Exploratory Study on the Properties of Compact Three-Roving Yarn: Comparison The Properties of Compact Spun, Compact Siro-Spun and Compact Three-Roving Yarns
Year 2024,
, 19 - 31, 31.03.2024
Murat Demir
,
Musa Kılıç
,
Serdar Sayın
,
Zeki Kıral
,
Furkan Balduk
,
Kıymet Kübra Denge
Abstract
This study presents the novel compact three-roving technology which developed on the working principle of siro-spun and compact spinning technologies. In the study, auxiliary parts of siro-spun and pneumatic compact spinning are newly designed for the production of compact three-roving yarns. The properties of new compact three-roving yarns were compared with compact spun and compact siro-spun yarns that produced at the same yarn count and at the same twist level from natural, synthetic and regenerated fibers. Besides, three-types of yarns were also used in the weft direction for the production of the woven fabric. Comparing yarn and fabric properties showed that, compact three-roving yarns have similar results to commercially used yarns in general. In addition, it should also be noted that three-roving yarn can be also used for specific purposes owing to its composite structure.
Supporting Institution
TÜBİTAK TEYDEB 1505 & Dokuz Eylul Universitesi BAP
Project Number
TÜBİTAK (5160091) - DEU BAP (2020.KB.FEN.018)
References
- 1. Kilic M., Balci Kilic G., Okur A. 2011. Effects of Spinning System on Yarn Properties. Journal of Textiles and Engineer 18(81): 22-34.
- 2. Song, Y. 2016. Comparison between Conventional Ring Spinning and Compact Spinning, Master Thesis, North Carolina State University.
- 3. Soltani, P. & Johari, M.S. 2012. A study on siro-, solo-, compact-, and conventional ring-spun yarns. PartII: yarn strength with relation to physical and structural properties of yarns, The Journal of The Textile Institute, 103(9):921-930, DOI: 10.1080/00405000.2011.628117
- 4. Basal, G. & Oxenham, W. 2006. Comparison of Properties and Structures of Compact and Conventional Spun Yarns Textile Research Journal 76(7): 567–575 DOI: 10.1177/0040517506065591
- 5. Cheng, K.P.S. & YU, C. 2003. A study of Compact Spun Yarns. Textile Research Journal 73 (4): 345-349. DOI: 10.1177/004051750307300412
- 6. Ganesan S. & Ramakrishnan G. 2006. Fibre migration in compact spun yarns: Part I- Pneumatic compact Yarn. Indian Journal of Fibre &Textile Research 31: 381-386.
- 7. Altas, S. & Kadoglu, H. 2012 Comparison of Conventional Ring, Mechanical Compact and Pneumatic Compact Yarn Spinning Systems. Journal of Engineered Fibers and Fabrics 7(1).
- 8. Raja, D., Prakash, C., Gunasekaran G. & Koushik, C.V. 2015. A study on thermal properties of single-jersey knitted fabrics produced from ring and compact folded yarns, The Journal of The Textile Institute, 106:4, 359-365, DOI: 10.1080/00405000.2014.912783.
- 9. Akhtar, K.S., Ahmad, S., Afzal,A., Anam,W., Ali,Z. & Hussain, T. 2020. Influence and comparison of emerging techniques of yarn manufacturing on physical–mechanical properties of polyester-/cotton-blended yarns and their woven fabrics, The Journal of The Textile Institute 111(4): 555-564. DOI: 10.1080/00405000.2019.1650545
- 10. Kim, H. A. 2017. Physical properties of ring, compact, and air vortex yarns made of PTT/wool/modal and wearing comfort of their knitted fabrics for high emotional garments, The Journal of The Textile Institute 108(9):1647-1656. DOI: 10.1080/00405000.2016.1275444
- 11. Kaynak, H. K. & Celik, H.İ. 2018. Thermophysiological comfort and performance properties of knitted fabrics produced from different spinning technologies, The Journal of The Textile Institute 109(4):536-542, DOI: 10.1080/00405000.2017.1361080
- 12. Stalder, H. 2014. Rieter Manuel of Spinning, Issue 6: Alternative Spinning Technologies, Winterthur: Rieter Machine Works.
- 13. Emanuel A., Plate, D. 1982. Alternative Approach to Two-Fold Weaving Yarn, Part II. The Theoretical Model. The Journal of The Textile Institute 73 (3): 108-116. DOI: 73:3, 107-116, DOI: 10.1080/00405008208658923
- 14. Miao,M., Cai, Z., Zhang, Y. 1993. Influence of Machine Variables on Two-strand Yarn Spinning Geometry. Textile Research Journal 63 (2):116-120. DOI: 10.1177/004051759306300208
- 15. Cheng, K.P.S & Sun M.N. 1998. Effect of Strand Spacing and Twist Multiplier on Cotton Siro-Spun Yarn. Textile Research Journal 68 (7): 520-527. DOI: 10.1177/004051759806800709
- 16. Gokarneshan, N., Anbumani, N. & Subramaniam, V. 2007. Influence of strand spacing on the interfibre cohesion in siro yarns, The Journal of The Textile Institute, 98:3: 289-292, DOI: 10.1080/00405000701489313
- 17. Soltani P. & Johari, M.S. 2012. A study on siro-, solo-, compact-, and conventional ring-spun yarns. Part I: structural and migratory properties of the yarns, The Journal of The Textile Institute103(6): 622-628. DOI: 10.1080/00405000.2011.595567
- 18. Gowda, R.V. M., Sivakumar, M., Kannan, M. S. S. 2004. Influnce of process variables on characteristics of modal siro-spun yarns using Box-Behnken response surface design. Indian Journal of Fibre & Textile Research 29: 412-418.
- 19. Yıldız B. S. & Kilic, M. 2017. An Investigation on Properties of Siro-spun Yarns. Annals of University Oradea Fascicles of Textile and Leatherwork 18:131-136.
- 20. Ortlek, H.G., Kilic, G., Bilgin, S. 2011. Comparative study on the properties of yarns produced by modified ring spinning methods. Industria Textila 62(3) :129-133.
- 21. Lui, Y., Wang, Y. & Gao, W. 2019. Wicking Behaviours Of Ring And Compact-Siro Ring Spun Yarns With Different Twists. AUTEX Research Journal, 19(1) DOI: 10.1515/aut-2018-0031
- 22. Su, X., Gao, W., Liu, X., Xie, C., Xu, B. 2015. Research on the Compact-Siro Spun Yarn Structure. FIBRES & TEXTILES in Eastern Europe 111(3): 54-57.
- 23. Matsumoto, M., Matsumoto, Y., Kanai, H., Wakako, L., Fukushima, K. 2014. Construction of Twin Staple-core Spun Yarn with two Points of Yarn Formation in One Twisting Process. Textile Research Journal 84(17):1858–1866. DOI: 10.1177/0040517513499435
- 24. Matsumoto, Y., Kanai, H., Wakako, L., Morooka, H., Kimura, H., Fukushima, K. 2010. Exploratory Work on the Spinning Condition of the Structure of Staple-core Twin-spun Yarns. Textile Research Journal 80(11): 1056–1064. DOI: 10.1177/0040517509352521
- 25. Matsumoto, Y., Kimura, H., Yamamoto, T., Matsuoko, T., Fukushima, K. 2009. Characteristics of Novel Triplet Spun Yarns made from Fibers of Differing Fineness. Textile Research Journal 79 (10): 947-952. DOI: 10.1177/0040517508097791
- 26. Demir, M. and Kilic, M. 2017. Investigating Possibilities of Three-Strand Yarn Production. Fibres and Textiles 24(1): 30-35.
- 27. Demir, M. and Kilic, M. 2020. Development of Three-roving Ring Yarn Production System, Indian Journal of Fibre & Textile Research 45: 450-456.
- 28. Demir, M., Kilic, M. 2019. A modified Twist spinning-three-roving Yarn Spinning. In: International Conference TexTeh IX Advanced Textiles for a Better World. Bucharest, Romania, 24-25 October 2019.
29. Demir M, 2021. Design and development of three strand Yarn Production System, PhD Thesis, Available from YOKSIS database (691009)
- 30. Demir, M., Kilic, M., Sayin, S., Kiral, Z., Balduk, F., & Denge, K. K. (2021). Design of three-strand compact spinning system and numerical flow-field simulation for different structures of air-suction guides and suction inserts. Textile Research Journal, 91(15-16), 1795-1814.
- 31. Martindale, J.G. 1945. A New Method of Measuring the Irregularity of Yarns with Some Observations on the Origin of Irregularities in Worsted Slivers and Yarns. Journal of Textile Institute 36(3): 35-47. DOI: 10.1080/19447024508659383
- 32. Grosberg, P. and Iype, C. 1999. Yarn Production – Theoretical Aspects. Cambridge: Woodhead Publishing
- 33. Dyson, E. 1974. Some Observations on Yarn Irregularity. Journal of Textile Institute. 65(4):215-217. DOI: 10.1080/00405007408630450
- 34. Hearle, J.W.S., Lord, P.R. and Senturk, N. 1972. Fibre Migration in Open-End- Spun Yarns. Journal of Textile Institute 63(11):605-617. DOI: 10.1080/00405007208630383
- 35. Hua, T., Tao, M.X., Cheng, K.P.S, Xu, B.G. 2010. Effects of Geometry of Ring Spinning Triangle on Yarn Torque: Part II: Distribution of Fiber Tension within a Yarn and Its Effects on Yarn Residual Torque. Textile Research Journal 80(2): 116–123 DOI: 10.1177/0040517509102732
- 36. Gupta, B. S. (Ed.) 2008. Friction in textile materials. Cambridge, UK: Woodhead Publishing
- 37. Pastore, C. M. &Kiekens, P. 2001. Surface characteristics of fibers and textiles. USA: Mercel Dekker Inc.Publishing Limited.
- 38. Kaynak, H.K., Babaarslan, O., Avcı, M.E, Doğan, F.B. 2017. Effects of spinning technology on deneim fabric performance. Industria Textila 68(3):197-203.
Year 2024,
, 19 - 31, 31.03.2024
Murat Demir
,
Musa Kılıç
,
Serdar Sayın
,
Zeki Kıral
,
Furkan Balduk
,
Kıymet Kübra Denge
Project Number
TÜBİTAK (5160091) - DEU BAP (2020.KB.FEN.018)
References
- 1. Kilic M., Balci Kilic G., Okur A. 2011. Effects of Spinning System on Yarn Properties. Journal of Textiles and Engineer 18(81): 22-34.
- 2. Song, Y. 2016. Comparison between Conventional Ring Spinning and Compact Spinning, Master Thesis, North Carolina State University.
- 3. Soltani, P. & Johari, M.S. 2012. A study on siro-, solo-, compact-, and conventional ring-spun yarns. PartII: yarn strength with relation to physical and structural properties of yarns, The Journal of The Textile Institute, 103(9):921-930, DOI: 10.1080/00405000.2011.628117
- 4. Basal, G. & Oxenham, W. 2006. Comparison of Properties and Structures of Compact and Conventional Spun Yarns Textile Research Journal 76(7): 567–575 DOI: 10.1177/0040517506065591
- 5. Cheng, K.P.S. & YU, C. 2003. A study of Compact Spun Yarns. Textile Research Journal 73 (4): 345-349. DOI: 10.1177/004051750307300412
- 6. Ganesan S. & Ramakrishnan G. 2006. Fibre migration in compact spun yarns: Part I- Pneumatic compact Yarn. Indian Journal of Fibre &Textile Research 31: 381-386.
- 7. Altas, S. & Kadoglu, H. 2012 Comparison of Conventional Ring, Mechanical Compact and Pneumatic Compact Yarn Spinning Systems. Journal of Engineered Fibers and Fabrics 7(1).
- 8. Raja, D., Prakash, C., Gunasekaran G. & Koushik, C.V. 2015. A study on thermal properties of single-jersey knitted fabrics produced from ring and compact folded yarns, The Journal of The Textile Institute, 106:4, 359-365, DOI: 10.1080/00405000.2014.912783.
- 9. Akhtar, K.S., Ahmad, S., Afzal,A., Anam,W., Ali,Z. & Hussain, T. 2020. Influence and comparison of emerging techniques of yarn manufacturing on physical–mechanical properties of polyester-/cotton-blended yarns and their woven fabrics, The Journal of The Textile Institute 111(4): 555-564. DOI: 10.1080/00405000.2019.1650545
- 10. Kim, H. A. 2017. Physical properties of ring, compact, and air vortex yarns made of PTT/wool/modal and wearing comfort of their knitted fabrics for high emotional garments, The Journal of The Textile Institute 108(9):1647-1656. DOI: 10.1080/00405000.2016.1275444
- 11. Kaynak, H. K. & Celik, H.İ. 2018. Thermophysiological comfort and performance properties of knitted fabrics produced from different spinning technologies, The Journal of The Textile Institute 109(4):536-542, DOI: 10.1080/00405000.2017.1361080
- 12. Stalder, H. 2014. Rieter Manuel of Spinning, Issue 6: Alternative Spinning Technologies, Winterthur: Rieter Machine Works.
- 13. Emanuel A., Plate, D. 1982. Alternative Approach to Two-Fold Weaving Yarn, Part II. The Theoretical Model. The Journal of The Textile Institute 73 (3): 108-116. DOI: 73:3, 107-116, DOI: 10.1080/00405008208658923
- 14. Miao,M., Cai, Z., Zhang, Y. 1993. Influence of Machine Variables on Two-strand Yarn Spinning Geometry. Textile Research Journal 63 (2):116-120. DOI: 10.1177/004051759306300208
- 15. Cheng, K.P.S & Sun M.N. 1998. Effect of Strand Spacing and Twist Multiplier on Cotton Siro-Spun Yarn. Textile Research Journal 68 (7): 520-527. DOI: 10.1177/004051759806800709
- 16. Gokarneshan, N., Anbumani, N. & Subramaniam, V. 2007. Influence of strand spacing on the interfibre cohesion in siro yarns, The Journal of The Textile Institute, 98:3: 289-292, DOI: 10.1080/00405000701489313
- 17. Soltani P. & Johari, M.S. 2012. A study on siro-, solo-, compact-, and conventional ring-spun yarns. Part I: structural and migratory properties of the yarns, The Journal of The Textile Institute103(6): 622-628. DOI: 10.1080/00405000.2011.595567
- 18. Gowda, R.V. M., Sivakumar, M., Kannan, M. S. S. 2004. Influnce of process variables on characteristics of modal siro-spun yarns using Box-Behnken response surface design. Indian Journal of Fibre & Textile Research 29: 412-418.
- 19. Yıldız B. S. & Kilic, M. 2017. An Investigation on Properties of Siro-spun Yarns. Annals of University Oradea Fascicles of Textile and Leatherwork 18:131-136.
- 20. Ortlek, H.G., Kilic, G., Bilgin, S. 2011. Comparative study on the properties of yarns produced by modified ring spinning methods. Industria Textila 62(3) :129-133.
- 21. Lui, Y., Wang, Y. & Gao, W. 2019. Wicking Behaviours Of Ring And Compact-Siro Ring Spun Yarns With Different Twists. AUTEX Research Journal, 19(1) DOI: 10.1515/aut-2018-0031
- 22. Su, X., Gao, W., Liu, X., Xie, C., Xu, B. 2015. Research on the Compact-Siro Spun Yarn Structure. FIBRES & TEXTILES in Eastern Europe 111(3): 54-57.
- 23. Matsumoto, M., Matsumoto, Y., Kanai, H., Wakako, L., Fukushima, K. 2014. Construction of Twin Staple-core Spun Yarn with two Points of Yarn Formation in One Twisting Process. Textile Research Journal 84(17):1858–1866. DOI: 10.1177/0040517513499435
- 24. Matsumoto, Y., Kanai, H., Wakako, L., Morooka, H., Kimura, H., Fukushima, K. 2010. Exploratory Work on the Spinning Condition of the Structure of Staple-core Twin-spun Yarns. Textile Research Journal 80(11): 1056–1064. DOI: 10.1177/0040517509352521
- 25. Matsumoto, Y., Kimura, H., Yamamoto, T., Matsuoko, T., Fukushima, K. 2009. Characteristics of Novel Triplet Spun Yarns made from Fibers of Differing Fineness. Textile Research Journal 79 (10): 947-952. DOI: 10.1177/0040517508097791
- 26. Demir, M. and Kilic, M. 2017. Investigating Possibilities of Three-Strand Yarn Production. Fibres and Textiles 24(1): 30-35.
- 27. Demir, M. and Kilic, M. 2020. Development of Three-roving Ring Yarn Production System, Indian Journal of Fibre & Textile Research 45: 450-456.
- 28. Demir, M., Kilic, M. 2019. A modified Twist spinning-three-roving Yarn Spinning. In: International Conference TexTeh IX Advanced Textiles for a Better World. Bucharest, Romania, 24-25 October 2019.
29. Demir M, 2021. Design and development of three strand Yarn Production System, PhD Thesis, Available from YOKSIS database (691009)
- 30. Demir, M., Kilic, M., Sayin, S., Kiral, Z., Balduk, F., & Denge, K. K. (2021). Design of three-strand compact spinning system and numerical flow-field simulation for different structures of air-suction guides and suction inserts. Textile Research Journal, 91(15-16), 1795-1814.
- 31. Martindale, J.G. 1945. A New Method of Measuring the Irregularity of Yarns with Some Observations on the Origin of Irregularities in Worsted Slivers and Yarns. Journal of Textile Institute 36(3): 35-47. DOI: 10.1080/19447024508659383
- 32. Grosberg, P. and Iype, C. 1999. Yarn Production – Theoretical Aspects. Cambridge: Woodhead Publishing
- 33. Dyson, E. 1974. Some Observations on Yarn Irregularity. Journal of Textile Institute. 65(4):215-217. DOI: 10.1080/00405007408630450
- 34. Hearle, J.W.S., Lord, P.R. and Senturk, N. 1972. Fibre Migration in Open-End- Spun Yarns. Journal of Textile Institute 63(11):605-617. DOI: 10.1080/00405007208630383
- 35. Hua, T., Tao, M.X., Cheng, K.P.S, Xu, B.G. 2010. Effects of Geometry of Ring Spinning Triangle on Yarn Torque: Part II: Distribution of Fiber Tension within a Yarn and Its Effects on Yarn Residual Torque. Textile Research Journal 80(2): 116–123 DOI: 10.1177/0040517509102732
- 36. Gupta, B. S. (Ed.) 2008. Friction in textile materials. Cambridge, UK: Woodhead Publishing
- 37. Pastore, C. M. &Kiekens, P. 2001. Surface characteristics of fibers and textiles. USA: Mercel Dekker Inc.Publishing Limited.
- 38. Kaynak, H.K., Babaarslan, O., Avcı, M.E, Doğan, F.B. 2017. Effects of spinning technology on deneim fabric performance. Industria Textila 68(3):197-203.