Research Article
BibTex RIS Cite

NUMERICAL EVALUATION OF THERMO-HYDRAULIC PERFORMANCE INDEX OF A DOUBLE PIPE HEAT EXCHANGER USING DOUBLE SIDED LOUVERED WINGLET TAPE

Year 2020, Volume: 6 Issue: 5, 843 - 857, 01.10.2020
https://doi.org/10.18186/thermal.800267

Abstract

The decade has witnessed great importance of numerical techniques for scientists and researchers in deciding the correctness, stability, and reliability of new designs. In the present study a numerical technique has been implemented to investigate the thermo-hydraulic performance of the Louvered winglet tape inside the tube section of the double pipe heat exchanger. The Louvered winglet tape has been examined with the slope angle of 50, 100, 150 and 210 to study their thermal characteristics. The Reynolds number 4000-30000 was examined on slope angle of 50, 100, 150 and 210 to study their flow characteristics in the turbulent domain. A smooth pipe was examined to evaluate heat transfer characteristics in terms of Nusselt number and friction coefficient over augmented tube with Louvered winglet tape. The results show a satisfactory performance of Louvered winglet tape over the smooth tube with a similar trend of friction factor, Nusselt number, and thermo-hydraulic performance index (THPI). The percentage of increment of the Nusselt number of the results is found to be 237.04%, 258.4%, 275.11%, and 289.72% when compared to smooth pipe with respect to slope angle of 50, 100, 150 and 210, respectively. The amount of increase in the friction factor in comparison with plain tube is 5.13, 6.73, 8.33, and 11.73 times of that of smooth pipe with respect to slope angle of 50, 100, 150 and 210, respectively. The Louvered winglet tape with slope angle 150 has shown to be promising with respect to higher THPI when considering with other slope angle of 50, 100, and 210. The maximum THPI of 1.85 was obtained for slope angle 150 at Re 12000. Similarly, the THPI values for other slope angle 50, 100, and 210 are 1.71, 1.78 and 1.69. In addition to better performance the Louvered winglet tape can be easily fabricated and adapted for a wide variety of heat transfer industries.

References

  • [1] Eiamsa-ard S, Promvonge P. Influence of Double-sided Delta-wing Tape Insert with Alternate-axes on Flow and Heat Transfer Characteristics in a Heat Exchanger Tube. Chinese J Chem Eng 2011;19:410–23. https://doi.org/10.1016/S1004-9541(11)60001-3.
  • [2] Chokphoemphun S, Tongyote P, Promvonge P, Jedsadaratanachai W, Chompookham T. Heat Transfer Augmentation in a Round Tube with 60o Winglet Pair Inserts. Adv Mater Res 2014;931–932:1188–92. https://doi.org/10.4028/www.scientific.net/AMR.931-932.1188.
  • [3] Khoshvaght-Aliabadi M, Sartipzadeh O, Alizadeh A. An experimental study on vortex-generator insert with different arrangements of delta-winglets. Energy 2015;82:629–39. https://doi.org/10.1016/j.energy.2015.01.072.
  • [4] Boonloi A, Jedsadaratanachai W. Turbulent forced convection in a heat exchanger square channel with wavy-ribs vortex generator. Chinese J Chem Eng 2015;23:1256–65. https://doi.org/10.1016/j.cjche.2015.04.001.
  • [5] Skullong S, Promvonge P, Jayranaiwachira N, Thianpong C. Experimental and numerical heat transfer investigation in a tubular heat exchanger with delta-wing tape inserts. Chem Eng Process Process Intensif 2016;109:164–77. https://doi.org/10.1016/j.cep.2016.09.005.
  • [6] Boonloi A, Jedsadaratanachai W. Flow topology, heat transfer characteristic and thermal performance in a circular tube heat exchanger inserted with punched delta winglet vortex generators. J Mech Sci Technol 2016;30:457–71. https://doi.org/10.1007/s12206-015-1251-2.
  • [7] Skullong S, Promvonge P, Thianpong C, Pimsarn M. Heat transfer and turbulent flow friction in a round tube with staggered-winglet perforated-tapes. Int J Heat Mass Transf 2016;95:230–42. https://doi.org/10.1016/j.ijheatmasstransfer.2015.12.007.
  • [8] Skullong S, Promvonge P, Thianpong C, Jayranaiwachira N, Pimsarn M. Thermal performance of heat exchanger tube inserted with curved-winglet tapes. Appl Therm Eng 2018;129:1197–211. https://doi.org/10.1016/j.applthermaleng.2017.10.110.
  • [9] Gautam A, Pandey L, Singh S. Influence of perforated triple wing vortex generator on a turbulent flow through a circular tube. Heat Mass Transf 2018;54:2009–21. https://doi.org/10.1007/s00231-018-2296-4.
  • [10] Xu Y, Islam MD, Kharoua N. Numerical study of winglets vortex generator effects on thermal performance in a circular pipe. Int J Therm Sci 2017;112:304–17. https://doi.org/10.1016/j.ijthermalsci.2016.10.015.
  • [11] Liang G, Islam MD, Kharoua N, Simmons R. Numerical study of heat transfer and flow behavior in a circular tube fitted with varying arrays of winglet vortex generators. Int J Therm Sci 2018;134:54–65. https://doi.org/10.1016/j.ijthermalsci.2018.08.004.
  • [12] Lei Y, Zheng F, Song C, Lyu Y. Improving the thermal hydraulic performance of a circular tube by using punched delta-winglet vortex generators. Int J Heat Mass Transf 2017;111:299–311. https://doi.org/10.1016/j.ijheatmasstransfer.2017.03.101.
  • [13] Wijayanta AT, Istanto T, Kariya K, Miyara A. Heat transfer enhancement of internal flow by inserting punched delta winglet vortex generators with various attack angles. Exp Therm Fluid Sci 2017;87:141–8. https://doi.org/10.1016/j.expthermflusci.2017.05.002.
  • [14] Khanoknaiyakarn C, Promvonge P, Thianpong C, Skullong S. Performance improvement in a tubular heat exchanger by punched delta-winglet vortex generators. IOP Conf Ser Mater Sci Eng 2018;297:012068. https://doi.org/10.1088/1757-899X/297/1/012068.
  • [15] Yaningsih I, Wijayanta A, Miyazaki T, Koyama S. Impact of Blockage Ratio on Thermal Performance of Delta-Winglet Vortex Generators. Appl Sci 2018;8:181. https://doi.org/10.3390/app8020181.
  • [16] Wijayanta A, Aziz M, Kariya K, Miyara A. Numerical Study of Heat Transfer Enhancement of Internal Flow Using Double-Sided Delta-Winglet Tape Insert. Energies 2018;11:3170. https://doi.org/10.3390/en11113170.
  • [17] Nalavade SP, Prabhune CL, Sane NK. Effect of novel flow divider type turbulators on fluid flow and heat transfer. Therm Sci Eng Prog 2019;9:322–31. https://doi.org/10.1016/j.tsep.2018.12.004.
  • [18] Keklikçioğlu O. A CFD Based Thermo-Hydroulic Performance Analysis in a Tube Fitted with Stepped Conical Nozzle Turbulators. J Therm Eng 2016;2:913–20. https://doi.org/10.18186/jte.76922.
  • [19] Bayareh M. Numerical Simulation and Analysis of Heat Transfer for Different Geometries of Corrugated Tubes in a Double Pipe Heat Exchanger. J Therm Eng 2019;5:293–301. https://doi.org/10.18186/thermal.581775.
  • [20] Pavan Kumar K, Siddhardha R, Rama Bhadri Raju C, Sudheer Kumar K. Response surface based optimization of ribbed isosceles triangular twisted tape heat exchanger using entropy augmentation generation number with Al2O3 nano working fluid. J Therm Eng 2019;5:210–21. https://doi.org/10.18186/thermal.544396.
  • [21] Eiamsa-ard S, Pethkool S, Thianpong C, Promvonge P. Turbulent flow heat transfer and pressure loss in a double pipe heat exchanger with louvered strip inserts. Int Commun Heat Mass Transf 2008;35:120–9. https://doi.org/10.1016/j.icheatmasstransfer.2007.07.003.
  • [22] Fan AW, Deng JJ, Nakayama A, Liu W. Parametric study on turbulent heat transfer and flow characteristics in a circular tube fitted with louvered strip inserts. Int J Heat Mass Transf 2012;55:5205–13. https://doi.org/10.1016/j.ijheatmasstransfer.2012.05.023.
  • [23] Yaningsih I, Wijayanta AT, Miyazaki T, Koyama S. Thermal hydraulic characteristics of turbulent single-phase flow in an enhanced tube using louvered strip insert with various slant angles. Int J Therm Sci 2018;134:355–62. https://doi.org/10.1016/j.ijthermalsci.2018.08.025.
  • [24] Webb RL. Performance evaluation criteria for use of enhanced heat transfer surfaces in heat exchanger design. Int J Heat Mass Transf 1981;24:715–26. https://doi.org/10.1016/0017-9310(81)90015-6.
Year 2020, Volume: 6 Issue: 5, 843 - 857, 01.10.2020
https://doi.org/10.18186/thermal.800267

