. 93, no. 2, 694-712.
  • Rahmatalla, S., Eun, Hee-Chang, Lee, Eun_Taik (2012), “Damage detection from the variation of parameter matrices estimated by incomplete FRF data”, Smart Structures and Systems, Vol. 9, No. 1, 55-70.
  • Lus, H., De Angelis M, Betti, R., and Longman, R.W. (2003), “Obtaining Physical Parameters of Mechanical Systems from Identified State Space Models”, ASCE, Journal of Engineering Mechanics, V. 129 (5), 477-488.
  • Inman, D. J. and Minas, C. (1986), “Matching analytical models with experimental modal data in mechanical systems”, Control and Dynamics Systems, Vol. 37, 327-363.
  • Liu, S. C. and Yao, J. T. P. (1978), “Structural Identification Concept”, ASCE Journal of the Structural Division, Vol. 104, No. ST12, 1845-1858.
  • Law, S. and Li, X. (1993), “Structural damage detection based on higher order analysis”, Procedings of Asia Pacific Vibration Conference, 640/3, Japan.
  • Lim, T. W. (1990), “Submatrix approach to stiffness matrix correction using modal test data”, AIAA Journal, Vol. 28, No.6, 1123-1130.
  • Bendat, J. S. and Piersol, A. G. (2004), Random Data, Analysis and Measurement Procedures, JW, USA.
  • Juang, J. N. (1994), “Applied System Identification”, Prentice Hall, Englewood Cliffs, New Jersey.
  • Juang, J. N., Pappa, R. S. (1985), “An Eigen system Realization Algorithm for Modal Parameter Identification and Model Reduction”, J. of Guidance, Control and Dynamics, 8, No.5.
  • Bendat, J. S. (1990), Nonlinear System Analysis and Identification from Random Data, Wiley-Interscience, USA.
  • Mathworks (2013), Signal Processing Toolbox for Matlab, Release 2012b, The MathWorks Inc., Natick, MA.
  • Huang, N. E., Zheng, S., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N.-C., Tung, C. C., and Liu, H. H. (1998), ‘‘The empirical mode decomposition and Hilbert spectrum for nonlinear And nonstationary time series analysis.’’ Proc. R. Soc. London, Ser. A, 454.
There are 48 citations in total.

Details

Primary Language English
Subjects Civil Engineering
Journal Section Articles
Authors

Kemal Beyen 0000-0001-8878-0985

Publication Date March 1, 2021
Submission Date May 24, 2018
Published in Issue Year 2021 Volume: 32 Issue: 2

Cite

APA Beyen, K. (2021). Damage Identification Analyses of a Historic Masonry Structure in T-F Domain. Teknik Dergi, 32(2), 10577-10610. https://doi.org/10.18400/tekderg.426728
AMA Beyen K. Damage Identification Analyses of a Historic Masonry Structure in T-F Domain. Teknik Dergi. March 2021;32(2):10577-10610. doi:10.18400/tekderg.426728
Chicago Beyen, Kemal. “Damage Identification Analyses of a Historic Masonry Structure in T-F Domain”. Teknik Dergi 32, no. 2 (March 2021): 10577-610. https://doi.org/10.18400/tekderg.426728.
EndNote Beyen K (March 1, 2021) Damage Identification Analyses of a Historic Masonry Structure in T-F Domain. Teknik Dergi 32 2 10577–10610.
IEEE K. Beyen, “Damage Identification Analyses of a Historic Masonry Structure in T-F Domain”, Teknik Dergi, vol. 32, no. 2, pp. 10577–10610, 2021, doi: 10.18400/tekderg.426728.
ISNAD Beyen, Kemal. “Damage Identification Analyses of a Historic Masonry Structure in T-F Domain”. Teknik Dergi 32/2 (March 2021), 10577-10610. https://doi.org/10.18400/tekderg.426728.
JAMA Beyen K. Damage Identification Analyses of a Historic Masonry Structure in T-F Domain. Teknik Dergi. 2021;32:10577–10610.
MLA Beyen, Kemal. “Damage Identification Analyses of a Historic Masonry Structure in T-F Domain”. Teknik Dergi, vol. 32, no. 2, 2021, pp. 10577-10, doi:10.18400/tekderg.426728.
Vancouver Beyen K. Damage Identification Analyses of a Historic Masonry Structure in T-F Domain. Teknik Dergi. 2021;32(2):10577-610.