BibTex RIS Cite

Dijital PZR ve kullanım alanları

Year 2016, Volume: 73 Issue: 2, 183 - 198, 01.06.2016

Abstract

Polimeraz zincir reaksiyonu PZR , DNA kompleks havuzundan spesifik bir DNA parçasını çoğaltmaya olanak sağlayan basit, etkin ve özellikle moleküler biyoloji alanında yaygın olarak kullanılan enzimatik bir tekniktir. PZR tekniğinin keşfinden günümüze kadar gelişen teknolojiyle birlikte pek çok PZR tekniği ortaya çıkmıştır. Bu tekniklerden bazıları Gerçek Zamanlı PZR, Kantitatif PZR, Ters Transkriptaz PZR, Nested PZR ve Multipleks PZR dir. Günümüze kadar geliştirilmiş PZR tekniklerinin çeşitli zorlukları yüzünden PZR tekniklerinin kullanım alanını genişletmek ve daha ileri seviye PZR teknikleri bulmak araştırmacıların birinci önceliği haline gelmiştir. Nadir mutasyonların, kopya sayısı varyasyonlarındaki ufak değişikliklerin, gen ifadesi değişiklikleri arasındaki farklılıkların veya metilasyon durumunun değerlendirilmesine izin veren yeni bir yöntem olarak dijital PZR dPZR teknolojisi geliştirilmiştir. Dijital PZR, DNA kopya sayısının hassas ölçümü için PZR bazlı yeni bir tekniktir ve örnekleri az sayıda seyrelterek çok sayıda PZR gerçekleştirmeye olanak sağlar ve her birinde ayrı ayrı PZR gerçekleşen çok sayıda küçük bölümlere sahiptir. Aynı zamanda dPZR; şu an çok az miktardaki genetik materyalin miktarını dakikalar içinde tespit etme performansıyla birçok nicel yöntemleri geride bırakmıştır. Tek molekülü sayma stratejisi sayesinde bu yöntem yüksek hassasiyet gösterebilmektedir. Güvenilirlik ve tekrarlanabilirlik düzeyi oldukça yüksek bir yöntem olmasıyla da dikkat çekmektedir. Bu derleme, digital PZR yönteminin günümüze kadar olan süreçteki gelişimine ve ilerleyen günlerde çözüm bulunması gereken eksik yönlerine dikkat çekmeyi amaçlamaktadır

References

  • Mullis KB. The unusual origin of the polymerase chain reaction. Sci Am, 1990; 262: 56–61, 64–5.
  • Bottero MT, Civera T, Nucera D, Rosati S, Sacchi P, Turi RM. A multiplex polymerase chain reaction for the identification of cows’, goats’, and sheeps’ milk in dairy products. Int Dairy J, 2003; 13: 277– 82.
  • Garibyan L, Avashia N. Polymerase Chain Reaction. J Investig Dermatol, 2013; 133 (3): e6.
  • Erlich HA, Gelfand D, Sninsky JJ. Recent Advances in the Polymerase Chain Reaction. Science, 1991; 252: 1643-51.
  • Gibbs RA, DNA Amplification by the Polymerase Chain Reaction. Analytical Chemistry Anal Chem, 1990; 62 (13): 1202-14.
  • Arnheim N, Erlich H. Polymerase Chain Reaction Strategy. Annu Rev Biochem, 1992; 61: 131-56.
  • Sharkey DJ, Scalice ER, Christy KG, Atwood SM, Daiss JL. Antibodies as thermolabile switches: High temperature triggering fort he polymerase chain reaction. Biotechnol, 1994; 12: 506–509.
  • Elizabeth G. How widespread is adult neurogenesis in mammals? Nat Rev Neurosci, 2007; 8: 481-8.
  • Klein D. Quantification using real-time PCR tecnology: Applications and limitations. Trends Mol Med, 2002; 8: 257-60.
  • Bustin SA, Mueller R. Real-time reverse transcription PCR (qRT-PCR) and potential use in clinical diagnosis. Clin Science, 2005; 109: 365-79.
  • Karataş M. Moleküler Biyoloji. Nobel Akademik Yayıncılık. 2012; 288-90.
  • Santagati S, Garnier M, Carlo P, Violani E, Picotti GB, Maggi A. Quantitation of low abundance mRNAs in glial cells using different polymerase chain reaction (PCR)-based methods. Br Res Prot, 1997; 1 (3): 217-23
  • Auckenthaler R, Risch M. Do Multiplex PCR techniques microbiology? Ther Umsch, 2015; 72 (2): 77-85. cultures in
  • Karlen Y, McNair A, Perseguers S, Mazza C, Mermod N. Statistical significance of quantitative PCR. BMC Bioinformatics, 2007; 8: 131.
  • Hudecova I. Digital PCR analysis of circulating nucleic acids. Clin Biochem, 2015; 142 (15): 9.
  • Sykes PJ, Neoh SH, Brisco MJ, Hughes E, Condon J, Morley AA. Quantitation of targets for PCR by use of limiting dilution. Biotechniques, 1992; 13: 444–9.
  • Kim TG, Jeong SY, Cho KS. Comparison of droplet digital PCR and quantitative real-time PCR for examining population dynamics of bacteriain soil. Appl Microbiol Biotechnol, 2014; 98 (13): 6105-13.
  • Jahn M, Vorpahl C, Türkowsky D, Lindmeyer M, Bühler B, Harms H, et al. Accurate determination of plasmid copy number of flow sorted cells using droplet digital PCR. Anal Chem, 2014; 86 (12): 5969-76.
  • Wiencke JK, Bracci PM, Hsuang G, Zheng S, Hansen H, Wrensch MR, et al. A comparison of DNA methylation specific droplet digital PCR (ddPCR) and real time qPCR with flow cytometry in characterizing human T cells in peripheral blood. Epigenetics, 2014; 9 (10): 1360-5.
  • Hindson BJ, Ness KD, Masquelier DA, Belgrader P, Heredia NJ, Makarewicz AJ, et al. High- throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal Chem, 2011; 83: 8604–10.
  • Sze MA, Abbasi M, Hogg JC, Sin DD. A comparison between droplet digital and quantitative PCR in the analysis of bacterial 16S load in lung tissuesamples from control and COPD GOLD 2. PLoS One, 2014; 9(10): e110351.
  • Bhat S, Herrmann J, Armishaw P, Corbisier P, Emslie KR. Single molecule detection in nanofluidic digital array enables accurate measurement of DNA copy number. Anal Bioanal Chem, 2009; 394: 457–67.
  • Vogelstein B, Kinzler KW. Digital PCR. Proc Natl Acad Sci USA, 1999; 96: 9236–41.
  • Zhou W, Galizia G, Lieto E, Goodman SN, Romans KE, Kinzler KW, et al. Counting alleles reveals a connection between chromosome 18q loss and vascular invasion. Nat Biotechnol, 2001; 19: 78–81.
  • Pinheiro LB, Coleman VA, Hindson CM, Herrmann J, Hindson BJ, Bhat S, et al. Evaluation of a droplet digital polymerase chain reaction format for DNA copy number quantification. Anal Chem, 2012; 84: 1003–11.
  • White RA, Blainey PC, Fan HC, Quake SR. Digital PCR provides sensitive and absolute calibration for high throughput sequencing. BMC Genomics, 2009; 10: 116.
  • Takahashi K, Yan IK, Kim C, Kim J, Patel T. Analysis of extracellular RNA by digital PCR. Front Oncol, 2014; 4: 129.
  • Usmani-Brown S, Lebastchi J, Steck AK, Beam C, Herold KC, Ledizet M. Analysis of β-cell death in type 1 diabetes by droplet digital PCR. Endocrinology, 2014; 155 (9): 3694-8.
  • White TB, McCoy AM, Streva VA, Fenrich J, Deininger PL. A droplet digital PCR detection method for rare L1 insertions in tumors. Mob DNA, 2014; 5 (1): 30.
  • Dingle TC, Sedlak RH, Cook L, Jerome KR. Tolerance of droplet-digital PCR vs real-time quantitative PCR to inhibitory substances. Clin Chem, 2013;59: 1670–2.
  • Whale AS, Cowen S, Foy CA, Huggett JF. Methods for applying accurate digital PCR analysis on low copy DNA samples. PLoS One, 2013; 8: e58177.
  • Weisenberger DJ, Trinh BN, Campan M, Sharma S, Long TI, Ananthnarayan S, et al. DNA methylation analysis by digital bisulfite genomic sequencing and digital MethyLight. Nucleic Acids Res, 2008; 36: 4689–98.
  • Pekin D, Skhiri Y, Baret JC, Le Corre D, Mazutis L, Salem CB, et al. Quantitative and sensitive detection of rare mutations using droplet-based microfluidics. Lab Chip, 2011; 11 (13): 2156-66.
  • Chen WW, Balaj L, Liau LM, Samuels ML, Kotsopoulos SK, Maguire CA, et al. BEAMing and Droplet Digital PCR Analysis of Mutant IDH1 mRNA in Glioma Patient Serum and Cerebrospinal Fluid Extracellular Vesicles. Mol Ther Nucleic Acids, 2013; 2: e109.
  • White RA, Quake SR, Curr K. Digital PCR provides absolute quantitation of viral load for an occult RNA virus. J Virol Methods, 2012; 179 (1): 45-50.
  • Whale AS, Huggett JF, Cowen S, Speirs V, Shaw J, Ellison S, et al. Comparison of microfluidic digital PCR and conventional quantitative PCR for measuring copy number variation. Nucleic Acids Res, 2012; 40: e82.
  • Didelot A, Kotsopoulos SK, Lupo A, Pekin D, Li X, Atochin I, et al. Multiplex picoliter-droplet digital PCR for quantitative assessment of DNA integrity in clinical samples. Clin Chem, 2013; 59 (5): 815-23.
  • Dobnik D, Spilsberg B, Bogožalec Košir A, Holst- Jensen A, Žel J. Multiplex quantification of 12 European Union authorized genetically modified maize lines with droplet digital polymerase chain reaction. Anal Chem, 2015; 87 (16): 8218-26.
  • Spurgeon SL, Jones RC, Ramakrishnan R. High throughput gene expression measurement with real time PCR in a microfluidic dynamic array. PLoS One, 2008; 3: e1662.
  • Dressman D, Yan H, Traverso G, Kinzler KW, Vogelstein B. Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations. Proc Natl Acad Sci USA, 2003; 100: 8817–22.
  • Heyries KA, Tropini C, Vaninsberghe M, Doolin C, Petriv OI, Singhal A, et al. Megapixel digital PCR. Nat Methods, 2011; 8: 649–51.
  • Li M, Chen WD, Papadopoulos N, Goodman SN, Bjerregaard NC, Laurberg S, et al. Sensitive digital quantification of DNA methylation in clinical samples. Nat Biotechnol, 2009; 27: 858–63.
  • Weisenberger DJ, Trinh BN, Campan M, Sharma S, Long TI, Ananthnarayan S, et al. DNA methylation analysis by digital bisulfite genomic sequencing and digital MethyLight. Nucleic Acids Res, 2008; 36: 4689–98.
  • Nadauld L, Regan J, Miotke L, Pai RK, Longacre TA, Kwok SS et al. Quantitative and Sensitive Detection of Cancer Genome Amplifications from Formalin Fixed Paraffin Embedded Tumors with Droplet Digital PCR. Transl Med (Sunnyvale), 2012; 2(2): .
  • Huggett JF, Foy CA, Benes V, Emslie K, Garson JA, Haynes R, et al. The digital MIQE guidelines: Minimum Quantitative Digital PCR Experiments. Clin Chem, 2013; 59 (6): 892-902. for Publication of
  • Manoj P. Droplet digital PCR technology promises new applications and research areas. Mitochondrial DNA, 2016; 27 (1): 742-6.
  • Baker M. Digital PCR hits its stride. Nature Methods, 2012; 9(6): 541.
  • Pavšič J, Žel J, Milavec M. Assessment of the real- time PCR and different digital PCR platforms for DNA quantification. Anal Bioanal Chem, 2016; 408 (1): 107-21.

Digital PCR and applications

Year 2016, Volume: 73 Issue: 2, 183 - 198, 01.06.2016

Abstract

Polymerase chain reaction PCR , is a simple, effective and widely used enzymatic technic especially in the field of molecular biology which provides the opportunity to amplify a specific DNA fragment from DNA complex pool. Several PCR techniques such as realtime PCR, quantitative and qualitative PCR, Reverse Transcriptase PCR, Nested PCR and multiplex PCR have been developed since the first invention of PCR. Due to the various difficulties of the PCR techniques developed so far, widening the application fields and finding out more advanced level of PCR techniques have become the first priority of the researchers. Digital PCR dPCR technology has been developed as a new method to permit the evaluation of the small changes in the copy number variations of the rare mutations, differences between the gene expression changes or state of methylation. Digital PCR is a PCR based new technique for the sensitive measurement of number of DNA copies, it provides opportunity to do large number of PCR with a few number of sample dilution and it has so many small compartments where seperate PCRs are executed in each. At the same time, dPCR leaves some of the quantitative methods behind with the performance of determining the quantity of small amount of genetic material within seconds. This method shows high

References

  • Mullis KB. The unusual origin of the polymerase chain reaction. Sci Am, 1990; 262: 56–61, 64–5.
  • Bottero MT, Civera T, Nucera D, Rosati S, Sacchi P, Turi RM. A multiplex polymerase chain reaction for the identification of cows’, goats’, and sheeps’ milk in dairy products. Int Dairy J, 2003; 13: 277– 82.
  • Garibyan L, Avashia N. Polymerase Chain Reaction. J Investig Dermatol, 2013; 133 (3): e6.
  • Erlich HA, Gelfand D, Sninsky JJ. Recent Advances in the Polymerase Chain Reaction. Science, 1991; 252: 1643-51.
  • Gibbs RA, DNA Amplification by the Polymerase Chain Reaction. Analytical Chemistry Anal Chem, 1990; 62 (13): 1202-14.
  • Arnheim N, Erlich H. Polymerase Chain Reaction Strategy. Annu Rev Biochem, 1992; 61: 131-56.
  • Sharkey DJ, Scalice ER, Christy KG, Atwood SM, Daiss JL. Antibodies as thermolabile switches: High temperature triggering fort he polymerase chain reaction. Biotechnol, 1994; 12: 506–509.
  • Elizabeth G. How widespread is adult neurogenesis in mammals? Nat Rev Neurosci, 2007; 8: 481-8.
  • Klein D. Quantification using real-time PCR tecnology: Applications and limitations. Trends Mol Med, 2002; 8: 257-60.
  • Bustin SA, Mueller R. Real-time reverse transcription PCR (qRT-PCR) and potential use in clinical diagnosis. Clin Science, 2005; 109: 365-79.
  • Karataş M. Moleküler Biyoloji. Nobel Akademik Yayıncılık. 2012; 288-90.
  • Santagati S, Garnier M, Carlo P, Violani E, Picotti GB, Maggi A. Quantitation of low abundance mRNAs in glial cells using different polymerase chain reaction (PCR)-based methods. Br Res Prot, 1997; 1 (3): 217-23
  • Auckenthaler R, Risch M. Do Multiplex PCR techniques microbiology? Ther Umsch, 2015; 72 (2): 77-85. cultures in
  • Karlen Y, McNair A, Perseguers S, Mazza C, Mermod N. Statistical significance of quantitative PCR. BMC Bioinformatics, 2007; 8: 131.
  • Hudecova I. Digital PCR analysis of circulating nucleic acids. Clin Biochem, 2015; 142 (15): 9.
  • Sykes PJ, Neoh SH, Brisco MJ, Hughes E, Condon J, Morley AA. Quantitation of targets for PCR by use of limiting dilution. Biotechniques, 1992; 13: 444–9.
  • Kim TG, Jeong SY, Cho KS. Comparison of droplet digital PCR and quantitative real-time PCR for examining population dynamics of bacteriain soil. Appl Microbiol Biotechnol, 2014; 98 (13): 6105-13.
  • Jahn M, Vorpahl C, Türkowsky D, Lindmeyer M, Bühler B, Harms H, et al. Accurate determination of plasmid copy number of flow sorted cells using droplet digital PCR. Anal Chem, 2014; 86 (12): 5969-76.
  • Wiencke JK, Bracci PM, Hsuang G, Zheng S, Hansen H, Wrensch MR, et al. A comparison of DNA methylation specific droplet digital PCR (ddPCR) and real time qPCR with flow cytometry in characterizing human T cells in peripheral blood. Epigenetics, 2014; 9 (10): 1360-5.
  • Hindson BJ, Ness KD, Masquelier DA, Belgrader P, Heredia NJ, Makarewicz AJ, et al. High- throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal Chem, 2011; 83: 8604–10.
  • Sze MA, Abbasi M, Hogg JC, Sin DD. A comparison between droplet digital and quantitative PCR in the analysis of bacterial 16S load in lung tissuesamples from control and COPD GOLD 2. PLoS One, 2014; 9(10): e110351.
  • Bhat S, Herrmann J, Armishaw P, Corbisier P, Emslie KR. Single molecule detection in nanofluidic digital array enables accurate measurement of DNA copy number. Anal Bioanal Chem, 2009; 394: 457–67.
  • Vogelstein B, Kinzler KW. Digital PCR. Proc Natl Acad Sci USA, 1999; 96: 9236–41.
  • Zhou W, Galizia G, Lieto E, Goodman SN, Romans KE, Kinzler KW, et al. Counting alleles reveals a connection between chromosome 18q loss and vascular invasion. Nat Biotechnol, 2001; 19: 78–81.
  • Pinheiro LB, Coleman VA, Hindson CM, Herrmann J, Hindson BJ, Bhat S, et al. Evaluation of a droplet digital polymerase chain reaction format for DNA copy number quantification. Anal Chem, 2012; 84: 1003–11.
  • White RA, Blainey PC, Fan HC, Quake SR. Digital PCR provides sensitive and absolute calibration for high throughput sequencing. BMC Genomics, 2009; 10: 116.
  • Takahashi K, Yan IK, Kim C, Kim J, Patel T. Analysis of extracellular RNA by digital PCR. Front Oncol, 2014; 4: 129.
  • Usmani-Brown S, Lebastchi J, Steck AK, Beam C, Herold KC, Ledizet M. Analysis of β-cell death in type 1 diabetes by droplet digital PCR. Endocrinology, 2014; 155 (9): 3694-8.
  • White TB, McCoy AM, Streva VA, Fenrich J, Deininger PL. A droplet digital PCR detection method for rare L1 insertions in tumors. Mob DNA, 2014; 5 (1): 30.
  • Dingle TC, Sedlak RH, Cook L, Jerome KR. Tolerance of droplet-digital PCR vs real-time quantitative PCR to inhibitory substances. Clin Chem, 2013;59: 1670–2.
  • Whale AS, Cowen S, Foy CA, Huggett JF. Methods for applying accurate digital PCR analysis on low copy DNA samples. PLoS One, 2013; 8: e58177.
  • Weisenberger DJ, Trinh BN, Campan M, Sharma S, Long TI, Ananthnarayan S, et al. DNA methylation analysis by digital bisulfite genomic sequencing and digital MethyLight. Nucleic Acids Res, 2008; 36: 4689–98.
  • Pekin D, Skhiri Y, Baret JC, Le Corre D, Mazutis L, Salem CB, et al. Quantitative and sensitive detection of rare mutations using droplet-based microfluidics. Lab Chip, 2011; 11 (13): 2156-66.
  • Chen WW, Balaj L, Liau LM, Samuels ML, Kotsopoulos SK, Maguire CA, et al. BEAMing and Droplet Digital PCR Analysis of Mutant IDH1 mRNA in Glioma Patient Serum and Cerebrospinal Fluid Extracellular Vesicles. Mol Ther Nucleic Acids, 2013; 2: e109.
  • White RA, Quake SR, Curr K. Digital PCR provides absolute quantitation of viral load for an occult RNA virus. J Virol Methods, 2012; 179 (1): 45-50.
  • Whale AS, Huggett JF, Cowen S, Speirs V, Shaw J, Ellison S, et al. Comparison of microfluidic digital PCR and conventional quantitative PCR for measuring copy number variation. Nucleic Acids Res, 2012; 40: e82.
  • Didelot A, Kotsopoulos SK, Lupo A, Pekin D, Li X, Atochin I, et al. Multiplex picoliter-droplet digital PCR for quantitative assessment of DNA integrity in clinical samples. Clin Chem, 2013; 59 (5): 815-23.
  • Dobnik D, Spilsberg B, Bogožalec Košir A, Holst- Jensen A, Žel J. Multiplex quantification of 12 European Union authorized genetically modified maize lines with droplet digital polymerase chain reaction. Anal Chem, 2015; 87 (16): 8218-26.
  • Spurgeon SL, Jones RC, Ramakrishnan R. High throughput gene expression measurement with real time PCR in a microfluidic dynamic array. PLoS One, 2008; 3: e1662.
  • Dressman D, Yan H, Traverso G, Kinzler KW, Vogelstein B. Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations. Proc Natl Acad Sci USA, 2003; 100: 8817–22.
  • Heyries KA, Tropini C, Vaninsberghe M, Doolin C, Petriv OI, Singhal A, et al. Megapixel digital PCR. Nat Methods, 2011; 8: 649–51.
  • Li M, Chen WD, Papadopoulos N, Goodman SN, Bjerregaard NC, Laurberg S, et al. Sensitive digital quantification of DNA methylation in clinical samples. Nat Biotechnol, 2009; 27: 858–63.
  • Weisenberger DJ, Trinh BN, Campan M, Sharma S, Long TI, Ananthnarayan S, et al. DNA methylation analysis by digital bisulfite genomic sequencing and digital MethyLight. Nucleic Acids Res, 2008; 36: 4689–98.
  • Nadauld L, Regan J, Miotke L, Pai RK, Longacre TA, Kwok SS et al. Quantitative and Sensitive Detection of Cancer Genome Amplifications from Formalin Fixed Paraffin Embedded Tumors with Droplet Digital PCR. Transl Med (Sunnyvale), 2012; 2(2): .
  • Huggett JF, Foy CA, Benes V, Emslie K, Garson JA, Haynes R, et al. The digital MIQE guidelines: Minimum Quantitative Digital PCR Experiments. Clin Chem, 2013; 59 (6): 892-902. for Publication of
  • Manoj P. Droplet digital PCR technology promises new applications and research areas. Mitochondrial DNA, 2016; 27 (1): 742-6.
  • Baker M. Digital PCR hits its stride. Nature Methods, 2012; 9(6): 541.
  • Pavšič J, Žel J, Milavec M. Assessment of the real- time PCR and different digital PCR platforms for DNA quantification. Anal Bioanal Chem, 2016; 408 (1): 107-21.
There are 48 citations in total.

Details

Primary Language Turkish
Journal Section Collection
Authors

Ahmet Çarhan This is me

Elif Ercan This is me

Tuğba Yalçınkaya This is me

Publication Date June 1, 2016
Published in Issue Year 2016 Volume: 73 Issue: 2

Cite

APA Çarhan, A., Ercan, E., & Yalçınkaya, T. (2016). Dijital PZR ve kullanım alanları. Türk Hijyen Ve Deneysel Biyoloji Dergisi, 73(2), 183-198.
AMA Çarhan A, Ercan E, Yalçınkaya T. Dijital PZR ve kullanım alanları. Turk Hij Den Biyol Derg. June 2016;73(2):183-198.
Chicago Çarhan, Ahmet, Elif Ercan, and Tuğba Yalçınkaya. “Dijital PZR Ve kullanım Alanları”. Türk Hijyen Ve Deneysel Biyoloji Dergisi 73, no. 2 (June 2016): 183-98.
EndNote Çarhan A, Ercan E, Yalçınkaya T (June 1, 2016) Dijital PZR ve kullanım alanları. Türk Hijyen ve Deneysel Biyoloji Dergisi 73 2 183–198.
IEEE A. Çarhan, E. Ercan, and T. Yalçınkaya, “Dijital PZR ve kullanım alanları”, Turk Hij Den Biyol Derg, vol. 73, no. 2, pp. 183–198, 2016.
ISNAD Çarhan, Ahmet et al. “Dijital PZR Ve kullanım Alanları”. Türk Hijyen ve Deneysel Biyoloji Dergisi 73/2 (June 2016), 183-198.
JAMA Çarhan A, Ercan E, Yalçınkaya T. Dijital PZR ve kullanım alanları. Turk Hij Den Biyol Derg. 2016;73:183–198.
MLA Çarhan, Ahmet et al. “Dijital PZR Ve kullanım Alanları”. Türk Hijyen Ve Deneysel Biyoloji Dergisi, vol. 73, no. 2, 2016, pp. 183-98.
Vancouver Çarhan A, Ercan E, Yalçınkaya T. Dijital PZR ve kullanım alanları. Turk Hij Den Biyol Derg. 2016;73(2):183-98.