Abstract

References

  • [1] Eiamsa-ard S, Promvonge P. Influence of Double-sided Delta-wing Tape Insert with Alternate-axes on Flow and Heat Transfer Characteristics in a Heat Exchanger Tube. Chinese J Chem Eng 2011;19:410–23. https://doi.org/10.1016/S1004-9541(11)60001-3.
  • [2] Chokphoemphun S, Tongyote P, Promvonge P, Jedsadaratanachai W, Chompookham T. Heat Transfer Augmentation in a Round Tube with 60o Winglet Pair Inserts. Adv Mater Res 2014;931–932:1188–92. https://doi.org/10.4028/www.scientific.net/AMR.931-932.1188.
  • [3] Khoshvaght-Aliabadi M, Sartipzadeh O, Alizadeh A. An experimental study on vortex-generator insert with different arrangements of delta-winglets. Energy 2015;82:629–39. https://doi.org/10.1016/j.energy.2015.01.072.
  • [4] Boonloi A, Jedsadaratanachai W. Turbulent forced convection in a heat exchanger square channel with wavy-ribs vortex generator. Chinese J Chem Eng 2015;23:1256–65. https://doi.org/10.1016/j.cjche.2015.04.001.
  • [5] Skullong S, Promvonge P, Jayranaiwachira N, Thianpong C. Experimental and numerical heat transfer investigation in a tubular heat exchanger with delta-wing tape inserts. Chem Eng Process Process Intensif 2016;109:164–77. https://doi.org/10.1016/j.cep.2016.09.005.
  • [6] Boonloi A, Jedsadaratanachai W. Flow topology, heat transfer characteristic and thermal performance in a circular tube heat exchanger inserted with punched delta winglet vortex generators. J Mech Sci Technol 2016;30:457–71. https://doi.org/10.1007/s12206-015-1251-2.
  • [7] Skullong S, Promvonge P, Thianpong C, Pimsarn M. Heat transfer and turbulent flow friction in a round tube with staggered-winglet perforated-tapes. Int J Heat Mass Transf 2016;95:230–42. https://doi.org/10.1016/j.ijheatmasstransfer.2015.12.007.
  • [8] Skullong S, Promvonge P, Thianpong C, Jayranaiwachira N, Pimsarn M. Thermal performance of heat exchanger tube inserted with curved-winglet tapes. Appl Therm Eng 2018;129:1197–211. https://doi.org/10.1016/j.applthermaleng.2017.10.110.
  • [9] Gautam A, Pandey L, Singh S. Influence of perforated triple wing vortex generator on a turbulent flow through a circular tube. Heat Mass Transf 2018;54:2009–21. https://doi.org/10.1007/s00231-018-2296-4.
  • [10] Xu Y, Islam MD, Kharoua N. Numerical study of winglets vortex generator effects on thermal performance in a circular pipe. Int J Therm Sci 2017;112:304–17. https://doi.org/10.1016/j.ijthermalsci.2016.10.015.
  • [11] Liang G, Islam MD, Kharoua N, Simmons R. Numerical study of heat transfer and flow behavior in a circular tube fitted with varying arrays of winglet vortex generators. Int J Therm Sci 2018;134:54–65. https://doi.org/10.1016/j.ijthermalsci.2018.08.004.
  • [12] Lei Y, Zheng F, Song C, Lyu Y. Improving the thermal hydraulic performance of a circular tube by using punched delta-winglet vortex generators. Int J Heat Mass Transf 2017;111:299–311. https://doi.org/10.1016/j.ijheatmasstransfer.2017.03.101.
  • [13] Wijayanta AT, Istanto T, Kariya K, Miyara A. Heat transfer enhancement of internal flow by inserting punched delta winglet vortex generators with various attack angles. Exp Therm Fluid Sci 2017;87:141–8. https://doi.org/10.1016/j.expthermflusci.2017.05.002.
  • [14] Khanoknaiyakarn C, Promvonge P, Thianpong C, Skullong S. Performance improvement in a tubular heat exchanger by punched delta-winglet vortex generators. IOP Conf Ser Mater Sci Eng 2018;297:012068. https://doi.org/10.1088/1757-899X/297/1/012068.
  • [15] Yaningsih I, Wijayanta A, Miyazaki T, Koyama S. Impact of Blockage Ratio on Thermal Performance of Delta-Winglet Vortex Generators. Appl Sci 2018;8:181. https://doi.org/10.3390/app8020181.
  • [16] Wijayanta A, Aziz M, Kariya K, Miyara A. Numerical Study of Heat Transfer Enhancement of Internal Flow Using Double-Sided Delta-Winglet Tape Insert. Energies 2018;11:3170. https://doi.org/10.3390/en11113170.
  • [17] Nalavade SP, Prabhune CL, Sane NK. Effect of novel flow divider type turbulators on fluid flow and heat transfer. Therm Sci Eng Prog 2019;9:322–31. https://doi.org/10.1016/j.tsep.2018.12.004.
  • [18] Keklikçioğlu O. A CFD Based Thermo-Hydroulic Performance Analysis in a Tube Fitted with Stepped Conical Nozzle Turbulators. J Therm Eng 2016;2:913–20. https://doi.org/10.18186/jte.76922.
  • [19] Bayareh M. Numerical Simulation and Analysis of Heat Transfer for Different Geometries of Corrugated Tubes in a Double Pipe Heat Exchanger. J Therm Eng 2019;5:293–301. https://doi.org/10.18186/thermal.581775.
  • [20] Pavan Kumar K, Siddhardha R, Rama Bhadri Raju C, Sudheer Kumar K. Response surface based optimization of ribbed isosceles triangular twisted tape heat exchanger using entropy augmentation generation number with Al2O3 nano working fluid. J Therm Eng 2019;5:210–21. https://doi.org/10.18186/thermal.544396.
  • [21] Eiamsa-ard S, Pethkool S, Thianpong C, Promvonge P. Turbulent flow heat transfer and pressure loss in a double pipe heat exchanger with louvered strip inserts. Int Commun Heat Mass Transf 2008;35:120–9. https://doi.org/10.1016/j.icheatmasstransfer.2007.07.003.
  • [22] Fan AW, Deng JJ, Nakayama A, Liu W. Parametric study on turbulent heat transfer and flow characteristics in a circular tube fitted with louvered strip inserts. Int J Heat Mass Transf 2012;55:5205–13. https://doi.org/10.1016/j.ijheatmasstransfer.2012.05.023.
  • [23] Yaningsih I, Wijayanta AT, Miyazaki T, Koyama S. Thermal hydraulic characteristics of turbulent single-phase flow in an enhanced tube using louvered strip insert with various slant angles. Int J Therm Sci 2018;134:355–62. https://doi.org/10.1016/j.ijthermalsci.2018.08.025.
  • [24] Webb RL. Performance evaluation criteria for use of enhanced heat transfer surfaces in heat exchanger design. Int J Heat Mass Transf 1981;24:715–26. https://doi.org/10.1016/0017-9310(81)90015-6.
There are 24 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

R Thejaraju This is me 0000-0002-9170-3873

Kb Girisha This is me 0000-0002-4893-1627

Sh Manjunath This is me 0000-0002-5113-4223

Bs Dayananda This is me 0000-0003-1230-029X

Publication Date October 1, 2020
Submission Date September 6, 2019
Published in Issue Year 2020 Volume: 6 Issue: 5

Cite

APA Thejaraju, R., Girisha, K., Manjunath, S., Dayananda, B. (2020). NUMERICAL EVALUATION OF THERMO-HYDRAULIC PERFORMANCE INDEX OF A DOUBLE PIPE HEAT EXCHANGER USING DOUBLE SIDED LOUVERED WINGLET TAPE. Journal of Thermal Engineering, 6(5), 843-857. https://doi.org/10.18186/thermal.800267
AMA Thejaraju R, Girisha K, Manjunath S, Dayananda B. NUMERICAL EVALUATION OF THERMO-HYDRAULIC PERFORMANCE INDEX OF A DOUBLE PIPE HEAT EXCHANGER USING DOUBLE SIDED LOUVERED WINGLET TAPE. Journal of Thermal Engineering. October 2020;6(5):843-857. doi:10.18186/thermal.800267
Chicago Thejaraju, R, Kb Girisha, Sh Manjunath, and Bs Dayananda. “NUMERICAL EVALUATION OF THERMO-HYDRAULIC PERFORMANCE INDEX OF A DOUBLE PIPE HEAT EXCHANGER USING DOUBLE SIDED LOUVERED WINGLET TAPE”. Journal of Thermal Engineering 6, no. 5 (October 2020): 843-57. https://doi.org/10.18186/thermal.800267.
EndNote Thejaraju R, Girisha K, Manjunath S, Dayananda B (October 1, 2020) NUMERICAL EVALUATION OF THERMO-HYDRAULIC PERFORMANCE INDEX OF A DOUBLE PIPE HEAT EXCHANGER USING DOUBLE SIDED LOUVERED WINGLET TAPE. Journal of Thermal Engineering 6 5 843–857.
IEEE R. Thejaraju, K. Girisha, S. Manjunath, and B. Dayananda, “NUMERICAL EVALUATION OF THERMO-HYDRAULIC PERFORMANCE INDEX OF A DOUBLE PIPE HEAT EXCHANGER USING DOUBLE SIDED LOUVERED WINGLET TAPE”, Journal of Thermal Engineering, vol. 6, no. 5, pp. 843–857, 2020, doi: 10.18186/thermal.800267.
ISNAD Thejaraju, R et al. “NUMERICAL EVALUATION OF THERMO-HYDRAULIC PERFORMANCE INDEX OF A DOUBLE PIPE HEAT EXCHANGER USING DOUBLE SIDED LOUVERED WINGLET TAPE”. Journal of Thermal Engineering 6/5 (October 2020), 843-857. https://doi.org/10.18186/thermal.800267.
JAMA Thejaraju R, Girisha K, Manjunath S, Dayananda B. NUMERICAL EVALUATION OF THERMO-HYDRAULIC PERFORMANCE INDEX OF A DOUBLE PIPE HEAT EXCHANGER USING DOUBLE SIDED LOUVERED WINGLET TAPE. Journal of Thermal Engineering. 2020;6:843–857.
MLA Thejaraju, R et al. “NUMERICAL EVALUATION OF THERMO-HYDRAULIC PERFORMANCE INDEX OF A DOUBLE PIPE HEAT EXCHANGER USING DOUBLE SIDED LOUVERED WINGLET TAPE”. Journal of Thermal Engineering, vol. 6, no. 5, 2020, pp. 843-57, doi:10.18186/thermal.800267.
Vancouver Thejaraju R, Girisha K, Manjunath S, Dayananda B. NUMERICAL EVALUATION OF THERMO-HYDRAULIC PERFORMANCE INDEX OF A DOUBLE PIPE HEAT EXCHANGER USING DOUBLE SIDED LOUVERED WINGLET TAPE. Journal of Thermal Engineering. 2020;6(5):843-57.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering