Research Article
BibTex RIS Cite

EXPERIMENTAL INVESTIGATION OF INDIRECT EVAPORATIVE COOLER USING CLAY PIPE

Year 2017, Volume: 3 Issue: 2, 1163 - 1180, 01.04.2017
https://doi.org/10.18186/thermal.298618

Abstract

The aim of the experimental study is to
investigate the performance of indirect evaporator cooler in hot and humid
regions. A novel approach is implemented in the cooler using clay pipe with
different orientation as aligned and staggered position for potential and
feasibility study. The clay pipe is the
ceramic material  where the water filled
inside the tube  and  due to the property of porosity,  the 
water comes outer surface of the tube and contact with the air
passing  over  the tube and air get cooled. A test
rig was designed and fabricated to collect experimental data. The clay pipes were arranged in aligned and
staggered position. In our study heat transfer was analyzed with various air
velocity of 1 m/s to 5 m/s. The air temperature, relative humidity, pressure
drop and water evaporation rate were measured and the performance of the
evaporative cooler was evaluated. The experimental results were compared with
mathematical values. The analysis of the data indicated that cooling effectiveness
improve with decrease of air velocity at staggered position. It was shown that
staggered position has the higher performance (53%) at 5 m/s air velocity in
comparison with aligned position. The experimental of heat and mass transfer
coefficients were compared with Colburn heat and mass transfer group. The test
results were within the limit of 20% of mathematical values.

References

  • [1] R. M. Lazzarin, Introduction of a simple diagram-based method for analyzing evaporative cooling, Applied Thermal Engineering. 27(2007) 2011–2025.
  • [2] M. Lain, J. Hensen, Combination of low energy and mechanical cooling technologies for buildings in central Europe, 5th International Refrigeration and Air Conditioning Conference, France, (2004) 1-6.
  • [3] R.S .Gates, J.L. Usry, J.A. Nienaber, An optical misting method for cooling livestock housing, Transaction of ASAE. 34(5) (1991) 2199-2206.
  • [4] M. Santamouris and D.N. Asimakopoulos, Passive Cooling of Buildings, James & James Science Publishers Ltd., London, (1996) Ch.9 220-301.
  • [5] S. K. Abbouda, E. A. Almuhanna, Improvement of Evaporative Cooling System Efficiency in Greenhouses, International Journal of Latest Trends in Agriculture & Food Sciences.( 2012) 2(2) 83-89.
  • [6] A.K.Joudi, M.S. Mehdi, Application of Indirect Evaporative Cooling to Variable Domestic Cooling Load, Energy Conversion & Management. 41(2000) 1931-1951.
  • [7] M. Al-asad, T. Emtairah, Cities and Buildings, Report of the Arab Forum for Environment and Development (AFED), Beirut, Ch-6 (2011) 161-204.
  • [8] Catharine Harris, Anti-inhalant Abuse Campaign Targets Building Codes: ‘Huffing’ of Air Conditioning Refrigerant a Dangerous Risk. The Nation's Health. American Public Health Association, 2010.Web. 05 Dec. 2010.
  • [9] B. Riangvilaikul, S. Kumar, An experimental study of a novel dew point evaporative cooling system. Energy and Buildings.42 (2010) 637-644.
  • [10] K. Daou, R. Z. Wang, Z.Z. Xia, Desiccant cooling air conditioning: a review, Renewable and Sustainable Energy Reviews. 10(2) (2004) 55-77.
Year 2017, Volume: 3 Issue: 2, 1163 - 1180, 01.04.2017
https://doi.org/10.18186/thermal.298618

Abstract

References

  • [1] R. M. Lazzarin, Introduction of a simple diagram-based method for analyzing evaporative cooling, Applied Thermal Engineering. 27(2007) 2011–2025.
  • [2] M. Lain, J. Hensen, Combination of low energy and mechanical cooling technologies for buildings in central Europe, 5th International Refrigeration and Air Conditioning Conference, France, (2004) 1-6.
  • [3] R.S .Gates, J.L. Usry, J.A. Nienaber, An optical misting method for cooling livestock housing, Transaction of ASAE. 34(5) (1991) 2199-2206.
  • [4] M. Santamouris and D.N. Asimakopoulos, Passive Cooling of Buildings, James & James Science Publishers Ltd., London, (1996) Ch.9 220-301.
  • [5] S. K. Abbouda, E. A. Almuhanna, Improvement of Evaporative Cooling System Efficiency in Greenhouses, International Journal of Latest Trends in Agriculture & Food Sciences.( 2012) 2(2) 83-89.
  • [6] A.K.Joudi, M.S. Mehdi, Application of Indirect Evaporative Cooling to Variable Domestic Cooling Load, Energy Conversion & Management. 41(2000) 1931-1951.
  • [7] M. Al-asad, T. Emtairah, Cities and Buildings, Report of the Arab Forum for Environment and Development (AFED), Beirut, Ch-6 (2011) 161-204.
  • [8] Catharine Harris, Anti-inhalant Abuse Campaign Targets Building Codes: ‘Huffing’ of Air Conditioning Refrigerant a Dangerous Risk. The Nation's Health. American Public Health Association, 2010.Web. 05 Dec. 2010.
  • [9] B. Riangvilaikul, S. Kumar, An experimental study of a novel dew point evaporative cooling system. Energy and Buildings.42 (2010) 637-644.
  • [10] K. Daou, R. Z. Wang, Z.Z. Xia, Desiccant cooling air conditioning: a review, Renewable and Sustainable Energy Reviews. 10(2) (2004) 55-77.
There are 10 citations in total.

Details

Subjects Engineering
Journal Section Articles
Authors

Ramakrishnan Ramkumar This is me

Publication Date April 1, 2017
Submission Date March 17, 2017
Published in Issue Year 2017 Volume: 3 Issue: 2

Cite

APA Ramkumar, R. (2017). EXPERIMENTAL INVESTIGATION OF INDIRECT EVAPORATIVE COOLER USING CLAY PIPE. Journal of Thermal Engineering, 3(2), 1163-1180. https://doi.org/10.18186/thermal.298618
AMA Ramkumar R. EXPERIMENTAL INVESTIGATION OF INDIRECT EVAPORATIVE COOLER USING CLAY PIPE. Journal of Thermal Engineering. April 2017;3(2):1163-1180. doi:10.18186/thermal.298618
Chicago Ramkumar, Ramakrishnan. “EXPERIMENTAL INVESTIGATION OF INDIRECT EVAPORATIVE COOLER USING CLAY PIPE”. Journal of Thermal Engineering 3, no. 2 (April 2017): 1163-80. https://doi.org/10.18186/thermal.298618.
EndNote Ramkumar R (April 1, 2017) EXPERIMENTAL INVESTIGATION OF INDIRECT EVAPORATIVE COOLER USING CLAY PIPE. Journal of Thermal Engineering 3 2 1163–1180.
IEEE R. Ramkumar, “EXPERIMENTAL INVESTIGATION OF INDIRECT EVAPORATIVE COOLER USING CLAY PIPE”, Journal of Thermal Engineering, vol. 3, no. 2, pp. 1163–1180, 2017, doi: 10.18186/thermal.298618.
ISNAD Ramkumar, Ramakrishnan. “EXPERIMENTAL INVESTIGATION OF INDIRECT EVAPORATIVE COOLER USING CLAY PIPE”. Journal of Thermal Engineering 3/2 (April 2017), 1163-1180. https://doi.org/10.18186/thermal.298618.
JAMA Ramkumar R. EXPERIMENTAL INVESTIGATION OF INDIRECT EVAPORATIVE COOLER USING CLAY PIPE. Journal of Thermal Engineering. 2017;3:1163–1180.
MLA Ramkumar, Ramakrishnan. “EXPERIMENTAL INVESTIGATION OF INDIRECT EVAPORATIVE COOLER USING CLAY PIPE”. Journal of Thermal Engineering, vol. 3, no. 2, 2017, pp. 1163-80, doi:10.18186/thermal.298618.
Vancouver Ramkumar R. EXPERIMENTAL INVESTIGATION OF INDIRECT EVAPORATIVE COOLER USING CLAY PIPE. Journal of Thermal Engineering. 2017;3(2):1163-80.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering