Research Article
BibTex RIS Cite
Year 2021, Volume: 7 Issue: 2 - Special Issue 13: 2nd International Conference (ICRESE -2020), India,, 117 - 133, 01.02.2021
https://doi.org/10.18186/thermal.870383

Abstract

References

  • [1] Alkhudhiri A, Darwish N, Hilal N. Membrane distillation: A comprehensive review. Journal of Desalination 2012;287:2-18. doi: 10.1016/j.desal.2011.08.027
  • [2] Amir G, Nasim H, Alireza N, Parisa H. Exergy Based Optimization of a Biomass and Solar Fuelled CCHP Hybrid Seawater Desalination Plant. Journal of Thermal Engineering 2017;3:1034-1043. doi: 10.18186/thermal.290251
  • [3] Hadi G, Ghader A. Performance Analysis and Thermodynamic Modeling of a Poly Generation System by Integrating a Multi-Effect-Desalination Thermo-Vapor Compression (MED-TVC) System with a Combined Cooling, Heating and Power (CCHP) System. Journal of Thermal Engineering 2018;4:1963-1983. https://doi.org/10.18186/journal-of-thermal-engineering.410264
  • [4] Omid M, Ali K, Chaiwat J, Phubate T, Somchai W, Raviwat S. Solar Distillation Practice For Water Desalination Systems. Journal of Thermal Engineering 2015;1:287-288. doi: 10.18186/jte.93924
  • [5] Phattaranawik J, Jiraratananon R, Fane A. Heat transport and membrane distillation coefficients in direct contact membrane distillation. Journal of Membrane Science 2003;212:177-193. doi: 10.1016/S0376-7388(02)00498-2
  • [6] Teoh M, Chung T. Membrane distillation with hydrophobic macrovoid-free PVDF-PTFE hollow fiber membranes. Separation and Purification Technology 2009;66:229-236. doi:10.1016/j.seppur.2009.01.005
  • [7] Verma SK, Singhal P, Chauhan DS. A synergistic evaluation on application of solar-thermal energy in water purification: Current scenario and future prospects. Journal of Energy Conversion and Management 2019;180:372-390. doi:10.1016/j.enconman.2018.10.090
  • [8] Mohamed K, Takeshi M. Book of Membrane Distillation 2011;1:1-16. doi:10.1016/b978-0-444 53126-1.10001-6
  • [9] Ruh U, Majeda K, Richard JE, James TM, Mohammad A, Mohamed G, Vahedi TH. Energy efficiency of direct contact membrane distillation. Journal of Desalination 2018;433:56–67. doi: 10.1016/j.desal.2018.01.025
  • [10] Qtaishata M, Matsuura T, Kruczek B, Khayet M. Heat and mass transfer analysis in direct contact membrane distillation. Journal of Desalination 2008;219:272–292 doi:10.1016/j.desal.2007.05.019
  • [11] Hassler G L. U.S. patent US3129146A (14 April 1964).
  • [12] Weyl P K. U.S. patent US3340186A (5 September 1967).
  • [13] Jonsson AS, Wimmerstedt R, Harrysson AC. Membrane Distillation—A Theoretical Study of Evaporation Through Microporous Membranes. Journal of Desalination 1985;56:237. doi:10.1016/0011-9164(85)85028-1
  • [14] Gostoli C, Sarti GC, Matulli S. Low Temperature Distillation Through Hydrophobic Membranes. Journal of Separation and Purification Technology 1987;22: 855. doi:10.1080/01496398708068986
  • [15] Banat FA, Al-Rub FA, Jumah R, Shannag M. Theoretical investigation of membrane distillation role in breaking the formic acid-water azeotropic point: Comparison between Fickian and Stefan-Maxwell-based models. International Communications in Heat and Mass Transfer 1999;26:879–888. doi:10.1016/s0735-1933(99)00076-7
  • [16] Hanemaaijer JH, Van MJ, Jansen AE, Dotremont C, Sonsbeek E, Yuan T, De RL. Memstill membrane distillation – a future desalination technology. Journal of Desalination 2006;199:175–176. doi:10.1016/j.desal.2006.03.163
  • [17] Vandita TS, Thombre S. Air gap membrane distillation: A review. Journal of Renewable and Sustainable Energy 2019;11:45-90. doi: 10.1063/1.5063766
  • [18] Duong HC, Cooper P, Nelemans B, Cath TY, Nghiem LD. Evaluating energy consumption of air gap membrane distillation for seawater desalination at pilot scale level. Journal of Separation and Purification Technology 2016;166:55. doi:10.1016/j.seppur.2016.04.014
  • [19] Minier-Matar J, Hussain A, Janson A, Benyahia F, Adham S. Field evaluation of membrane distillation technologies for desalination of highly saline brines. Journal of Desalination 2014 ;351:101–108. doi:10.1016/j.desal.2014.07.027
  • [20] Schwantes R, Cipollina A, Gross F, Koschikowski J, Pfeifle D, Rolletschek M, Subiela V. Membrane distillation: Solar and waste heat driven demonstration plants for desalination. Journal of Desalination 2013;323:93–106. doi:10.1016/j.desal.2013.04.011
  • [21] Alsaadi AS, Ghaffour N, Li JD, Gray S, Francis L, Maab H, Amy GL. Modeling of air-gap membrane distillation process: A theoretical and experimental study. Journal of Membrane Science 2013;445:53–65. doi:10.1016/j.memsci.2013.05.049
  • [22] Swaminathana J, Chunga HW, Warsingera DM, AlMarzooqib FA, Arafatb HA. Energy efficiency of permeate gap and novel conductive gap membrane distillation. Journal of Membrane Science 2016;502:171–178. doi:10.1016/j.memsci.2015.12.017
  • [23] Alklaibi AM, Lior N. Membrane-distillation desalination: Status and potential. Journal of Desalination 2005;171:111–131. doi:10.1016/j.desal.2004.03.024
  • [24] Camacho L, Dumée L, Zhang J, Li J-d, Duke M, Gomez J, Gray S. Advances in Membrane Distillation for Water Desalination and Purification Applications. Journal of Water 2013;5(1):94–196. doi:10.3390/w5010094
  • [25] Chafidz A, Esa DK, Irfan W, Yasir K, Abdelhamid A, Saeed MA. Design and fabrication of a portable and hybrid solar-powered membrane distillation system. Journal of Cleaner Production 2016;133:631–647. doi:10.1016/j.jclepro.2016.05.127
  • [26] Kullab A, Chuanfeng L, Andrew R. Martin. Solar desalination using membrane distillation: Technical evaluation case study, In Solar World Congress 2005: Bringing Water to the World, Including 34th ASES Annual Conference and 30th National Passive Solar Conference; Orlando, FL, United States 2005; 2732-2737.
  • [27] Banat B, Fawzi A, Jana S. Theoretical and experimental study in membrane distillation. J of Desalination 1994;95(1):39–52. doi:10.1016/0011-9164(94)00005-0
  • [28] Khan EU, Martin AR. Water purification of arsenic-contaminated drinking water via air gap membrane distillation (AGMD). Journal of Periodica Polytechnica Mechanical Engineering 2014;58(1):47–53. doi:10.3311/ppme.7422
  • [29] He Q, Li P, Geng H, Zhang C, Wang J, Chang H. Modeling and optimization of air gap membrane distillation system for desalination. Journal of Desalination 2014;354:68–75. doi:10.1016/j.desal.2014.09.022
  • [30] Uday KN, Martin A. Experimental modeling of an air-gap membrane distillation module and simulation of a solar thermal integrated system for water purification. Journal of Desalination and Water Treatment 2017;84:123-134. DOI:10.5004/dwt.2017.21201
  • [31] Asim M, Uday KN, Martin A. Feasibility analysis of solar combi-system for simultaneous production of pure drinking water via membrane distillation and domestic hot water for single-family villa: pilot plant setup in Dubai. Journal of Desalination and Water Treatment 2015;57(46):21674–21684. doi:10.1080/19443994.2015.1125806
  • [32] TRNSYS, Transient System Simulation, Univ. of Wisconsin Madison, WI: Solar Energy Laboratory,2017;2:1–129.
  • [33] PVGIS, Photovoltaic Geographical Information System, JRC European Commission, Joint Research Center 2007.
  • [34] Mahmoud MM, Ibrik IH. Techno-economic feasibility of energy supply of remote villages in palestine by PV-systems, diesel generators and electric grid. Journal of Renewable and Sustainable Energy Reviews 2006;10:128-138. doi:10.1016/j.rser.2004.09.001
  • [35] Stuart RW, Martin AG, Muriel EW, Richard C. Applied photovoltaics second edition first published by earth scan in the UK and USA in 2007 copyright © 2007;arc, ISBN-10:1-84407-401-3

DYNAMIC SIMULATION OF AN AIR-GAP MEMBRANE DISTILLATION (AGMD) PROCESS USING PHOTOVOLTAIC PANELS SYSTEM AND FLAT PLATE COLLECTORS

Year 2021, Volume: 7 Issue: 2 - Special Issue 13: 2nd International Conference (ICRESE -2020), India,, 117 - 133, 01.02.2021
https://doi.org/10.18186/thermal.870383

Abstract

In the desalination field, the membrane distillation (MD) is a new process of producing distilled water that has been developed and tested in recent years. In this paper, the integrated single cassette air-gap membrane distillation (AGMD) module in the solar thermal desalination system is validated and numerically simulated with the TRNSYS program. This model is studied to be ideal for obtaining a distilled water flow rate of 5.5 kg/h at different times under changing climatic conditions throughout the year in Ain-Temouchent weather, Algeria. The auxiliary heater is added to ensure the thermal energy continuity in the cold climatic conditions, where the photovoltaic system is used to power electrically the auxiliary heater. Therefore, the energy needed is calculated for the auxiliary heater and is replaced by 10 photovoltaic panels, each one has an area of 1.6 m² using seven of the energy storage batteries (12V, 200Ah) with 1.5 KW via TRNSYS and PVGIS help programs. Simulated results showed excellent compatibility with experimental results in previous studies. Additionally, it was found that when the inlet temperature of AGMD reaches 85 °C, the distilled water flow from the distillation membrane reaches 5.5 kg /h and that remains stable on different days throughout the year by relying solely on solar energy.

References

  • [1] Alkhudhiri A, Darwish N, Hilal N. Membrane distillation: A comprehensive review. Journal of Desalination 2012;287:2-18. doi: 10.1016/j.desal.2011.08.027
  • [2] Amir G, Nasim H, Alireza N, Parisa H. Exergy Based Optimization of a Biomass and Solar Fuelled CCHP Hybrid Seawater Desalination Plant. Journal of Thermal Engineering 2017;3:1034-1043. doi: 10.18186/thermal.290251
  • [3] Hadi G, Ghader A. Performance Analysis and Thermodynamic Modeling of a Poly Generation System by Integrating a Multi-Effect-Desalination Thermo-Vapor Compression (MED-TVC) System with a Combined Cooling, Heating and Power (CCHP) System. Journal of Thermal Engineering 2018;4:1963-1983. https://doi.org/10.18186/journal-of-thermal-engineering.410264
  • [4] Omid M, Ali K, Chaiwat J, Phubate T, Somchai W, Raviwat S. Solar Distillation Practice For Water Desalination Systems. Journal of Thermal Engineering 2015;1:287-288. doi: 10.18186/jte.93924
  • [5] Phattaranawik J, Jiraratananon R, Fane A. Heat transport and membrane distillation coefficients in direct contact membrane distillation. Journal of Membrane Science 2003;212:177-193. doi: 10.1016/S0376-7388(02)00498-2
  • [6] Teoh M, Chung T. Membrane distillation with hydrophobic macrovoid-free PVDF-PTFE hollow fiber membranes. Separation and Purification Technology 2009;66:229-236. doi:10.1016/j.seppur.2009.01.005
  • [7] Verma SK, Singhal P, Chauhan DS. A synergistic evaluation on application of solar-thermal energy in water purification: Current scenario and future prospects. Journal of Energy Conversion and Management 2019;180:372-390. doi:10.1016/j.enconman.2018.10.090
  • [8] Mohamed K, Takeshi M. Book of Membrane Distillation 2011;1:1-16. doi:10.1016/b978-0-444 53126-1.10001-6
  • [9] Ruh U, Majeda K, Richard JE, James TM, Mohammad A, Mohamed G, Vahedi TH. Energy efficiency of direct contact membrane distillation. Journal of Desalination 2018;433:56–67. doi: 10.1016/j.desal.2018.01.025
  • [10] Qtaishata M, Matsuura T, Kruczek B, Khayet M. Heat and mass transfer analysis in direct contact membrane distillation. Journal of Desalination 2008;219:272–292 doi:10.1016/j.desal.2007.05.019
  • [11] Hassler G L. U.S. patent US3129146A (14 April 1964).
  • [12] Weyl P K. U.S. patent US3340186A (5 September 1967).
  • [13] Jonsson AS, Wimmerstedt R, Harrysson AC. Membrane Distillation—A Theoretical Study of Evaporation Through Microporous Membranes. Journal of Desalination 1985;56:237. doi:10.1016/0011-9164(85)85028-1
  • [14] Gostoli C, Sarti GC, Matulli S. Low Temperature Distillation Through Hydrophobic Membranes. Journal of Separation and Purification Technology 1987;22: 855. doi:10.1080/01496398708068986
  • [15] Banat FA, Al-Rub FA, Jumah R, Shannag M. Theoretical investigation of membrane distillation role in breaking the formic acid-water azeotropic point: Comparison between Fickian and Stefan-Maxwell-based models. International Communications in Heat and Mass Transfer 1999;26:879–888. doi:10.1016/s0735-1933(99)00076-7
  • [16] Hanemaaijer JH, Van MJ, Jansen AE, Dotremont C, Sonsbeek E, Yuan T, De RL. Memstill membrane distillation – a future desalination technology. Journal of Desalination 2006;199:175–176. doi:10.1016/j.desal.2006.03.163
  • [17] Vandita TS, Thombre S. Air gap membrane distillation: A review. Journal of Renewable and Sustainable Energy 2019;11:45-90. doi: 10.1063/1.5063766
  • [18] Duong HC, Cooper P, Nelemans B, Cath TY, Nghiem LD. Evaluating energy consumption of air gap membrane distillation for seawater desalination at pilot scale level. Journal of Separation and Purification Technology 2016;166:55. doi:10.1016/j.seppur.2016.04.014
  • [19] Minier-Matar J, Hussain A, Janson A, Benyahia F, Adham S. Field evaluation of membrane distillation technologies for desalination of highly saline brines. Journal of Desalination 2014 ;351:101–108. doi:10.1016/j.desal.2014.07.027
  • [20] Schwantes R, Cipollina A, Gross F, Koschikowski J, Pfeifle D, Rolletschek M, Subiela V. Membrane distillation: Solar and waste heat driven demonstration plants for desalination. Journal of Desalination 2013;323:93–106. doi:10.1016/j.desal.2013.04.011
  • [21] Alsaadi AS, Ghaffour N, Li JD, Gray S, Francis L, Maab H, Amy GL. Modeling of air-gap membrane distillation process: A theoretical and experimental study. Journal of Membrane Science 2013;445:53–65. doi:10.1016/j.memsci.2013.05.049
  • [22] Swaminathana J, Chunga HW, Warsingera DM, AlMarzooqib FA, Arafatb HA. Energy efficiency of permeate gap and novel conductive gap membrane distillation. Journal of Membrane Science 2016;502:171–178. doi:10.1016/j.memsci.2015.12.017
  • [23] Alklaibi AM, Lior N. Membrane-distillation desalination: Status and potential. Journal of Desalination 2005;171:111–131. doi:10.1016/j.desal.2004.03.024
  • [24] Camacho L, Dumée L, Zhang J, Li J-d, Duke M, Gomez J, Gray S. Advances in Membrane Distillation for Water Desalination and Purification Applications. Journal of Water 2013;5(1):94–196. doi:10.3390/w5010094
  • [25] Chafidz A, Esa DK, Irfan W, Yasir K, Abdelhamid A, Saeed MA. Design and fabrication of a portable and hybrid solar-powered membrane distillation system. Journal of Cleaner Production 2016;133:631–647. doi:10.1016/j.jclepro.2016.05.127
  • [26] Kullab A, Chuanfeng L, Andrew R. Martin. Solar desalination using membrane distillation: Technical evaluation case study, In Solar World Congress 2005: Bringing Water to the World, Including 34th ASES Annual Conference and 30th National Passive Solar Conference; Orlando, FL, United States 2005; 2732-2737.
  • [27] Banat B, Fawzi A, Jana S. Theoretical and experimental study in membrane distillation. J of Desalination 1994;95(1):39–52. doi:10.1016/0011-9164(94)00005-0
  • [28] Khan EU, Martin AR. Water purification of arsenic-contaminated drinking water via air gap membrane distillation (AGMD). Journal of Periodica Polytechnica Mechanical Engineering 2014;58(1):47–53. doi:10.3311/ppme.7422
  • [29] He Q, Li P, Geng H, Zhang C, Wang J, Chang H. Modeling and optimization of air gap membrane distillation system for desalination. Journal of Desalination 2014;354:68–75. doi:10.1016/j.desal.2014.09.022
  • [30] Uday KN, Martin A. Experimental modeling of an air-gap membrane distillation module and simulation of a solar thermal integrated system for water purification. Journal of Desalination and Water Treatment 2017;84:123-134. DOI:10.5004/dwt.2017.21201
  • [31] Asim M, Uday KN, Martin A. Feasibility analysis of solar combi-system for simultaneous production of pure drinking water via membrane distillation and domestic hot water for single-family villa: pilot plant setup in Dubai. Journal of Desalination and Water Treatment 2015;57(46):21674–21684. doi:10.1080/19443994.2015.1125806
  • [32] TRNSYS, Transient System Simulation, Univ. of Wisconsin Madison, WI: Solar Energy Laboratory,2017;2:1–129.
  • [33] PVGIS, Photovoltaic Geographical Information System, JRC European Commission, Joint Research Center 2007.
  • [34] Mahmoud MM, Ibrik IH. Techno-economic feasibility of energy supply of remote villages in palestine by PV-systems, diesel generators and electric grid. Journal of Renewable and Sustainable Energy Reviews 2006;10:128-138. doi:10.1016/j.rser.2004.09.001
  • [35] Stuart RW, Martin AG, Muriel EW, Richard C. Applied photovoltaics second edition first published by earth scan in the UK and USA in 2007 copyright © 2007;arc, ISBN-10:1-84407-401-3
There are 35 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Abdelfatah Sandid This is me 0000-0001-7592-9672

Driss Nehari This is me 0000-0002-9371-1105

Abderrahmane Elmeriah This is me 0000-0003-2475-4491

Ahmed Remlaoui This is me 0000-0001-6179-6493

Publication Date February 1, 2021
Submission Date February 25, 2020
Published in Issue Year 2021 Volume: 7 Issue: 2 - Special Issue 13: 2nd International Conference (ICRESE -2020), India,

Cite

APA Sandid, A., Nehari, D., Elmeriah, A., Remlaoui, A. (2021). DYNAMIC SIMULATION OF AN AIR-GAP MEMBRANE DISTILLATION (AGMD) PROCESS USING PHOTOVOLTAIC PANELS SYSTEM AND FLAT PLATE COLLECTORS. Journal of Thermal Engineering, 7(2), 117-133. https://doi.org/10.18186/thermal.870383
AMA Sandid A, Nehari D, Elmeriah A, Remlaoui A. DYNAMIC SIMULATION OF AN AIR-GAP MEMBRANE DISTILLATION (AGMD) PROCESS USING PHOTOVOLTAIC PANELS SYSTEM AND FLAT PLATE COLLECTORS. Journal of Thermal Engineering. February 2021;7(2):117-133. doi:10.18186/thermal.870383
Chicago Sandid, Abdelfatah, Driss Nehari, Abderrahmane Elmeriah, and Ahmed Remlaoui. “DYNAMIC SIMULATION OF AN AIR-GAP MEMBRANE DISTILLATION (AGMD) PROCESS USING PHOTOVOLTAIC PANELS SYSTEM AND FLAT PLATE COLLECTORS”. Journal of Thermal Engineering 7, no. 2 (February 2021): 117-33. https://doi.org/10.18186/thermal.870383.
EndNote Sandid A, Nehari D, Elmeriah A, Remlaoui A (February 1, 2021) DYNAMIC SIMULATION OF AN AIR-GAP MEMBRANE DISTILLATION (AGMD) PROCESS USING PHOTOVOLTAIC PANELS SYSTEM AND FLAT PLATE COLLECTORS. Journal of Thermal Engineering 7 2 117–133.
IEEE A. Sandid, D. Nehari, A. Elmeriah, and A. Remlaoui, “DYNAMIC SIMULATION OF AN AIR-GAP MEMBRANE DISTILLATION (AGMD) PROCESS USING PHOTOVOLTAIC PANELS SYSTEM AND FLAT PLATE COLLECTORS”, Journal of Thermal Engineering, vol. 7, no. 2, pp. 117–133, 2021, doi: 10.18186/thermal.870383.
ISNAD Sandid, Abdelfatah et al. “DYNAMIC SIMULATION OF AN AIR-GAP MEMBRANE DISTILLATION (AGMD) PROCESS USING PHOTOVOLTAIC PANELS SYSTEM AND FLAT PLATE COLLECTORS”. Journal of Thermal Engineering 7/2 (February 2021), 117-133. https://doi.org/10.18186/thermal.870383.
JAMA Sandid A, Nehari D, Elmeriah A, Remlaoui A. DYNAMIC SIMULATION OF AN AIR-GAP MEMBRANE DISTILLATION (AGMD) PROCESS USING PHOTOVOLTAIC PANELS SYSTEM AND FLAT PLATE COLLECTORS. Journal of Thermal Engineering. 2021;7:117–133.
MLA Sandid, Abdelfatah et al. “DYNAMIC SIMULATION OF AN AIR-GAP MEMBRANE DISTILLATION (AGMD) PROCESS USING PHOTOVOLTAIC PANELS SYSTEM AND FLAT PLATE COLLECTORS”. Journal of Thermal Engineering, vol. 7, no. 2, 2021, pp. 117-33, doi:10.18186/thermal.870383.
Vancouver Sandid A, Nehari D, Elmeriah A, Remlaoui A. DYNAMIC SIMULATION OF AN AIR-GAP MEMBRANE DISTILLATION (AGMD) PROCESS USING PHOTOVOLTAIC PANELS SYSTEM AND FLAT PLATE COLLECTORS. Journal of Thermal Engineering. 2021;7(2):117-33.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering