Note
BibTex RIS Cite

PERFORMANCE AND ECOLOGICAL OBJECTIVE INVESTIGATION OF TWO-STATE IRREVERSIBLE QUANTUM HEAT ENGINE

Year 2020, Volume: 6 Issue: 1, 99 - 105, 06.01.2020
https://doi.org/10.18186/thermal.671676

Abstract

This paper considers irreversible two-state quantum Carnot heat engine. Basic thermodynamic parameters including power output and energy efficiency are considered, besides ecological function. Ecological function gives someone information about balance between power output and exergy destruction. The results show that ecological function have maximum (optimum) point for a and there is no optimum point for any parameter for x and y. All parameters are compared with each other and the most convenient operation conditions are recommended.

References

  • [1] Abe S. Maximum-power quantum-mechanical Carnot engine. Physical Review E 2011; 83: 041117. doi: 10.1103/PhysRevE.83.041117.
  • [2] Bender CM., Brody D.C., Meister B.K.. Quantum mechanical Carnot engine. J. Phys. A: Math. Gen. 2000; 33: 4427–4436. doi:10.1088/0305-4470/33/24/302.
  • [3] Yin Y., Chen L., Wu F. Optimal power and efficiency of quantum Stirling heat engines. Eur. Phys. J. Plus 2017; 132: 45. doi: 10.1140/epjp/i2017-11325-0.
  • [4] Latifah E., Purwanto A. Multiple-State Quantum Carnot Engine. Journal of Modern Physics 2011;2: 1366-1372. doi:10.4236/jmp.2011.211169.
  • [5] Liu X., Chen L., Wu F., Sun F. Fundamental optimal relation of an irreversible quantum Carnot heat pump with spin-1/2 systems. Mathematical and Computer Modeling 2011;54: 190-202. doi: doi.org/10.1016/j.mcm.2011.02.001.
  • [6] Liu X., Chen L., Wu F., Sun F., Cooling load and energy efficiency optimization of an irreversible Carnot refrigerator with spin-1/2 systems. International Journal of Energy and Environment 2011; 2: 797-812.
  • [7] Feldmann, T., Kosloff, R. Performance of Discrete Heat Engines and Heat Pumps in Finite Time. Phys.Rev. E 2000; 61: 4774-4790. doi: 10.1103/PhysRevE.61.4774.
  • [8] Liu X., Chen L., Wu F., Sun F. Ecological optimization of an irreversible quantum Carnot heat engine with spin-1/2 systems. Physica Scripta 2010; 81:025003. doi.org/10.1088/0031-8949/81/02/025003.
  • [9] Geva, E., Kosloff, R. A quantum-mechanical heat engine operating in finite time. a model consisting of spin-1/2 systems as working fluid. J. Chem. Phys. 1992;96: 3054–3067. doi: 10.1063/1.461951.
  • [10] Wu, F., Chen, L.G., Sun, F.R. and Wu, C. Performance of an irreversible quantum Carnot engine with spin-1/2. J. Chem. Phys. 2006; 124: 214702. doi:10.1063/1.2200693.
  • [11] Beretta G.P. Quantum thermodynamic Carnot and Otto-like cycles for a two-level system. EPL 2012; 99: 20005. doi: 10.1209/0295-5075/99/20005.
  • [12] Henrich M.J., Rempp F., Mahler G., Quantum thermodynamic Otto machines: A spin-system approach. Eur. Phys. J. Special Topics 2007; 151: 157–165.
  • [13] Xiao-Li Huang, Xin-Ya Niu, Xiao-Ming Xiu, Xue-Xi Yi,, Quantum Stirling heat engine and refrigerator with single and coupled spin systems, Eur. Phys. J. D (2014) 68: 32. doi:10.1209/0295-5075/99/20005.
  • [14] Azimi M, Chotorlishvili L, Mishra S K, Vekua T, Hübner W, Berakdar J. Quantum Otto heat engine based on a multiferroic chain working substance. New Journal of Physics 2014; 16: 063018. doi: 10.1088/1367-2630/16/6/063018.
  • [15] Dalkıran A., Açıkkalp E., Caner N. Analysis of a quantum irreversible Otto cycle with exergetic sustainable index. Physica A 2016; 453: 316-326. doi: 10.1016/j.physa.2016.02.051.
  • [16] Wang H, Wu G, Chen D. Thermal entangled quantum Otto engine based on the two qubits Heisenberg model with Dzyaloshinskii–Moriya interaction in an external magnetic field. Phys. Scr. 2012; 86: 015001. doi:10.1088/0031-8949/86/01/015001.
  • [17] Hübner W, Lefkidis G, Dong C D, Chaudhuri D. Spin-dependent Otto quantum heat-engine based on molecular substance. Phys. Rev. B 2014; 90: 024401. doi:10.1103/PhysRevB.90.024401.
  • [18] Lucia U., Açıkkalp E. Irreversible thermodynamic analysis and application for molecular heat engines. Journal Chemical Physics 2017; 494: 47-55. doi.org/10.1016/j.chemphys.2017.07.009.
  • [19] Ahmadi M.H., Nabakhteh M.A., Ahmadi M.A., Pourfayaz F., Bidi M. Investigation and optimization of performance of nano-scale Stirling refrigerator using working fluid as Maxwell-Boltzmann gases. Physica A:Stat. Mech. Appl. 2017; 483: 337–350. doi: 10.1016/j.physa.2017.04.079.
  • [20] Ahmadi M.H., Ahmadi M.A., Maleki A., Pourfayaz F., Bidi M., Açıkkalp E. Exergetic sustainability evaluation and multi-objective optimization of performance of an irreversible nano scale Stirling refrigeration cycle operating with Maxwell-Boltzmann gas. Renew. Sustain. Energy Rev. 2017; 78: 80–92. doi.org/10.1016/j.rser.2017.04.097.
  • [21] Ahmadi M.H., Ahmadi M.A., Maleki A., Pourfayaz F., Bidi M. Entransy analysis and optimization of performance of nano-scale irreversible Otto cycle operating with Maxwell-Boltzmann ideal gas. Chem. Phys. Lett. 2016; 658: 293–302. doi.org/10.1016/j.cplett.2016.06.058.
  • [22] Ahmadi M.H., Ahmadi M.A., Maleki A., Pourfayaz F. Performance assessment and optimization of an irreversible nano-scale Stirling engine cycle operating with Maxwell-Boltzmann gas. Eur. Phys. J. Plus 2015; 130 :1–13. doi:10.1140/epjp/i2015-15190-5.
  • [23] Sadatsakkak S.A., Ahmadi M.H., Ahmadi M.A.. Optimization performance and thermodynamic analysis of an irreversible nano scale Brayton cycle operating with Maxwell-Boltzmann gas. Energy Convers. Manage. 2015; 101:592–605. doi:10.1016/j.enconman.2015.06.004.
  • [24] Lucia U., Electron-photon Interaction and Thermal Disequilibrium Irreversibility, International Journal of Quantum Foundations 3 (2017) 24 - 30.
  • [25] Lucia U. Macroscopic irreversibility and microscopic paradox: A Constructal law analysis of atoms as open systems. Scientific Reports 2016; 6: 35792. doi:10.1038/srep35796.
  • [26] Lucia U., Some considerations on molecular machines and Loschmidt paradox. Chemical Physics Letters 2015; 623:98–100. doi.org/10.1016/j.cplett.2015.01.055.
  • [27] Lucia U. Quanta and entropy generation. Physica A 2015; 419: 115–121. doi:10.1016/j.physa.2014.10.040.
  • [28] Angulo-Brown F., An ecological optimization criterion for finite-time heat engines, Journal of Applied Physic, 69, 7465-7469, 1991.
  • [29] Yan Z. Comment on Ecological optimization criterion for finite-time heat-engines. Journal of Applied Physic. 1993; 73: 3583. doi:10.1063/1.354041.
  • [30] Qin X., Chen L., Xia S. Ecological performance of four-temperature-level absorption heat transformer with heat resistance, heat leakage and internal irreversibility. International Journal of Heat and Mass Transfer 2014; 114: 252–257. doi:10.1016/j.ijheatmasstransfer.2017.06.064.
  • [31] Ge Y., Chen L., Qin X. Effect of specific heat variations on irreversible Otto cycle performance. International Journal of Heat and Mass Transfer 2018; 122: 403–409. doi:10.1016/j.ijheatmasstransfer.2018.01.132
  • [32] Zhou J., Chen L. , Ding Z. , Sun F. Analysis and optimization with ecological objective function of irreversible single resonance energy selective electron heat engines. Energy 2016; 111: 306-312. doi: 10.1016/j.energy.2016.05.111.
Year 2020, Volume: 6 Issue: 1, 99 - 105, 06.01.2020
https://doi.org/10.18186/thermal.671676

Abstract

References

  • [1] Abe S. Maximum-power quantum-mechanical Carnot engine. Physical Review E 2011; 83: 041117. doi: 10.1103/PhysRevE.83.041117.
  • [2] Bender CM., Brody D.C., Meister B.K.. Quantum mechanical Carnot engine. J. Phys. A: Math. Gen. 2000; 33: 4427–4436. doi:10.1088/0305-4470/33/24/302.
  • [3] Yin Y., Chen L., Wu F. Optimal power and efficiency of quantum Stirling heat engines. Eur. Phys. J. Plus 2017; 132: 45. doi: 10.1140/epjp/i2017-11325-0.
  • [4] Latifah E., Purwanto A. Multiple-State Quantum Carnot Engine. Journal of Modern Physics 2011;2: 1366-1372. doi:10.4236/jmp.2011.211169.
  • [5] Liu X., Chen L., Wu F., Sun F. Fundamental optimal relation of an irreversible quantum Carnot heat pump with spin-1/2 systems. Mathematical and Computer Modeling 2011;54: 190-202. doi: doi.org/10.1016/j.mcm.2011.02.001.
  • [6] Liu X., Chen L., Wu F., Sun F., Cooling load and energy efficiency optimization of an irreversible Carnot refrigerator with spin-1/2 systems. International Journal of Energy and Environment 2011; 2: 797-812.
  • [7] Feldmann, T., Kosloff, R. Performance of Discrete Heat Engines and Heat Pumps in Finite Time. Phys.Rev. E 2000; 61: 4774-4790. doi: 10.1103/PhysRevE.61.4774.
  • [8] Liu X., Chen L., Wu F., Sun F. Ecological optimization of an irreversible quantum Carnot heat engine with spin-1/2 systems. Physica Scripta 2010; 81:025003. doi.org/10.1088/0031-8949/81/02/025003.
  • [9] Geva, E., Kosloff, R. A quantum-mechanical heat engine operating in finite time. a model consisting of spin-1/2 systems as working fluid. J. Chem. Phys. 1992;96: 3054–3067. doi: 10.1063/1.461951.
  • [10] Wu, F., Chen, L.G., Sun, F.R. and Wu, C. Performance of an irreversible quantum Carnot engine with spin-1/2. J. Chem. Phys. 2006; 124: 214702. doi:10.1063/1.2200693.
  • [11] Beretta G.P. Quantum thermodynamic Carnot and Otto-like cycles for a two-level system. EPL 2012; 99: 20005. doi: 10.1209/0295-5075/99/20005.
  • [12] Henrich M.J., Rempp F., Mahler G., Quantum thermodynamic Otto machines: A spin-system approach. Eur. Phys. J. Special Topics 2007; 151: 157–165.
  • [13] Xiao-Li Huang, Xin-Ya Niu, Xiao-Ming Xiu, Xue-Xi Yi,, Quantum Stirling heat engine and refrigerator with single and coupled spin systems, Eur. Phys. J. D (2014) 68: 32. doi:10.1209/0295-5075/99/20005.
  • [14] Azimi M, Chotorlishvili L, Mishra S K, Vekua T, Hübner W, Berakdar J. Quantum Otto heat engine based on a multiferroic chain working substance. New Journal of Physics 2014; 16: 063018. doi: 10.1088/1367-2630/16/6/063018.
  • [15] Dalkıran A., Açıkkalp E., Caner N. Analysis of a quantum irreversible Otto cycle with exergetic sustainable index. Physica A 2016; 453: 316-326. doi: 10.1016/j.physa.2016.02.051.
  • [16] Wang H, Wu G, Chen D. Thermal entangled quantum Otto engine based on the two qubits Heisenberg model with Dzyaloshinskii–Moriya interaction in an external magnetic field. Phys. Scr. 2012; 86: 015001. doi:10.1088/0031-8949/86/01/015001.
  • [17] Hübner W, Lefkidis G, Dong C D, Chaudhuri D. Spin-dependent Otto quantum heat-engine based on molecular substance. Phys. Rev. B 2014; 90: 024401. doi:10.1103/PhysRevB.90.024401.
  • [18] Lucia U., Açıkkalp E. Irreversible thermodynamic analysis and application for molecular heat engines. Journal Chemical Physics 2017; 494: 47-55. doi.org/10.1016/j.chemphys.2017.07.009.
  • [19] Ahmadi M.H., Nabakhteh M.A., Ahmadi M.A., Pourfayaz F., Bidi M. Investigation and optimization of performance of nano-scale Stirling refrigerator using working fluid as Maxwell-Boltzmann gases. Physica A:Stat. Mech. Appl. 2017; 483: 337–350. doi: 10.1016/j.physa.2017.04.079.
  • [20] Ahmadi M.H., Ahmadi M.A., Maleki A., Pourfayaz F., Bidi M., Açıkkalp E. Exergetic sustainability evaluation and multi-objective optimization of performance of an irreversible nano scale Stirling refrigeration cycle operating with Maxwell-Boltzmann gas. Renew. Sustain. Energy Rev. 2017; 78: 80–92. doi.org/10.1016/j.rser.2017.04.097.
  • [21] Ahmadi M.H., Ahmadi M.A., Maleki A., Pourfayaz F., Bidi M. Entransy analysis and optimization of performance of nano-scale irreversible Otto cycle operating with Maxwell-Boltzmann ideal gas. Chem. Phys. Lett. 2016; 658: 293–302. doi.org/10.1016/j.cplett.2016.06.058.
  • [22] Ahmadi M.H., Ahmadi M.A., Maleki A., Pourfayaz F. Performance assessment and optimization of an irreversible nano-scale Stirling engine cycle operating with Maxwell-Boltzmann gas. Eur. Phys. J. Plus 2015; 130 :1–13. doi:10.1140/epjp/i2015-15190-5.
  • [23] Sadatsakkak S.A., Ahmadi M.H., Ahmadi M.A.. Optimization performance and thermodynamic analysis of an irreversible nano scale Brayton cycle operating with Maxwell-Boltzmann gas. Energy Convers. Manage. 2015; 101:592–605. doi:10.1016/j.enconman.2015.06.004.
  • [24] Lucia U., Electron-photon Interaction and Thermal Disequilibrium Irreversibility, International Journal of Quantum Foundations 3 (2017) 24 - 30.
  • [25] Lucia U. Macroscopic irreversibility and microscopic paradox: A Constructal law analysis of atoms as open systems. Scientific Reports 2016; 6: 35792. doi:10.1038/srep35796.
  • [26] Lucia U., Some considerations on molecular machines and Loschmidt paradox. Chemical Physics Letters 2015; 623:98–100. doi.org/10.1016/j.cplett.2015.01.055.
  • [27] Lucia U. Quanta and entropy generation. Physica A 2015; 419: 115–121. doi:10.1016/j.physa.2014.10.040.
  • [28] Angulo-Brown F., An ecological optimization criterion for finite-time heat engines, Journal of Applied Physic, 69, 7465-7469, 1991.
  • [29] Yan Z. Comment on Ecological optimization criterion for finite-time heat-engines. Journal of Applied Physic. 1993; 73: 3583. doi:10.1063/1.354041.
  • [30] Qin X., Chen L., Xia S. Ecological performance of four-temperature-level absorption heat transformer with heat resistance, heat leakage and internal irreversibility. International Journal of Heat and Mass Transfer 2014; 114: 252–257. doi:10.1016/j.ijheatmasstransfer.2017.06.064.
  • [31] Ge Y., Chen L., Qin X. Effect of specific heat variations on irreversible Otto cycle performance. International Journal of Heat and Mass Transfer 2018; 122: 403–409. doi:10.1016/j.ijheatmasstransfer.2018.01.132
  • [32] Zhou J., Chen L. , Ding Z. , Sun F. Analysis and optimization with ecological objective function of irreversible single resonance energy selective electron heat engines. Energy 2016; 111: 306-312. doi: 10.1016/j.energy.2016.05.111.
There are 32 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Emin Açıkkalp

Publication Date January 6, 2020
Submission Date January 9, 2018
Published in Issue Year 2020 Volume: 6 Issue: 1

Cite

APA Açıkkalp, E. (2020). PERFORMANCE AND ECOLOGICAL OBJECTIVE INVESTIGATION OF TWO-STATE IRREVERSIBLE QUANTUM HEAT ENGINE. Journal of Thermal Engineering, 6(1), 99-105. https://doi.org/10.18186/thermal.671676
AMA Açıkkalp E. PERFORMANCE AND ECOLOGICAL OBJECTIVE INVESTIGATION OF TWO-STATE IRREVERSIBLE QUANTUM HEAT ENGINE. Journal of Thermal Engineering. January 2020;6(1):99-105. doi:10.18186/thermal.671676
Chicago Açıkkalp, Emin. “PERFORMANCE AND ECOLOGICAL OBJECTIVE INVESTIGATION OF TWO-STATE IRREVERSIBLE QUANTUM HEAT ENGINE”. Journal of Thermal Engineering 6, no. 1 (January 2020): 99-105. https://doi.org/10.18186/thermal.671676.
EndNote Açıkkalp E (January 1, 2020) PERFORMANCE AND ECOLOGICAL OBJECTIVE INVESTIGATION OF TWO-STATE IRREVERSIBLE QUANTUM HEAT ENGINE. Journal of Thermal Engineering 6 1 99–105.
IEEE E. Açıkkalp, “PERFORMANCE AND ECOLOGICAL OBJECTIVE INVESTIGATION OF TWO-STATE IRREVERSIBLE QUANTUM HEAT ENGINE”, Journal of Thermal Engineering, vol. 6, no. 1, pp. 99–105, 2020, doi: 10.18186/thermal.671676.
ISNAD Açıkkalp, Emin. “PERFORMANCE AND ECOLOGICAL OBJECTIVE INVESTIGATION OF TWO-STATE IRREVERSIBLE QUANTUM HEAT ENGINE”. Journal of Thermal Engineering 6/1 (January 2020), 99-105. https://doi.org/10.18186/thermal.671676.
JAMA Açıkkalp E. PERFORMANCE AND ECOLOGICAL OBJECTIVE INVESTIGATION OF TWO-STATE IRREVERSIBLE QUANTUM HEAT ENGINE. Journal of Thermal Engineering. 2020;6:99–105.
MLA Açıkkalp, Emin. “PERFORMANCE AND ECOLOGICAL OBJECTIVE INVESTIGATION OF TWO-STATE IRREVERSIBLE QUANTUM HEAT ENGINE”. Journal of Thermal Engineering, vol. 6, no. 1, 2020, pp. 99-105, doi:10.18186/thermal.671676.
Vancouver Açıkkalp E. PERFORMANCE AND ECOLOGICAL OBJECTIVE INVESTIGATION OF TWO-STATE IRREVERSIBLE QUANTUM HEAT ENGINE. Journal of Thermal Engineering. 2020;6(1):99-105.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering