Research Article
BibTex RIS Cite

LINEAR DENSITY CHRONICLES: INVESTIGATING THE IMPACT OF E-GLASS THERMOSET AND THERMOPLASTIC COMPOSITES

Year 2024, Volume: 31 Issue: 136, 211 - 222, 31.12.2024
https://doi.org/10.7216/teksmuh.1461360

Abstract

Hem termoplastik hem de termoset matrisleri kullanan iki boyutlu (2D) dokuma kumaş ile güçlendirilmiş kompozitlerde değişen doğrusal yoğunluklarda E-cam takviyesinin mekanik özelliklerini bu çalışma kapsamında araştırılmıştır. Çalışma, çekme mukavemetini, eğilme mukavemetini, darbe direncini ve düzlem dışı darbe özelliklerini inceleyerek kompozit malzemeleri optimize ediyor; yoğunluğun termoset ve termoplastik kompozitlerin mekanik özellikleri üzerindeki etkisine ışık tutuyor. Termoplastik kompozitlerin sergilediği olağanüstü darbe direncine yansıra termoset kompozitlerin üstün düzlem içi yük taşıma kapasitesi ortaya çıkmaktadır. Ayrıca çalışma, termoset kompozitlerin, artan doğrusal yoğunlukla birlikte yarı statik mekanik özelliklerde fark edilebilir sapmalar ile birlikte, çekme ve eğilme özelliklerinde termoplastik muadillerinden daha iyi performans gösterdiğini ortaya koymaktadır. Hem termoplastik hem de termoset kompozitlerde, daha düşük doğrusal yoğunluklu takviyeye sahip numuneler, yarı statik koşullar altında gelişmiş mekanik performans sergilemiştir. Bununla birlikte, dinamik koşullara maruz kaldığında termoplastik kompozitler bu modeli sergilerken, termoset kompozitler farklı özellikler sergilemiştir. Düşük hızlı darbe yüklemelerinde, Termoplastik 600 Tex Cam Kumaş Takviyeli Kompozitin (TP6G2DFRC) diğer tüm numunelerle, hatta daha yüksek doğrusal yoğunluğa sahip olanlarla karşılaştırıldığında daha yüksek performans sergilediği tespit edilmiştir. Termoplastik 1200 Tex Cam Kumaş Takviyeli Kompozit (TS12G2DFRC), daha yüksek doğrusal yoğunluğa sahip olmasına rağmen Termoplastik 600 Tex Cam Kumaş Takviyeli Kompozite (TS6G2DFRC) göre kayda değer bir üstünlük göstermiştir.

Project Number

2

References

  • 1. Kim D, Jung K, Lee I, Kim H, Structures HK-C, 2017 undefined. Three-dimensional progressive failure modeling of glass fibre reinforced thermoplastic composites for impact simulation. Elsevier n.d.
  • 2. Lu T, Chen X, Wang H, Zhang L, Testing YZ-P, 2020 undefined. Comparison of low-velocity impact damage in thermoplastic and thermoset composites by non-destructive three-dimensional X-ray microscope. Elsevier n.d.
  • 3. Yadav N, Schledjewski R. Review of in-process defect monitoring for automated tape laying. Compos Part A Appl Sci Manuf 2023;173. https://doi.org/10.1016/j.compositesa.2023.107654.
  • 4. Erkendirci ÖF, Haque BZ. Quasi-static penetration resistance behaviour of glass fibre reinforced thermoplastic composites. Compos Part B Eng2012;43:3391–405. https://doi.org/10.1016/j. compositesb. 2012.01.053.
  • 5. Brown KA, Brooks R, Warrior NA. Characterizing the strain rate sensitivity of the tensile mechanical properties of a thermoplastic composite. JOM 2009;61:43–6. https://doi.org/10.1007/S11837-009-0007-9.
  • 6. Mertz DR. Application of Fibre Reinforced Polymer (FRP) Composites to the Highway Infrastructure: Strategic Plan. 2003.
  • 7. Ghayour M, Ganesan R, Engineering MH-CPB, 2020 undefined. Flexural response of composite beams made by Automated Fibre Placement process: Effect of fibre tow gaps. Elsevier n.d.
  • 8. Sun X, Kawashita L, Kaddour A, … MH-C, 2018 undefined. Comparison of low velocity impact modelling techniques for thermoplastic and thermoset polymer composites. Elsevier n.d.
  • 9. Recycling of composite materials. Elsevier n.d.
  • 10. Andrzejewski J, Mohanty A, Engineering MM-CPB, 2020 U. Development of hybrid composites reinforced with biocarbon/carbon fibre system. The comparative study for PC, ABS and PC/ABS based materials. Elsevier n.d.
  • 11. Yang S, Kim Y, Kwon I, Park S, … DK-CPB, 2019 undefined. Simple manufacturing method for a thermoplastic composite using PP-Straw. Elsevier n.d.
  • 12. Guo W, Zhao Y, Wang X, Cai W, Wang J, … LS-CPB, et al. Multifunctional epoxy composites with highly flame retardant and effective electromagnetic interference shielding performances. Elsevier n.d.
  • 13. Wang W, Zhou G, Yu B, Engineering MP-CPB, 2020 undefined. New reactive rigid-rod aminated aromatic polyamide for the simultaneous strengthening and toughening of epoxy resin and carbon fibre/epoxy composites. Elsevier n.d.
  • 14. Nasser J, Zhang L, Technology HS-CS and, 2021 undefined. Laser induced graphene interlaminar reinforcement for tough carbon fibre/epoxy composites. Elsevier n.d.
  • 15. Tripathi L, Chowdhury S, Behera BK. Modelling and simulation of compression behaviour of 3D woven hollow composite structures using FEM analysis. Text Leather Rev 2020;3:6–18. https://doi.org/10.31881/TLR.2020.03.
  • 16. Tripathi L, Chowdhury S, Behera BK. Low-velocity impact behaviour of 3D woven structural honeycomb composite. Mech Adv Mater Struct 2023;0:1–16. https://doi.org/10.1080/15376494. 2023.2199415.
  • 17. Behera, B.K., Jain, M., Tripathi, L. and Chowdhury, S. Low-velocity impact behaviour of textile-reinforced composite sandwich panels. Sandw. Compos., 2022, p. pp.213-260. https://doi.org/https://doi.org/10.1201/9781003143031.
  • 18. Chowdhury S, Behera BK. Low-velocity impact response of 3D woven solid structures for multi-scale applications: role of yarn maneuverability and weave architecture. vol. 46. Springer Berlin Heidelberg; 2024. https://doi.org/10.1007/s40430-024-04734-z.
  • 19. Tripathi L, Chowdhury S, Behera BK. Modeling and simulation of impact behaviour of 3D woven solid structure for ballistic application. J Ind Text 2022;51:6065S-6086S. https://doi.org/ 10.1177/ 1528083720980467.
  • 20. Belingardi G, Beyene A, Structures DJ-C, 2016 undefined. Energy absorbing capability of GMT, GMTex and GMT-UD composite panels for static and dynamic loading–Experimental and numerical study. Elsevier n.d.
  • 21. Behrens BA, Bohne F, Lorenz R, Arndt H, Hübner S, Micke-Camuz M. Numerical and experimental investigation of GMT compression molding and fibre displacement of UD-tape inserts. Procedia Manuf., vol. 47, 2020, p. 11–6. https://doi.org/10.1016/j.promfg. 2020.04.109.
  • 22. Dasappa P, Lee-Sullivan P, Xiao X. Temperature effects on creep behaviour of continuous fibre GMT composites. Compos Part A Appl Sci Manuf2009;40:1071–81. https://doi.org/10.1016/j. compositesa.2009.04.026.
  • 23. Behrens BA, Hübner S, Bonk C, Bohne F, Micke-Camuz M. Development of a Combined Process of Organic Sheet forming and GMT Compression Molding. Procedia Eng., vol. 207, 2017, p. 101–106. https://doi.org/10.1016/j.proeng.2017.10.745.
  • 24. Wiese M, Thiede S, Herrmann C. Rapid manufacturing of automotive polymer series parts: A systematic review of processes, materials and challenges. AdditManuf 2020;36. https://doi.org/ 10.1016/j.addma.2020.101582.
  • 25. Joo SJ, Yu MH, Seock Kim W, Lee JW, Kim HS. Design and manufacture of automotive composite front bumper assemble component considering interfacial bond characteristics between over-molded chopped glass fibre polypropylene and continuous glass fibre polypropylene composite. Compos Struct 2020;236. https://doi.org/10.1016/j.compstruct.2019.111849.
  • 26. Hwang D, Cho D. Fibre aspect ratio effect on mechanical and thermal properties of carbon fibre/ABS composites via extrusion and long fibre thermoplastic processes. J Ind Eng Chem 2019;80:335–44. https://doi.org/10.1016/j.jiec.2019.08.012.
  • 27. Lystrup A. Hybrid yarn for thermoplastic fibre composites. Final report for MUP2 framework program no. 1994-503/0926-50. Summary of technical results. 1998.
  • 28. Zhang L, Miao M. Commingled natural fibre/polypropylene wrap spun yarns for structured thermoplastic composites. Compos Sci Technol 2010;70:130–5. https://doi.org/10.1016/j.compscitech. 2009.09.016.
  • 29. Zhang MQ, Rong MZ. Self-Healing Polymers and Polymer Composites. 2011. https://doi.org/10.1002/9781118082720.
  • 30. Pavlovski D, Mislavsky B, Antonov A. CNG cylinder manufacturers test basalt fibre. ReinfPlast 2007;51. https://doi.org/10.1016/S0034-3617(07)70152-2.
  • 31. Li W, Xu J. Impact characterization of basalt fibre reinforced geopolymeric concrete using a 100-mm-diameter split Hopkinson pressure bar. Mater Sci Eng A 2009;513–514:145–53. https://doi.org/10.1016/j.msea.2009.02.033.
  • 32. Li W, Xu J, Zhai Y, Li Q. Mechanical properties of carbon fibre reinforced concrete under impact loading. Tumu GongchengXuebao/China Civ Eng J 2009;42.
  • 33. Liu Q, Shaw MT, Parnas RS, McDonnell AM. Investigation of Basalt Fibre composite mechanical properties for applications in Transportation. Polym Compos 2006;27:41–8. https://doi.org/ 10.1002/pc.20162.
  • 34. Hao LC, Yu WD. Evaluation of thermal protective performance of basalt fibre nonwoven fabrics. J Therm Anal Calorim2010;100:551–5. https://doi.org/10.1007/s10973-009-0179-0.
  • 35. Czigány T. Special manufacturing and characteristics of basalt fibre reinforced hybrid polypropylene composites: Mechanical properties and acoustic emission study. Compos Sci Technol 2006;66:3210–20. https://doi.org/10.1016/j.compscitech.2005.07.007.
  • 36. Vashishtha A, Sharma D. Mechanical Properties of Natural Fibre-based Woven Fabric- reinforced Thermoplastic and Thermoset Composites 2024;84:320–4.
  • 37. Jiang J, Chen N. Preforms and composites manufactured by novel flax/polypropylene cowrap spinning method. J Compos Mater 2012;46:2097–109. https://doi.org/10.1177/0021998311430155.
  • 38. Study AC. polymers E ff ects of Micro-Braiding and Co-Wrapping Techniques on Characteristics of A Comparative Study. Polymers (Basel) 2020.

LINEAR DENSITY CHRONICLES: INVESTIGATING THE IMPACT OF E-GLASS THERMOSET AND THERMOPLASTIC COMPOSITES

Year 2024, Volume: 31 Issue: 136, 211 - 222, 31.12.2024
https://doi.org/10.7216/teksmuh.1461360

Abstract

This comprehensive investigation delves into the mechanical characteristics of E-glass reinforcement at varying linear densities in two-dimensional (2D) woven fabric-reinforced composites employing both thermoplastic and thermoset matrices. By scrutinizing tensile strength, flexural strength, edge-wise impact resistance and out-of-plane impact properties, the study optimizes composite materials and sheds light on the influence of linear density on the mechanical properties of thermoset and thermoplastic composites. Key insights underscore the superior in-plane load-bearing capacity of thermoset composites under quasi-static conditions, contrasting with the exceptional edge-wise and out-of-plane impact resistance exhibited by thermoplastic composites. Furthermore, the study reveals that thermoset composites outperform their thermoplastic counterparts in tensile and flexural properties, with discernible deviations in quasi-static mechanical properties with increasing linear density. In both thermoplastic and thermoset composites, specimens that had lower linear density reinforcement demonstrated enhanced mechanical performance under quasi-static circumstances. Nevertheless, when subjected to dynamic conditions, thermoplastic composites exhibited this pattern, whereas thermoset composites demonstrated divergent characteristics. In the context of low-velocity impact events, it was shown that Thermoplastic 600 Tex Glass Fabric Reinforced Composite (TP6G2DFRC) exhibited greater performance compared to all other specimens, even those with higher linear density. Conversely, in thermoset composites, Thermoplastic 1200 Tex Glass Fabric Reinforced Composite (TS12G2DFRC) demonstrated notable superiority over Thermoplastic 600 Tex Glass Fabric Reinforced Composite (TS6G2DFRC), despite possessing a higher linear density

Ethical Statement

There was no involvement of experimentation with human tissue or as such.

Supporting Institution

Indian Institute of Technology Delhi

Project Number

2

Thanks

Our sincere thanks to Focus Incubation Centre, IIT Delhi for giving us the chance to do experiment for sample preparation and testing of Composites.

References

  • 1. Kim D, Jung K, Lee I, Kim H, Structures HK-C, 2017 undefined. Three-dimensional progressive failure modeling of glass fibre reinforced thermoplastic composites for impact simulation. Elsevier n.d.
  • 2. Lu T, Chen X, Wang H, Zhang L, Testing YZ-P, 2020 undefined. Comparison of low-velocity impact damage in thermoplastic and thermoset composites by non-destructive three-dimensional X-ray microscope. Elsevier n.d.
  • 3. Yadav N, Schledjewski R. Review of in-process defect monitoring for automated tape laying. Compos Part A Appl Sci Manuf 2023;173. https://doi.org/10.1016/j.compositesa.2023.107654.
  • 4. Erkendirci ÖF, Haque BZ. Quasi-static penetration resistance behaviour of glass fibre reinforced thermoplastic composites. Compos Part B Eng2012;43:3391–405. https://doi.org/10.1016/j. compositesb. 2012.01.053.
  • 5. Brown KA, Brooks R, Warrior NA. Characterizing the strain rate sensitivity of the tensile mechanical properties of a thermoplastic composite. JOM 2009;61:43–6. https://doi.org/10.1007/S11837-009-0007-9.
  • 6. Mertz DR. Application of Fibre Reinforced Polymer (FRP) Composites to the Highway Infrastructure: Strategic Plan. 2003.
  • 7. Ghayour M, Ganesan R, Engineering MH-CPB, 2020 undefined. Flexural response of composite beams made by Automated Fibre Placement process: Effect of fibre tow gaps. Elsevier n.d.
  • 8. Sun X, Kawashita L, Kaddour A, … MH-C, 2018 undefined. Comparison of low velocity impact modelling techniques for thermoplastic and thermoset polymer composites. Elsevier n.d.
  • 9. Recycling of composite materials. Elsevier n.d.
  • 10. Andrzejewski J, Mohanty A, Engineering MM-CPB, 2020 U. Development of hybrid composites reinforced with biocarbon/carbon fibre system. The comparative study for PC, ABS and PC/ABS based materials. Elsevier n.d.
  • 11. Yang S, Kim Y, Kwon I, Park S, … DK-CPB, 2019 undefined. Simple manufacturing method for a thermoplastic composite using PP-Straw. Elsevier n.d.
  • 12. Guo W, Zhao Y, Wang X, Cai W, Wang J, … LS-CPB, et al. Multifunctional epoxy composites with highly flame retardant and effective electromagnetic interference shielding performances. Elsevier n.d.
  • 13. Wang W, Zhou G, Yu B, Engineering MP-CPB, 2020 undefined. New reactive rigid-rod aminated aromatic polyamide for the simultaneous strengthening and toughening of epoxy resin and carbon fibre/epoxy composites. Elsevier n.d.
  • 14. Nasser J, Zhang L, Technology HS-CS and, 2021 undefined. Laser induced graphene interlaminar reinforcement for tough carbon fibre/epoxy composites. Elsevier n.d.
  • 15. Tripathi L, Chowdhury S, Behera BK. Modelling and simulation of compression behaviour of 3D woven hollow composite structures using FEM analysis. Text Leather Rev 2020;3:6–18. https://doi.org/10.31881/TLR.2020.03.
  • 16. Tripathi L, Chowdhury S, Behera BK. Low-velocity impact behaviour of 3D woven structural honeycomb composite. Mech Adv Mater Struct 2023;0:1–16. https://doi.org/10.1080/15376494. 2023.2199415.
  • 17. Behera, B.K., Jain, M., Tripathi, L. and Chowdhury, S. Low-velocity impact behaviour of textile-reinforced composite sandwich panels. Sandw. Compos., 2022, p. pp.213-260. https://doi.org/https://doi.org/10.1201/9781003143031.
  • 18. Chowdhury S, Behera BK. Low-velocity impact response of 3D woven solid structures for multi-scale applications: role of yarn maneuverability and weave architecture. vol. 46. Springer Berlin Heidelberg; 2024. https://doi.org/10.1007/s40430-024-04734-z.
  • 19. Tripathi L, Chowdhury S, Behera BK. Modeling and simulation of impact behaviour of 3D woven solid structure for ballistic application. J Ind Text 2022;51:6065S-6086S. https://doi.org/ 10.1177/ 1528083720980467.
  • 20. Belingardi G, Beyene A, Structures DJ-C, 2016 undefined. Energy absorbing capability of GMT, GMTex and GMT-UD composite panels for static and dynamic loading–Experimental and numerical study. Elsevier n.d.
  • 21. Behrens BA, Bohne F, Lorenz R, Arndt H, Hübner S, Micke-Camuz M. Numerical and experimental investigation of GMT compression molding and fibre displacement of UD-tape inserts. Procedia Manuf., vol. 47, 2020, p. 11–6. https://doi.org/10.1016/j.promfg. 2020.04.109.
  • 22. Dasappa P, Lee-Sullivan P, Xiao X. Temperature effects on creep behaviour of continuous fibre GMT composites. Compos Part A Appl Sci Manuf2009;40:1071–81. https://doi.org/10.1016/j. compositesa.2009.04.026.
  • 23. Behrens BA, Hübner S, Bonk C, Bohne F, Micke-Camuz M. Development of a Combined Process of Organic Sheet forming and GMT Compression Molding. Procedia Eng., vol. 207, 2017, p. 101–106. https://doi.org/10.1016/j.proeng.2017.10.745.
  • 24. Wiese M, Thiede S, Herrmann C. Rapid manufacturing of automotive polymer series parts: A systematic review of processes, materials and challenges. AdditManuf 2020;36. https://doi.org/ 10.1016/j.addma.2020.101582.
  • 25. Joo SJ, Yu MH, Seock Kim W, Lee JW, Kim HS. Design and manufacture of automotive composite front bumper assemble component considering interfacial bond characteristics between over-molded chopped glass fibre polypropylene and continuous glass fibre polypropylene composite. Compos Struct 2020;236. https://doi.org/10.1016/j.compstruct.2019.111849.
  • 26. Hwang D, Cho D. Fibre aspect ratio effect on mechanical and thermal properties of carbon fibre/ABS composites via extrusion and long fibre thermoplastic processes. J Ind Eng Chem 2019;80:335–44. https://doi.org/10.1016/j.jiec.2019.08.012.
  • 27. Lystrup A. Hybrid yarn for thermoplastic fibre composites. Final report for MUP2 framework program no. 1994-503/0926-50. Summary of technical results. 1998.
  • 28. Zhang L, Miao M. Commingled natural fibre/polypropylene wrap spun yarns for structured thermoplastic composites. Compos Sci Technol 2010;70:130–5. https://doi.org/10.1016/j.compscitech. 2009.09.016.
  • 29. Zhang MQ, Rong MZ. Self-Healing Polymers and Polymer Composites. 2011. https://doi.org/10.1002/9781118082720.
  • 30. Pavlovski D, Mislavsky B, Antonov A. CNG cylinder manufacturers test basalt fibre. ReinfPlast 2007;51. https://doi.org/10.1016/S0034-3617(07)70152-2.
  • 31. Li W, Xu J. Impact characterization of basalt fibre reinforced geopolymeric concrete using a 100-mm-diameter split Hopkinson pressure bar. Mater Sci Eng A 2009;513–514:145–53. https://doi.org/10.1016/j.msea.2009.02.033.
  • 32. Li W, Xu J, Zhai Y, Li Q. Mechanical properties of carbon fibre reinforced concrete under impact loading. Tumu GongchengXuebao/China Civ Eng J 2009;42.
  • 33. Liu Q, Shaw MT, Parnas RS, McDonnell AM. Investigation of Basalt Fibre composite mechanical properties for applications in Transportation. Polym Compos 2006;27:41–8. https://doi.org/ 10.1002/pc.20162.
  • 34. Hao LC, Yu WD. Evaluation of thermal protective performance of basalt fibre nonwoven fabrics. J Therm Anal Calorim2010;100:551–5. https://doi.org/10.1007/s10973-009-0179-0.
  • 35. Czigány T. Special manufacturing and characteristics of basalt fibre reinforced hybrid polypropylene composites: Mechanical properties and acoustic emission study. Compos Sci Technol 2006;66:3210–20. https://doi.org/10.1016/j.compscitech.2005.07.007.
  • 36. Vashishtha A, Sharma D. Mechanical Properties of Natural Fibre-based Woven Fabric- reinforced Thermoplastic and Thermoset Composites 2024;84:320–4.
  • 37. Jiang J, Chen N. Preforms and composites manufactured by novel flax/polypropylene cowrap spinning method. J Compos Mater 2012;46:2097–109. https://doi.org/10.1177/0021998311430155.
  • 38. Study AC. polymers E ff ects of Micro-Braiding and Co-Wrapping Techniques on Characteristics of A Comparative Study. Polymers (Basel) 2020.
There are 38 citations in total.

Details

Primary Language English
Subjects Textile Technology
Journal Section Articles
Authors

Arvınd Vashıshtha

Soumya Chowdhury

Dhirendra Sharma

Bijoy Kumar Behera

Project Number 2
Publication Date December 31, 2024
Submission Date April 1, 2024
Acceptance Date December 25, 2024
Published in Issue Year 2024 Volume: 31 Issue: 136

Cite

APA Vashıshtha, A., Chowdhury, S., Sharma, D., Behera, B. K. (2024). LINEAR DENSITY CHRONICLES: INVESTIGATING THE IMPACT OF E-GLASS THERMOSET AND THERMOPLASTIC COMPOSITES. Tekstil Ve Mühendis, 31(136), 211-222. https://doi.org/10.7216/teksmuh.1461360
AMA Vashıshtha A, Chowdhury S, Sharma D, Behera BK. LINEAR DENSITY CHRONICLES: INVESTIGATING THE IMPACT OF E-GLASS THERMOSET AND THERMOPLASTIC COMPOSITES. Tekstil ve Mühendis. December 2024;31(136):211-222. doi:10.7216/teksmuh.1461360
Chicago Vashıshtha, Arvınd, Soumya Chowdhury, Dhirendra Sharma, and Bijoy Kumar Behera. “LINEAR DENSITY CHRONICLES: INVESTIGATING THE IMPACT OF E-GLASS THERMOSET AND THERMOPLASTIC COMPOSITES”. Tekstil Ve Mühendis 31, no. 136 (December 2024): 211-22. https://doi.org/10.7216/teksmuh.1461360.
EndNote Vashıshtha A, Chowdhury S, Sharma D, Behera BK (December 1, 2024) LINEAR DENSITY CHRONICLES: INVESTIGATING THE IMPACT OF E-GLASS THERMOSET AND THERMOPLASTIC COMPOSITES. Tekstil ve Mühendis 31 136 211–222.
IEEE A. Vashıshtha, S. Chowdhury, D. Sharma, and B. K. Behera, “LINEAR DENSITY CHRONICLES: INVESTIGATING THE IMPACT OF E-GLASS THERMOSET AND THERMOPLASTIC COMPOSITES”, Tekstil ve Mühendis, vol. 31, no. 136, pp. 211–222, 2024, doi: 10.7216/teksmuh.1461360.
ISNAD Vashıshtha, Arvınd et al. “LINEAR DENSITY CHRONICLES: INVESTIGATING THE IMPACT OF E-GLASS THERMOSET AND THERMOPLASTIC COMPOSITES”. Tekstil ve Mühendis 31/136 (December 2024), 211-222. https://doi.org/10.7216/teksmuh.1461360.
JAMA Vashıshtha A, Chowdhury S, Sharma D, Behera BK. LINEAR DENSITY CHRONICLES: INVESTIGATING THE IMPACT OF E-GLASS THERMOSET AND THERMOPLASTIC COMPOSITES. Tekstil ve Mühendis. 2024;31:211–222.
MLA Vashıshtha, Arvınd et al. “LINEAR DENSITY CHRONICLES: INVESTIGATING THE IMPACT OF E-GLASS THERMOSET AND THERMOPLASTIC COMPOSITES”. Tekstil Ve Mühendis, vol. 31, no. 136, 2024, pp. 211-22, doi:10.7216/teksmuh.1461360.
Vancouver Vashıshtha A, Chowdhury S, Sharma D, Behera BK. LINEAR DENSITY CHRONICLES: INVESTIGATING THE IMPACT OF E-GLASS THERMOSET AND THERMOPLASTIC COMPOSITES. Tekstil ve Mühendis. 2024;31(136):211-22.