Research Article
BibTex RIS Cite
Year 2023, Volume: 9 Issue: 4, 921 - 941, 04.08.2023
https://doi.org/10.18186/thermal.1335894

Abstract

References

  • REFERENCES [1] Adetifa BO, Aremu AK. Computational and experimental study of solar thermal energy store for low–temperature application. J Energy Storage 2018;20:427–438. [CrossRef]
  • [2] Algifri AH, Al–Towaie HA. Efficient orientation impacts of box–type solar cooker on the cooker performance. Sol Energy 2001;70:165–170. [CrossRef]
  • [3] Amer EH. Theoretical and experimental assessment of a double exposure solar cooker. Energy Convers Manag 2003;44:2651–2663. [CrossRef]
  • [4] Aramesh M, Ghalebani M, Kasaeian A, Zamani H, Lorenzini G, Mahian O, et al. A review of recent advances in solar cooking technology. Renew Energy 2019;140:419–435. [CrossRef]
  • [5] Badran AA, Yousef IA, Joudeh NK, Al Hamad R, Halawa H, Hassouneh HK. Portable solar cooker and water heater. Energy Convers Manag 2010;51:1605–1609. [CrossRef]
  • [6] Binark AK, Türkmen N. Modelling of a hot box solar cooker. Energy Convers Manag 1996;37:303–310.
  • [7] Buddhi D, Sahoo LK. Solar cooker with latent heat storage: design and experimental testing. Energy Convers Manag 1997;38:493–498. [CrossRef]
  • [8] Caner M, Gedik E, Keçebaş A. Investigation on thermal performance calculation of two type solar air collectors using artificial neural network. Expert Syst Appl 2011;38:1668–1674. [CrossRef]
  • [9] Carballo JA, Bonilla J, Berenguel M, Fernández–Reche J, García G. New approach for solar tracking systems based on computer vision, low cost hardware and deep learning. Renew Energy 2019;133:1158–1166. [CrossRef]
  • [10] Chauhan PS, Kumar A, Tekasakul P. Applications of software in solar drying systems: A review. Renew Sustain Energy Rev 2015;51:1326–1337. [CrossRef]
  • [11] Chen CR, Sharma A, Tyagi SK, Buddhi D. Numerical heat transfer studies of PCMs used in a box–type solar cooker. Renew Energy 2008;33:1121–1129. [CrossRef]
  • [12] Chen D, Wang H, Qian H, Zhang G, Shen S. Solar cooker effect test and temperature field simulation of radio telescope subreflector. Appl Therm Eng 2016;109:147–154. [CrossRef]
  • [13] Coccia G, Di Nicola G, Pierantozzi M, Tomassetti S, Aquilanti A. Design, manufacturing, and test of a high concentration ratio solar box cooker with multiple reflectors. Sol Energy 2017;155:781–792. [CrossRef]
  • [14] Collares–Pereira M, Cavaco A, Tavares A. Figures of merit and their relevance in the context of a standard testing and performance comparison methods for solar box–cookers. Sol Energy 2018;166:21–27. [CrossRef]
  • [15] Cuce E, Cuce PM. A comprehensive review on solar cookers. Appl Energy 2013;102:1399–1421. [CrossRef]
  • [16] Cuce E. Improving thermal power of a cylindrical solar cooker via novel micro/nano porous absorbers: A thermodynamic analysis with experimental validation. Sol Energy 2018;176:211–219. [CrossRef]
  • [17] Cuce PM. Box type solar cookers with sensible thermal energy storage medium: A comparative experimental investigation and thermodynamic analysis. Sol Energy 2018;166:432–440. [CrossRef]
  • [18] De Escobar EM. Low budget solar cookers: an alternative to diminish the use of wood as a source of fuel. Renew Energy 1996;9:754–757. [CrossRef]
  • [19] Edmonds I. Low cost realisation of a high temperature solar cooker. Renew Energy 2018;121:94–101. [CrossRef]
  • [20] El–Sebaii AA, Ibrahim A. Experimental testing of a box–type solar cooker using the standard procedure of cooking power. Renew Energy 2005;30:1861–1871. [CrossRef]
  • [21] Elsheikh AH, Sharshir SW, Abd Elaziz M, Kabeel AE, Guilan W, Haiou Z. Modeling of solar energy systems using artificial neural network: A comprehensive review. Sol Energy 2019;180:622–639. [CrossRef]
  • [22] Eurostat Statistics Explained. European consumption in households. Available at: https://ec.europa.eu/eurostat/statisticsexplained/index.php? title=Energy_consumption_in_households#Energy_consumption_in_households_by_type_of_end–use Accessed on 2023 June 18.
  • [23] Farooqui SZ. An improved power free tracking system for box type solar cookers. Sol Energy 2015;120:100–103. [CrossRef]
  • [24] Franco J, Cadena C, Saravia L. Multiple use communal solar cookers. Sol Energy 2004;77:217–223. [CrossRef]
  • [25] Funk PA, Larson DL. Parametric model of solar cooker performance. Sol Energy 1998;62:63–68. [CrossRef]
  • [26] Funk PA. Evaluating the international standard procedure for testing solar cookers and reporting performance. Sol Energy 2000;68:1–7. [CrossRef]
  • [27] Geddam S, Dinesh GK, Sivasankar T. Determination of thermal performance of a box type solar cooker. Sol Energy 2015;113:324–331. [CrossRef]
  • [28] Harmim A, Belhamel M, Boukar M, Amar M. Experimental investigation of a box–type solar cooker with a finned absorber plate. Energy 2010;35:3799–3802. [CrossRef]
  • [29] Harmim A, Boukar M. Experimental study of a double exposure solar cooker with finned cooking vessel. Sol Energy 2008;82:287–289. [CrossRef]
  • [30] Harmim A, Merzouk M, Boukar M, Amar M. Design and experimental testing of an innovative building–integrated box type solar cooker. Sol Energy 2013;98:422–433. [CrossRef]
  • [31] Harmim A, Merzouk M, Boukar M, Amar M. Mathematical modeling of a box–type solar cooker employing an asymmetric compound parabolic concentrator. Sol Energy 2012;86:1673–1682. [CrossRef]
  • [32] Harmim A, Merzouk M, Boukar M, Amar M. Performance study of a box–type solar cooker employing an asymmetric compound parabolic concentrator. Energy 2012;47:471–480. [CrossRef]
  • [33] Harmim A, Merzouk M, Boukar M, Amar M. Solar cooking development in Algerian Sahara: Towards a socially suitable solar cooker. Renew Sustain Energy Rev 2014;37:207–214. [CrossRef]
  • [34] Hassan QF. Internet of things A to Z: technologies and applications. 1st ed. New Jersey: John Wiley and Sons; 2018. [CrossRef]
  • [35] Herez A, Ramadan M, Khaled M. Review on solar cooker systems: Economic and environmental study for different Lebanese scenarios. Renew Sustain Energy Rev 2018;81:421–432. [CrossRef]
  • [36] Heydari A, Forati M, Khatam S. Thermal performance investigation of a hybrid solar air heater applied in a solar dryer using thermodynamic modeling. J Therm Eng 2021;7:715–730. [CrossRef]
  • [37] Hussein HM, El–Ghetany HH, Nada SA. Experimental investigation of novel indirect solar cooker with indoor PCM thermal storage and cooking unit. Energy Convers Manag 2008;49:2237–2246. [CrossRef]
  • [38] Indora S, Kandpal TC. Institutional cooking with solar energy: A review. Renew Sustain Energy Rev 2018;84:131–154. [CrossRef]
  • [39] John G, König–Haagen A, King’ondu CK, Brüggemann D, Nkhonjera L. Galactitol as phase change material for latent heat storage of solar cookers: Investigating thermal behavior in bulk cycling. Sol Energy 2015;119:415–421. [CrossRef]
  • [40] Joshi SB, Jani AR. Design, development and testing of a small scale hybrid solar cooker. Sol Energy 2015;122:148–155. [CrossRef]
  • [41] Kahsay MB, Paintin J, Mustefa A, Haileselassie A, Tesfay M, Gebray B. Theoretical and experimental comparison of box solar cookers with and without internal reflector. Energy Procedia 2014;57:1613–1622. [CrossRef]
  • [42] Kumar N, Agravat S, Chavda T, Mistry HN. Design and development of efficient multipurpose domestic solar cookers/dryers. Renew Energy 2008;33:2207–2211. [CrossRef]
  • [43] Kumar N, Chavda T, Mistry HN. A truncated pyramid non–tracking type multipurpose domestic solar cooker/hot water system. Appl Energy 2010;87:471–477. [CrossRef]
  • [44] Kumar N, Vishwanath G, Gupta A. An exergy based unified test protocol for solar cookers of different geometries. Renew Energy 2012;44:457–462. [CrossRef]
  • [45] Kumar N, Vishwanath G, Gupta A. An exergy–based test protocol for truncated pyramid type solar box cooker. Energy 2011;36:5710–5715. [CrossRef]
  • [46] Kumar R, Adhikari RS, Garg HP, Kumar A. Thermal performance of a solar pressure cooker based on evacuated tube solar collector. Appl Therm Eng 2001;21:1699–1706. [CrossRef]
  • [47] Kumar S. Estimation of design parameters for thermal performance evaluation of box–type solar cooker. Renew Energy 2005;30:1117–1126. [CrossRef]
  • [48] Kumar S. Thermal performance study of box type solar cooker from heating characteristic curves. Energy Convers Manag 2004;45:127–139. [CrossRef]
  • [49] Kurt H, Atik K, Özkaymak M, Recebli Z. Thermal performance parameters estimation of hot box type solar cooker by using artificial neural network. Int J Therm Sci 2008;47:192–200. [CrossRef]
  • [50] Lahkar PJ, Samdarshi SK. A review of the thermal performance parameters of box type solar cookers and identification of their correlations. Renew Sustain Energy Rev 2010;14:1615–1621. [CrossRef]
  • [51] Mahavar S, Rajawat P, Punia RC, Sengar N, Dashora P. Evaluating the optimum load range for box–type solar cookers. Renew Energy 2015;74:187–194. [CrossRef]
  • [52] Mahavar S, Sengar N, Dashora P. Analytical model for electric back–up power estimation of solar box type cookers. Energy 2017;134:871–881. [CrossRef]
  • [53] Mahavar S, Sengar N, Rajawat P, Verma M, Dashora P. Design development and performance studies of a novel single family solar cooker. Renew Energy 2012;47:67–76. [CrossRef]
  • [54] Mawire A, Phori A, Taole S. Performance comparison of thermal energy storage oils for solar cookers during charging. Appl Therm Eng 2014;73:1323–1331. [CrossRef]
  • [55] Mirdha US, Dhariwal SR. Design optimization of solar cooker. Renew Energy 2008;33:530–544.
  • [56] Mullick SC, Kandpal TC, Saxena AK. Thermal test procedure for box–type solar cookers. Solar Energy 1987;39:353–360. [CrossRef]
  • [57] Muthusivagami RM, Velraj R, Sethumadhavan R. Solar cookers with and without thermal storage—a review. Renew Sustain Energy Rev 2010;14:691–701. [CrossRef]
  • [58] Nahar NM, Gupta JP, Sharma P. A novel solar cooker for animal feed. Energy Convers Manag 1996;37:77–80. [CrossRef]
  • [59] Nahar NM, Gupta JP, Sharma P. Performance and testing of an improved community size solar cooker. Energy Convers Manag 1993;34:327–333. [CrossRef]
  • [60] Nahar NM. Design, development and testing of a double reflector hot box solar cooker with a transparent insulation material. Renew Energy 2001;23:167–179. [CrossRef]
  • [61] Nahar NM. Performance and testing of a hot box storage solar cooker. Energy Convers Manag 2003;44:1323–1331. [CrossRef]
  • [62] Nahar NM. Performance and testing of an improved hot box solar cooker. Energy Convers Manag 1990;30:9–16. [CrossRef]
  • [63] Nayak J, Agrawal M, Mishra S, Sahoo SS, Swain RK, Mishra A. Combined heat loss analysis of trapezoidal shaped solar cooker cavity using computational approach. Case Stud Therm Eng 2018;12:94–103. [CrossRef]
  • [64] Nayak J, Sahoo SS, Swain RK, Mishra A, Chakrabarty S. Construction of box type solar cooker and its adaptability to industrialized zone. Mater Today Proc 2017;4:12565–12570. [CrossRef]
  • [65] Negi BS, Purohit I. Experimental investigation of a box type solar cooker employing a non–tracking concentrator. Energy Convers Manag 2005;46:577–604. [CrossRef]
  • [66] Nkhonjera L, Bello–Ochende T, John G, King’ondu CK. A review of thermal energy storage designs, heat storage materials and cooking performance of solar cookers with heat storage. Renew Sustain Energy Rev 2017;75:157–167. [CrossRef]
  • [67] Panwar NL, Kothari S, Kaushik SC. Techno–economic evaluation of masonry type animal feed solar cooker in rural areas of an Indian state Rajasthan. Energy Policy 2013;52:583–586. [CrossRef]
  • [68] Patil S, Vijayalashmi M, Tapaskar R. Solar energy monitoring system using IOT. Indian J Sci Res 2017;149–156. [CrossRef]
  • [69] Prabhu V, Thomas DR, Nancy W. Analysis of solar cooking thermal images using Fuzzy technique in Image processing. Int J Pure Appl Mathematics 2017;117:133–137.
  • [70] Prakash O, Laguri V, Pandey A, Kumar A, Kumar A. Review on various modelling techniques for the solar dryers. Renew Sustain Energy Rev 2016;62:396–417. [CrossRef]
  • [71] Purohit I, Purohit P. Instrumentation error analysis of a box–type solar cooker. Energy Convers Manag 2009;50:365–375. [CrossRef]
  • [72] Purohit I. Testing of solar cookers and evaluation of instrumentation error. Renew Energy 2010;35:2053–2064. [CrossRef]
  • [73] Rao AN, Subramanyam S. Solar cookers––part I: cooking vessel on lugs. Sol Energy 2003;75:181–185. [CrossRef]
  • [74] Rao AN, Subramanyam S. Solar cookers—part–II—cooking vessel with central annular cavity. Sol Energy 2005;78:19–22. [CrossRef]
  • [75] Reddy AR, Rao AN. Prediction and experimental verification of performance of box type solar cooker–Part I. Cooking vessel with central cylindrical cavity. Energy Convers Manag 2007;48:2034–2043. [CrossRef]
  • [76] Sagade AA, Samdarshi SK, Panja PS. Experimental determination of effective concentration ratio for solar box cookers using thermal tests. Sol Energy 2018;159:984–991. [CrossRef]
  • [77] Saxena A, Agarwal N. Performance characteristics of a new hybrid solar cooker with air duct. Sol Energy 2018;159:628–637. [CrossRef]
  • [78] Saxena A, Pandey SP, Srivastav G. A thermodynamic review on solar box type cookers. Renew Sustain Energy Rev 2011;15:3301–3318. [CrossRef]
  • [79] Sethi VP, Pal DS, Sumathy K. Performance evaluation and solar radiation capture of optimally inclined box type solar cooker with parallelepiped cooking vessel design. Energy Convers Manag 2014;81:231–241. [CrossRef]
  • [80] Sharaf E. A new design for an economical, highly efficient, conical solar cooker. Renew Energy 2002;27:599–619. [CrossRef]
  • [81] Sharma A, Chen CR, Murty VV, Shukla A. Solar cooker with latent heat storage systems: A review. Renew Sustain Energy Rev 2009;13:1599–1605. [CrossRef]
  • [82] Sharma SD, Buddhi D, Sawhney RL, Sharma A. Design, development and performance evaluation of a latent heat storage unit for evening cooking in a solar cooker. Energy Convers Manag 2000;41:1497–1508. [CrossRef]
  • [83] Singh P, Gaur MK. A review on thermal analysis of hybrid greenhouse solar dryer (HGSD). J Therm Eng 2021;8:103–119. [CrossRef]
  • [84] Soria–Verdugo A. Experimental analysis and simulation of the performance of a box–type solar cooker. Energy Sustain Develop 2015;29:65–71. [CrossRef]
  • [85] Sun Y, Bie R, Thomas P, Cheng X. New advances in data, information, and knowledge in the Internet of things. Pers Ubiquitous Comput 2016;20:653–655. [CrossRef]
  • [86] Talari S, Shafie–Khah M, Siano P, Loia V, Tommasetti A, Catalão JP. A review of smart cities based on the internet of things concept. Energies 2017;10:421. [CrossRef]
  • [87] Terres H, Lizardi A, López R, Vaca M, Chávez S. Mathematical model to study solar cookers box–type with internal reflectors. Energy Procedia 2014;57:1583–1592. [CrossRef]
  • [88] Tripathy PP, Kumar S. Neural network approach for food temperature prediction during solar drying. Int J Therm Sci 2009;48:1452–1459. [CrossRef]
  • [89] Wareham RC. Parameters for a solar cooker program. Renewable Energy 1997;10:217–219. [CrossRef]
  • [90] Weldu A, Zhao L, Deng S, Mulugeta N, Zhang Y, Nie X, Xu W. Performance evaluation on solar box cooker with reflector tracking at optimal angle under Bahir Dar climate. Sol Energy 2019;180:664–677. [CrossRef]
  • [91] Wentzel M, Pouris A. The development impact of solar cookers: a review of solar cooking impact research in South Africa. Energy Policy 2007;35:1909–1919. [CrossRef]
  • [92] International Energy Agency. World Energy Statistics 2017, International Energy Agency (IEA), Paris, 2017.
  • [93] Yadav AS, Bhagoria JL. Heat transfer and fluid flow analysis of solar air heater: A review of CFD approach. Renew Sustain Energy Rev 2013;23:60–79. [CrossRef]
  • [94] Yettou F, Gama A, Panwar NL, Azoui B, Malek A. Receiver temperature maps of parabolic collector used for solar food cooking application in Algeria. J Therm Eng 2018;4:1656–1667. [CrossRef]

Performance parameters, design considerations, social adoption, and computational techniques for solar box cooker development: current status and future possibilities

Year 2023, Volume: 9 Issue: 4, 921 - 941, 04.08.2023
https://doi.org/10.18186/thermal.1335894

Abstract

Practical utility of solar cookers is on rise nowadays. However, due to certain technological challenges this is not catching very fast. Present review paper encompasses studies and future possibilities for solar box cooker research. Various aspects like thermal performance param-eters, various phases of designs improvements, social acceptability issues and computational methods of analysis have been discussed in relation to Solar box cookers so that technical difficulties may be minimized. This paper discusses about introduction to solar box cookers, advantages, disadvantages, various practical considerations that are key factors for any SBC. Further, there is a handsome discussion on the various computational techniques like Com-putational fluid dynamics, Artificial intelligence techniques, IoT etc. Introduction, review of applications till date, and future possibilities related to research using application of these computational techniques have been presented. Emphasis has been given to future possibili-ties for solar box cookers development so that it could be a well-accepted future technology.

References

  • REFERENCES [1] Adetifa BO, Aremu AK. Computational and experimental study of solar thermal energy store for low–temperature application. J Energy Storage 2018;20:427–438. [CrossRef]
  • [2] Algifri AH, Al–Towaie HA. Efficient orientation impacts of box–type solar cooker on the cooker performance. Sol Energy 2001;70:165–170. [CrossRef]
  • [3] Amer EH. Theoretical and experimental assessment of a double exposure solar cooker. Energy Convers Manag 2003;44:2651–2663. [CrossRef]
  • [4] Aramesh M, Ghalebani M, Kasaeian A, Zamani H, Lorenzini G, Mahian O, et al. A review of recent advances in solar cooking technology. Renew Energy 2019;140:419–435. [CrossRef]
  • [5] Badran AA, Yousef IA, Joudeh NK, Al Hamad R, Halawa H, Hassouneh HK. Portable solar cooker and water heater. Energy Convers Manag 2010;51:1605–1609. [CrossRef]
  • [6] Binark AK, Türkmen N. Modelling of a hot box solar cooker. Energy Convers Manag 1996;37:303–310.
  • [7] Buddhi D, Sahoo LK. Solar cooker with latent heat storage: design and experimental testing. Energy Convers Manag 1997;38:493–498. [CrossRef]
  • [8] Caner M, Gedik E, Keçebaş A. Investigation on thermal performance calculation of two type solar air collectors using artificial neural network. Expert Syst Appl 2011;38:1668–1674. [CrossRef]
  • [9] Carballo JA, Bonilla J, Berenguel M, Fernández–Reche J, García G. New approach for solar tracking systems based on computer vision, low cost hardware and deep learning. Renew Energy 2019;133:1158–1166. [CrossRef]
  • [10] Chauhan PS, Kumar A, Tekasakul P. Applications of software in solar drying systems: A review. Renew Sustain Energy Rev 2015;51:1326–1337. [CrossRef]
  • [11] Chen CR, Sharma A, Tyagi SK, Buddhi D. Numerical heat transfer studies of PCMs used in a box–type solar cooker. Renew Energy 2008;33:1121–1129. [CrossRef]
  • [12] Chen D, Wang H, Qian H, Zhang G, Shen S. Solar cooker effect test and temperature field simulation of radio telescope subreflector. Appl Therm Eng 2016;109:147–154. [CrossRef]
  • [13] Coccia G, Di Nicola G, Pierantozzi M, Tomassetti S, Aquilanti A. Design, manufacturing, and test of a high concentration ratio solar box cooker with multiple reflectors. Sol Energy 2017;155:781–792. [CrossRef]
  • [14] Collares–Pereira M, Cavaco A, Tavares A. Figures of merit and their relevance in the context of a standard testing and performance comparison methods for solar box–cookers. Sol Energy 2018;166:21–27. [CrossRef]
  • [15] Cuce E, Cuce PM. A comprehensive review on solar cookers. Appl Energy 2013;102:1399–1421. [CrossRef]
  • [16] Cuce E. Improving thermal power of a cylindrical solar cooker via novel micro/nano porous absorbers: A thermodynamic analysis with experimental validation. Sol Energy 2018;176:211–219. [CrossRef]
  • [17] Cuce PM. Box type solar cookers with sensible thermal energy storage medium: A comparative experimental investigation and thermodynamic analysis. Sol Energy 2018;166:432–440. [CrossRef]
  • [18] De Escobar EM. Low budget solar cookers: an alternative to diminish the use of wood as a source of fuel. Renew Energy 1996;9:754–757. [CrossRef]
  • [19] Edmonds I. Low cost realisation of a high temperature solar cooker. Renew Energy 2018;121:94–101. [CrossRef]
  • [20] El–Sebaii AA, Ibrahim A. Experimental testing of a box–type solar cooker using the standard procedure of cooking power. Renew Energy 2005;30:1861–1871. [CrossRef]
  • [21] Elsheikh AH, Sharshir SW, Abd Elaziz M, Kabeel AE, Guilan W, Haiou Z. Modeling of solar energy systems using artificial neural network: A comprehensive review. Sol Energy 2019;180:622–639. [CrossRef]
  • [22] Eurostat Statistics Explained. European consumption in households. Available at: https://ec.europa.eu/eurostat/statisticsexplained/index.php? title=Energy_consumption_in_households#Energy_consumption_in_households_by_type_of_end–use Accessed on 2023 June 18.
  • [23] Farooqui SZ. An improved power free tracking system for box type solar cookers. Sol Energy 2015;120:100–103. [CrossRef]
  • [24] Franco J, Cadena C, Saravia L. Multiple use communal solar cookers. Sol Energy 2004;77:217–223. [CrossRef]
  • [25] Funk PA, Larson DL. Parametric model of solar cooker performance. Sol Energy 1998;62:63–68. [CrossRef]
  • [26] Funk PA. Evaluating the international standard procedure for testing solar cookers and reporting performance. Sol Energy 2000;68:1–7. [CrossRef]
  • [27] Geddam S, Dinesh GK, Sivasankar T. Determination of thermal performance of a box type solar cooker. Sol Energy 2015;113:324–331. [CrossRef]
  • [28] Harmim A, Belhamel M, Boukar M, Amar M. Experimental investigation of a box–type solar cooker with a finned absorber plate. Energy 2010;35:3799–3802. [CrossRef]
  • [29] Harmim A, Boukar M. Experimental study of a double exposure solar cooker with finned cooking vessel. Sol Energy 2008;82:287–289. [CrossRef]
  • [30] Harmim A, Merzouk M, Boukar M, Amar M. Design and experimental testing of an innovative building–integrated box type solar cooker. Sol Energy 2013;98:422–433. [CrossRef]
  • [31] Harmim A, Merzouk M, Boukar M, Amar M. Mathematical modeling of a box–type solar cooker employing an asymmetric compound parabolic concentrator. Sol Energy 2012;86:1673–1682. [CrossRef]
  • [32] Harmim A, Merzouk M, Boukar M, Amar M. Performance study of a box–type solar cooker employing an asymmetric compound parabolic concentrator. Energy 2012;47:471–480. [CrossRef]
  • [33] Harmim A, Merzouk M, Boukar M, Amar M. Solar cooking development in Algerian Sahara: Towards a socially suitable solar cooker. Renew Sustain Energy Rev 2014;37:207–214. [CrossRef]
  • [34] Hassan QF. Internet of things A to Z: technologies and applications. 1st ed. New Jersey: John Wiley and Sons; 2018. [CrossRef]
  • [35] Herez A, Ramadan M, Khaled M. Review on solar cooker systems: Economic and environmental study for different Lebanese scenarios. Renew Sustain Energy Rev 2018;81:421–432. [CrossRef]
  • [36] Heydari A, Forati M, Khatam S. Thermal performance investigation of a hybrid solar air heater applied in a solar dryer using thermodynamic modeling. J Therm Eng 2021;7:715–730. [CrossRef]
  • [37] Hussein HM, El–Ghetany HH, Nada SA. Experimental investigation of novel indirect solar cooker with indoor PCM thermal storage and cooking unit. Energy Convers Manag 2008;49:2237–2246. [CrossRef]
  • [38] Indora S, Kandpal TC. Institutional cooking with solar energy: A review. Renew Sustain Energy Rev 2018;84:131–154. [CrossRef]
  • [39] John G, König–Haagen A, King’ondu CK, Brüggemann D, Nkhonjera L. Galactitol as phase change material for latent heat storage of solar cookers: Investigating thermal behavior in bulk cycling. Sol Energy 2015;119:415–421. [CrossRef]
  • [40] Joshi SB, Jani AR. Design, development and testing of a small scale hybrid solar cooker. Sol Energy 2015;122:148–155. [CrossRef]
  • [41] Kahsay MB, Paintin J, Mustefa A, Haileselassie A, Tesfay M, Gebray B. Theoretical and experimental comparison of box solar cookers with and without internal reflector. Energy Procedia 2014;57:1613–1622. [CrossRef]
  • [42] Kumar N, Agravat S, Chavda T, Mistry HN. Design and development of efficient multipurpose domestic solar cookers/dryers. Renew Energy 2008;33:2207–2211. [CrossRef]
  • [43] Kumar N, Chavda T, Mistry HN. A truncated pyramid non–tracking type multipurpose domestic solar cooker/hot water system. Appl Energy 2010;87:471–477. [CrossRef]
  • [44] Kumar N, Vishwanath G, Gupta A. An exergy based unified test protocol for solar cookers of different geometries. Renew Energy 2012;44:457–462. [CrossRef]
  • [45] Kumar N, Vishwanath G, Gupta A. An exergy–based test protocol for truncated pyramid type solar box cooker. Energy 2011;36:5710–5715. [CrossRef]
  • [46] Kumar R, Adhikari RS, Garg HP, Kumar A. Thermal performance of a solar pressure cooker based on evacuated tube solar collector. Appl Therm Eng 2001;21:1699–1706. [CrossRef]
  • [47] Kumar S. Estimation of design parameters for thermal performance evaluation of box–type solar cooker. Renew Energy 2005;30:1117–1126. [CrossRef]
  • [48] Kumar S. Thermal performance study of box type solar cooker from heating characteristic curves. Energy Convers Manag 2004;45:127–139. [CrossRef]
  • [49] Kurt H, Atik K, Özkaymak M, Recebli Z. Thermal performance parameters estimation of hot box type solar cooker by using artificial neural network. Int J Therm Sci 2008;47:192–200. [CrossRef]
  • [50] Lahkar PJ, Samdarshi SK. A review of the thermal performance parameters of box type solar cookers and identification of their correlations. Renew Sustain Energy Rev 2010;14:1615–1621. [CrossRef]
  • [51] Mahavar S, Rajawat P, Punia RC, Sengar N, Dashora P. Evaluating the optimum load range for box–type solar cookers. Renew Energy 2015;74:187–194. [CrossRef]
  • [52] Mahavar S, Sengar N, Dashora P. Analytical model for electric back–up power estimation of solar box type cookers. Energy 2017;134:871–881. [CrossRef]
  • [53] Mahavar S, Sengar N, Rajawat P, Verma M, Dashora P. Design development and performance studies of a novel single family solar cooker. Renew Energy 2012;47:67–76. [CrossRef]
  • [54] Mawire A, Phori A, Taole S. Performance comparison of thermal energy storage oils for solar cookers during charging. Appl Therm Eng 2014;73:1323–1331. [CrossRef]
  • [55] Mirdha US, Dhariwal SR. Design optimization of solar cooker. Renew Energy 2008;33:530–544.
  • [56] Mullick SC, Kandpal TC, Saxena AK. Thermal test procedure for box–type solar cookers. Solar Energy 1987;39:353–360. [CrossRef]
  • [57] Muthusivagami RM, Velraj R, Sethumadhavan R. Solar cookers with and without thermal storage—a review. Renew Sustain Energy Rev 2010;14:691–701. [CrossRef]
  • [58] Nahar NM, Gupta JP, Sharma P. A novel solar cooker for animal feed. Energy Convers Manag 1996;37:77–80. [CrossRef]
  • [59] Nahar NM, Gupta JP, Sharma P. Performance and testing of an improved community size solar cooker. Energy Convers Manag 1993;34:327–333. [CrossRef]
  • [60] Nahar NM. Design, development and testing of a double reflector hot box solar cooker with a transparent insulation material. Renew Energy 2001;23:167–179. [CrossRef]
  • [61] Nahar NM. Performance and testing of a hot box storage solar cooker. Energy Convers Manag 2003;44:1323–1331. [CrossRef]
  • [62] Nahar NM. Performance and testing of an improved hot box solar cooker. Energy Convers Manag 1990;30:9–16. [CrossRef]
  • [63] Nayak J, Agrawal M, Mishra S, Sahoo SS, Swain RK, Mishra A. Combined heat loss analysis of trapezoidal shaped solar cooker cavity using computational approach. Case Stud Therm Eng 2018;12:94–103. [CrossRef]
  • [64] Nayak J, Sahoo SS, Swain RK, Mishra A, Chakrabarty S. Construction of box type solar cooker and its adaptability to industrialized zone. Mater Today Proc 2017;4:12565–12570. [CrossRef]
  • [65] Negi BS, Purohit I. Experimental investigation of a box type solar cooker employing a non–tracking concentrator. Energy Convers Manag 2005;46:577–604. [CrossRef]
  • [66] Nkhonjera L, Bello–Ochende T, John G, King’ondu CK. A review of thermal energy storage designs, heat storage materials and cooking performance of solar cookers with heat storage. Renew Sustain Energy Rev 2017;75:157–167. [CrossRef]
  • [67] Panwar NL, Kothari S, Kaushik SC. Techno–economic evaluation of masonry type animal feed solar cooker in rural areas of an Indian state Rajasthan. Energy Policy 2013;52:583–586. [CrossRef]
  • [68] Patil S, Vijayalashmi M, Tapaskar R. Solar energy monitoring system using IOT. Indian J Sci Res 2017;149–156. [CrossRef]
  • [69] Prabhu V, Thomas DR, Nancy W. Analysis of solar cooking thermal images using Fuzzy technique in Image processing. Int J Pure Appl Mathematics 2017;117:133–137.
  • [70] Prakash O, Laguri V, Pandey A, Kumar A, Kumar A. Review on various modelling techniques for the solar dryers. Renew Sustain Energy Rev 2016;62:396–417. [CrossRef]
  • [71] Purohit I, Purohit P. Instrumentation error analysis of a box–type solar cooker. Energy Convers Manag 2009;50:365–375. [CrossRef]
  • [72] Purohit I. Testing of solar cookers and evaluation of instrumentation error. Renew Energy 2010;35:2053–2064. [CrossRef]
  • [73] Rao AN, Subramanyam S. Solar cookers––part I: cooking vessel on lugs. Sol Energy 2003;75:181–185. [CrossRef]
  • [74] Rao AN, Subramanyam S. Solar cookers—part–II—cooking vessel with central annular cavity. Sol Energy 2005;78:19–22. [CrossRef]
  • [75] Reddy AR, Rao AN. Prediction and experimental verification of performance of box type solar cooker–Part I. Cooking vessel with central cylindrical cavity. Energy Convers Manag 2007;48:2034–2043. [CrossRef]
  • [76] Sagade AA, Samdarshi SK, Panja PS. Experimental determination of effective concentration ratio for solar box cookers using thermal tests. Sol Energy 2018;159:984–991. [CrossRef]
  • [77] Saxena A, Agarwal N. Performance characteristics of a new hybrid solar cooker with air duct. Sol Energy 2018;159:628–637. [CrossRef]
  • [78] Saxena A, Pandey SP, Srivastav G. A thermodynamic review on solar box type cookers. Renew Sustain Energy Rev 2011;15:3301–3318. [CrossRef]
  • [79] Sethi VP, Pal DS, Sumathy K. Performance evaluation and solar radiation capture of optimally inclined box type solar cooker with parallelepiped cooking vessel design. Energy Convers Manag 2014;81:231–241. [CrossRef]
  • [80] Sharaf E. A new design for an economical, highly efficient, conical solar cooker. Renew Energy 2002;27:599–619. [CrossRef]
  • [81] Sharma A, Chen CR, Murty VV, Shukla A. Solar cooker with latent heat storage systems: A review. Renew Sustain Energy Rev 2009;13:1599–1605. [CrossRef]
  • [82] Sharma SD, Buddhi D, Sawhney RL, Sharma A. Design, development and performance evaluation of a latent heat storage unit for evening cooking in a solar cooker. Energy Convers Manag 2000;41:1497–1508. [CrossRef]
  • [83] Singh P, Gaur MK. A review on thermal analysis of hybrid greenhouse solar dryer (HGSD). J Therm Eng 2021;8:103–119. [CrossRef]
  • [84] Soria–Verdugo A. Experimental analysis and simulation of the performance of a box–type solar cooker. Energy Sustain Develop 2015;29:65–71. [CrossRef]
  • [85] Sun Y, Bie R, Thomas P, Cheng X. New advances in data, information, and knowledge in the Internet of things. Pers Ubiquitous Comput 2016;20:653–655. [CrossRef]
  • [86] Talari S, Shafie–Khah M, Siano P, Loia V, Tommasetti A, Catalão JP. A review of smart cities based on the internet of things concept. Energies 2017;10:421. [CrossRef]
  • [87] Terres H, Lizardi A, López R, Vaca M, Chávez S. Mathematical model to study solar cookers box–type with internal reflectors. Energy Procedia 2014;57:1583–1592. [CrossRef]
  • [88] Tripathy PP, Kumar S. Neural network approach for food temperature prediction during solar drying. Int J Therm Sci 2009;48:1452–1459. [CrossRef]
  • [89] Wareham RC. Parameters for a solar cooker program. Renewable Energy 1997;10:217–219. [CrossRef]
  • [90] Weldu A, Zhao L, Deng S, Mulugeta N, Zhang Y, Nie X, Xu W. Performance evaluation on solar box cooker with reflector tracking at optimal angle under Bahir Dar climate. Sol Energy 2019;180:664–677. [CrossRef]
  • [91] Wentzel M, Pouris A. The development impact of solar cookers: a review of solar cooking impact research in South Africa. Energy Policy 2007;35:1909–1919. [CrossRef]
  • [92] International Energy Agency. World Energy Statistics 2017, International Energy Agency (IEA), Paris, 2017.
  • [93] Yadav AS, Bhagoria JL. Heat transfer and fluid flow analysis of solar air heater: A review of CFD approach. Renew Sustain Energy Rev 2013;23:60–79. [CrossRef]
  • [94] Yettou F, Gama A, Panwar NL, Azoui B, Malek A. Receiver temperature maps of parabolic collector used for solar food cooking application in Algeria. J Therm Eng 2018;4:1656–1667. [CrossRef]
There are 94 citations in total.

Details

Primary Language English
Subjects Thermodynamics and Statistical Physics
Journal Section Articles
Authors

Satish Kumar Dewangan This is me 0000-0001-6698-3247

Publication Date August 4, 2023
Submission Date November 1, 2021
Published in Issue Year 2023 Volume: 9 Issue: 4

Cite

APA Dewangan, S. K. (2023). Performance parameters, design considerations, social adoption, and computational techniques for solar box cooker development: current status and future possibilities. Journal of Thermal Engineering, 9(4), 921-941. https://doi.org/10.18186/thermal.1335894
AMA Dewangan SK. Performance parameters, design considerations, social adoption, and computational techniques for solar box cooker development: current status and future possibilities. Journal of Thermal Engineering. August 2023;9(4):921-941. doi:10.18186/thermal.1335894
Chicago Dewangan, Satish Kumar. “Performance Parameters, Design Considerations, Social Adoption, and Computational Techniques for Solar Box Cooker Development: Current Status and Future Possibilities”. Journal of Thermal Engineering 9, no. 4 (August 2023): 921-41. https://doi.org/10.18186/thermal.1335894.
EndNote Dewangan SK (August 1, 2023) Performance parameters, design considerations, social adoption, and computational techniques for solar box cooker development: current status and future possibilities. Journal of Thermal Engineering 9 4 921–941.
IEEE S. K. Dewangan, “Performance parameters, design considerations, social adoption, and computational techniques for solar box cooker development: current status and future possibilities”, Journal of Thermal Engineering, vol. 9, no. 4, pp. 921–941, 2023, doi: 10.18186/thermal.1335894.
ISNAD Dewangan, Satish Kumar. “Performance Parameters, Design Considerations, Social Adoption, and Computational Techniques for Solar Box Cooker Development: Current Status and Future Possibilities”. Journal of Thermal Engineering 9/4 (August 2023), 921-941. https://doi.org/10.18186/thermal.1335894.
JAMA Dewangan SK. Performance parameters, design considerations, social adoption, and computational techniques for solar box cooker development: current status and future possibilities. Journal of Thermal Engineering. 2023;9:921–941.
MLA Dewangan, Satish Kumar. “Performance Parameters, Design Considerations, Social Adoption, and Computational Techniques for Solar Box Cooker Development: Current Status and Future Possibilities”. Journal of Thermal Engineering, vol. 9, no. 4, 2023, pp. 921-4, doi:10.18186/thermal.1335894.
Vancouver Dewangan SK. Performance parameters, design considerations, social adoption, and computational techniques for solar box cooker development: current status and future possibilities. Journal of Thermal Engineering. 2023;9(4):921-4.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering