Research Article
BibTex RIS Cite
Year 2024, Volume: 10 Issue: 1, 36 - 49, 31.01.2024
https://doi.org/10.18186/thermal.1363990

Abstract

References

  • REFERENCES
  • [1] Gao F, Blunier B, Miraoui A. Proton Exchange Membrane Fuel Cells Modeling. New York: John Wiley & Sons; 2013. [CrossRef]
  • [2] Ozdogan M. Numerical investigation of effects of working conditions on performance of pem fuel cell. J Therm Eng 2019;5:1424. [CrossRef]
  • [3] Lakshminarayanan V, Karthikeyan P. Performance enhancement of interdigitated flow channel of PEMFC by scaling up study. Energy Sources A: Recovery Util Environ Eff 2020;42:17851796. [CrossRef]
  • [4] Pietrosemoli L, Rodríguez-Monroy C. The Venezuelan energy crisis: Renewable energies in the transition towards sustainability. Renew Sustain Energy Rev 2019;105:415426. [CrossRef]
  • [5] Bouraiou A, Necaibia A, Boutasseta N, Mekhilef S, Dabou R, Ziane A, et al. Status of renewable energy potential and utilization in Algeria. J Clean Prod 2020;246:119011. [CrossRef]
  • [6] Kerkoub Y. Etude de l’effet des paramètres géométriques et opérationnels sur les phénomènes de transport et sur la performance d’une pile à combustible (doctorial thesis). Algeria : University Mohamed Boudiaf - M'sila ; 2019.
  • [7] Taner T. A flow channel with nafion membrane material design of PEM fuel cell. J Therm Eng 2019;5(5):456-68. [CrossRef]
  • [8] Spiegel C. PEM Fuel Cell Modeling and Simulation Using MATLAB. Amsterdam: Elsevier; 2011.
  • [9] Taner T. The micro-scale modeling by experimental study in PEM fuel cell. J Therm Eng 2017;3:15151526. [CrossRef]
  • [10] Zakaria IA, Azmin ASMA, Khalid S, Hamzah WAW, Mohamed WANW. Numerical analysis of aluminium oxide and silicon dioxide nanofluids in serpentine cooling plate of PEMFC. J Adv Res Fluid Mech Therm Sci 2020;72:6779. [CrossRef]
  • [11] Khalid S, Zakaria I, Azmi W, Mohamed W. Thermal–electrical–hydraulic properties of Al2O3–SiO2 hybrid nanofluids for advanced PEM fuel cell thermal management. J Therm Anal Calorim 2021;143:15551567. [CrossRef]
  • [12] Arear W, Zeiny A, Al-Baghdadi MAS. Influence of Al2O3-Water Nanofluid Coolant on Thermal Performance of Hydrogen PEM Fuel Cell Stacks. Conference Influence of Al2O3-Water Nanofluid Coolant on Thermal Performance of Hydrogen PEM Fuel Cell Stacks. IOP Conference Series: Materials Science and Engineering, Volume 1094, 1st International Conference on Sustainable Engineering and Technology (INTCSET 2020) 15th-16th December 2020, Baghdad, Iraq. [CrossRef]
  • [13] Johari MNI, Zakaria IA, Azmi W, Mohamed W. Green bio glycol Al2O3-SiO2 hybrid nanofluids for PEMFC: The thermal-electrical-hydraulic perspectives. Int Commun Heat Mass Transf 2022;131:105870. [CrossRef]
  • [14] Kordi M, Moghadam AJ, Afshari E. Effects of cooling passages and nanofluid coolant on thermal performance of polymer electrolyte membrane fuel cells. Journal of Electrochem Energy Convers Storage 2019;16:031001. [CrossRef]
  • [15] Afshari E, Ziaei-Rad M, Jahantigh N. Analytical and numerical study on cooling flow field designs performance of PEM fuel cell with variable heat flux. Mod Phys Lett B 2016;30:1650155. [CrossRef]
  • [16] Saeedan M, Afshari E, Ziaei-Rad M. Modeling and optimization of turbulent flow through PEM fuel cell cooling channels filled with metal foam-a comparison of water and air cooling systems. Energy Convers Manag 2022;258:115486. [CrossRef]
  • [17] Mahdavi A, Ranjbar AA, Gorji M, Rahimi-Esbo M. Numerical simulation based design for an innovative PEMFC cooling flow field with metallic bipolar plates. Appl Energy 2018;228:656666. [CrossRef]
  • [18] Idris MS, Zakaria IA, Hamzah WAW, Mohamed WANW. The characteristics of hybrid Al2O3: SiO2 nanofluids in cooling plate of PEMFC. J Adv Res Fluid Mech Therm Sci 2021;88:96109. [CrossRef]
  • [19] Ogura N, Kawamura Y, Yahata T, Yamamoto K, Terazaki T, Nomura M, et al. Small PEMFC system with multi-layered microreactor. IEEJ Trans Sens Micromachines 2006;126:5459. [CrossRef]
  • [20] Chugh S, Chaudhari C, Sonkar K, Sharma A, Kapur G, Ramakumar S. Experimental and modelling studies of low temperature PEMFC performance. International Journal of Hydrogen Energy. 2020;45:88668874. [CrossRef]
  • [21] Lu J, Wei G, Zhu F, Yan X, Zhang J. Pressure effect on the PEMFC performance. Fuel Cells 2019;19:211220. [CrossRef]
  • [22] Chun JH, Park KT, Jo DH, Kim SG, Kim SH. Numerical modeling and experimental study of the influence of GDL properties on performance in a PEMFC. Int J Hydrog Energy 2011;36:18371845. [CrossRef]
  • [23] Vijayakrishnan MK, Palaniswamy K, Ramasamy J, Kumaresan T, Manoharan K, Rajagopal TKR, et al. Numerical and experimental investigation on 25 cm2 and 100 cm2 PEMFC with novel sinuous flow field for effective water removal and enhanced performance. International Journal of Hydrog Energy 2020;45:78487862. [CrossRef]
  • [24] Zakaria I, Azmi W, Mamat A, Mamat R, Saidur R, Talib SA, et al. Thermal analysis of Al2O3–water ethylene glycol mixture nanofluid for single PEM fuel cell cooling plate: an experimental study. Int J Hydrog Energy 2016;41:50965112. [CrossRef]
  • [25] Afshari E, Ziaei-Rad M, Dehkordi MM. Numerical investigation on a novel zigzag-shaped flow channel design for cooling plates of PEM fuel cells. J Energy Inst 2017;90:752763. [CrossRef]
  • [26] Baek SM, Yu SH, Nam JH, Kim C-J. A numerical study on uniform cooling of large-scale PEMFCs with different coolant flow field designs. Appl Therm Eng 2011;31:14271434. [CrossRef]
  • [27] Li S, Sundén B. Numerical study on thermal performance of non-uniform flow channel designs for cooling plates of PEM fuel cells. Numerical Heat Tr A - Appl 2018;74:917930. [CrossRef]
  • [28] Authayanun S, Saebea D, Patcharavorachot Y, Assabumrungrat S, Arpornwichanop A. Optimal design of different reforming processes of the actual composition of bio-oil for high-temperature PEMFC systems. Int J Hydrog Energy 2017;42:19771988. [CrossRef]
  • [29] Hashmi SMH. Cooling strategies for PEM FC stacks (dissertation thesis). Hamburg: Universität der Bundeswehr Hamburg; 2010. [German]

Critical investigation of microchannel design effect on thermal performances of a PEM fuel cell

Year 2024, Volume: 10 Issue: 1, 36 - 49, 31.01.2024
https://doi.org/10.18186/thermal.1363990

Abstract

A major challenge for improving the characteristics of fuel cells is to obtain uniform tempera-ture distribution during its operation, in which a major part of hydrogen chemical energy is converted to heat. If not properly exhausted, this exothermic chemical reaction causes over-heating in the polymer electrolyte membrane fuel cells (PEMFCs), leading to a reduction in their performance. Hence, analyzing different techniques for PEMFCs cooling may be nec-essary for this kind of energy systems. In this study, four microchannel design effect on alu-minum oxide (Al2O3) nanofluids thermal behavior in cooling plates with 1400×1800 mm2 was investigated using computational fluid dynamic (CFD) simulation. The performances of proposed microchannel designs were evaluated in terms of maximum and uniformity tem-perature. The suggested study has been validated by available published results from previous research studies. The obtained results depicted that the maximum temperatures have been 305.3K and 305.5K for S- character flow field and two stages coolant flow field microchannel designs, respectively. The results revealed that the multi-flow plate designs might greatly en-hance the performance of PEMFCs in terms of temperature distribution in the cooling plate when compared to standard flow field designs. Another important finding was that the two stages microchannel and S-design are more thermal stable compared with other microchan-nels.

References

  • REFERENCES
  • [1] Gao F, Blunier B, Miraoui A. Proton Exchange Membrane Fuel Cells Modeling. New York: John Wiley & Sons; 2013. [CrossRef]
  • [2] Ozdogan M. Numerical investigation of effects of working conditions on performance of pem fuel cell. J Therm Eng 2019;5:1424. [CrossRef]
  • [3] Lakshminarayanan V, Karthikeyan P. Performance enhancement of interdigitated flow channel of PEMFC by scaling up study. Energy Sources A: Recovery Util Environ Eff 2020;42:17851796. [CrossRef]
  • [4] Pietrosemoli L, Rodríguez-Monroy C. The Venezuelan energy crisis: Renewable energies in the transition towards sustainability. Renew Sustain Energy Rev 2019;105:415426. [CrossRef]
  • [5] Bouraiou A, Necaibia A, Boutasseta N, Mekhilef S, Dabou R, Ziane A, et al. Status of renewable energy potential and utilization in Algeria. J Clean Prod 2020;246:119011. [CrossRef]
  • [6] Kerkoub Y. Etude de l’effet des paramètres géométriques et opérationnels sur les phénomènes de transport et sur la performance d’une pile à combustible (doctorial thesis). Algeria : University Mohamed Boudiaf - M'sila ; 2019.
  • [7] Taner T. A flow channel with nafion membrane material design of PEM fuel cell. J Therm Eng 2019;5(5):456-68. [CrossRef]
  • [8] Spiegel C. PEM Fuel Cell Modeling and Simulation Using MATLAB. Amsterdam: Elsevier; 2011.
  • [9] Taner T. The micro-scale modeling by experimental study in PEM fuel cell. J Therm Eng 2017;3:15151526. [CrossRef]
  • [10] Zakaria IA, Azmin ASMA, Khalid S, Hamzah WAW, Mohamed WANW. Numerical analysis of aluminium oxide and silicon dioxide nanofluids in serpentine cooling plate of PEMFC. J Adv Res Fluid Mech Therm Sci 2020;72:6779. [CrossRef]
  • [11] Khalid S, Zakaria I, Azmi W, Mohamed W. Thermal–electrical–hydraulic properties of Al2O3–SiO2 hybrid nanofluids for advanced PEM fuel cell thermal management. J Therm Anal Calorim 2021;143:15551567. [CrossRef]
  • [12] Arear W, Zeiny A, Al-Baghdadi MAS. Influence of Al2O3-Water Nanofluid Coolant on Thermal Performance of Hydrogen PEM Fuel Cell Stacks. Conference Influence of Al2O3-Water Nanofluid Coolant on Thermal Performance of Hydrogen PEM Fuel Cell Stacks. IOP Conference Series: Materials Science and Engineering, Volume 1094, 1st International Conference on Sustainable Engineering and Technology (INTCSET 2020) 15th-16th December 2020, Baghdad, Iraq. [CrossRef]
  • [13] Johari MNI, Zakaria IA, Azmi W, Mohamed W. Green bio glycol Al2O3-SiO2 hybrid nanofluids for PEMFC: The thermal-electrical-hydraulic perspectives. Int Commun Heat Mass Transf 2022;131:105870. [CrossRef]
  • [14] Kordi M, Moghadam AJ, Afshari E. Effects of cooling passages and nanofluid coolant on thermal performance of polymer electrolyte membrane fuel cells. Journal of Electrochem Energy Convers Storage 2019;16:031001. [CrossRef]
  • [15] Afshari E, Ziaei-Rad M, Jahantigh N. Analytical and numerical study on cooling flow field designs performance of PEM fuel cell with variable heat flux. Mod Phys Lett B 2016;30:1650155. [CrossRef]
  • [16] Saeedan M, Afshari E, Ziaei-Rad M. Modeling and optimization of turbulent flow through PEM fuel cell cooling channels filled with metal foam-a comparison of water and air cooling systems. Energy Convers Manag 2022;258:115486. [CrossRef]
  • [17] Mahdavi A, Ranjbar AA, Gorji M, Rahimi-Esbo M. Numerical simulation based design for an innovative PEMFC cooling flow field with metallic bipolar plates. Appl Energy 2018;228:656666. [CrossRef]
  • [18] Idris MS, Zakaria IA, Hamzah WAW, Mohamed WANW. The characteristics of hybrid Al2O3: SiO2 nanofluids in cooling plate of PEMFC. J Adv Res Fluid Mech Therm Sci 2021;88:96109. [CrossRef]
  • [19] Ogura N, Kawamura Y, Yahata T, Yamamoto K, Terazaki T, Nomura M, et al. Small PEMFC system with multi-layered microreactor. IEEJ Trans Sens Micromachines 2006;126:5459. [CrossRef]
  • [20] Chugh S, Chaudhari C, Sonkar K, Sharma A, Kapur G, Ramakumar S. Experimental and modelling studies of low temperature PEMFC performance. International Journal of Hydrogen Energy. 2020;45:88668874. [CrossRef]
  • [21] Lu J, Wei G, Zhu F, Yan X, Zhang J. Pressure effect on the PEMFC performance. Fuel Cells 2019;19:211220. [CrossRef]
  • [22] Chun JH, Park KT, Jo DH, Kim SG, Kim SH. Numerical modeling and experimental study of the influence of GDL properties on performance in a PEMFC. Int J Hydrog Energy 2011;36:18371845. [CrossRef]
  • [23] Vijayakrishnan MK, Palaniswamy K, Ramasamy J, Kumaresan T, Manoharan K, Rajagopal TKR, et al. Numerical and experimental investigation on 25 cm2 and 100 cm2 PEMFC with novel sinuous flow field for effective water removal and enhanced performance. International Journal of Hydrog Energy 2020;45:78487862. [CrossRef]
  • [24] Zakaria I, Azmi W, Mamat A, Mamat R, Saidur R, Talib SA, et al. Thermal analysis of Al2O3–water ethylene glycol mixture nanofluid for single PEM fuel cell cooling plate: an experimental study. Int J Hydrog Energy 2016;41:50965112. [CrossRef]
  • [25] Afshari E, Ziaei-Rad M, Dehkordi MM. Numerical investigation on a novel zigzag-shaped flow channel design for cooling plates of PEM fuel cells. J Energy Inst 2017;90:752763. [CrossRef]
  • [26] Baek SM, Yu SH, Nam JH, Kim C-J. A numerical study on uniform cooling of large-scale PEMFCs with different coolant flow field designs. Appl Therm Eng 2011;31:14271434. [CrossRef]
  • [27] Li S, Sundén B. Numerical study on thermal performance of non-uniform flow channel designs for cooling plates of PEM fuel cells. Numerical Heat Tr A - Appl 2018;74:917930. [CrossRef]
  • [28] Authayanun S, Saebea D, Patcharavorachot Y, Assabumrungrat S, Arpornwichanop A. Optimal design of different reforming processes of the actual composition of bio-oil for high-temperature PEMFC systems. Int J Hydrog Energy 2017;42:19771988. [CrossRef]
  • [29] Hashmi SMH. Cooling strategies for PEM FC stacks (dissertation thesis). Hamburg: Universität der Bundeswehr Hamburg; 2010. [German]
There are 30 citations in total.

Details

Primary Language English
Subjects Thermodynamics and Statistical Physics
Journal Section Articles
Authors

Khaoula Khelaıfa This is me 0000-0001-6333-0881

Abdelmalek Atia 0000-0003-0902-1345

Hocine Ben Moussa This is me 0000-0003-1760-1657

Ammar Naroura This is me 0009-0006-9322-9462

Publication Date January 31, 2024
Submission Date September 10, 2022
Published in Issue Year 2024 Volume: 10 Issue: 1

Cite

APA Khelaıfa, K., Atia, A., Moussa, H. B., Naroura, A. (2024). Critical investigation of microchannel design effect on thermal performances of a PEM fuel cell. Journal of Thermal Engineering, 10(1), 36-49. https://doi.org/10.18186/thermal.1363990
AMA Khelaıfa K, Atia A, Moussa HB, Naroura A. Critical investigation of microchannel design effect on thermal performances of a PEM fuel cell. Journal of Thermal Engineering. January 2024;10(1):36-49. doi:10.18186/thermal.1363990
Chicago Khelaıfa, Khaoula, Abdelmalek Atia, Hocine Ben Moussa, and Ammar Naroura. “Critical Investigation of Microchannel Design Effect on Thermal Performances of a PEM Fuel Cell”. Journal of Thermal Engineering 10, no. 1 (January 2024): 36-49. https://doi.org/10.18186/thermal.1363990.
EndNote Khelaıfa K, Atia A, Moussa HB, Naroura A (January 1, 2024) Critical investigation of microchannel design effect on thermal performances of a PEM fuel cell. Journal of Thermal Engineering 10 1 36–49.
IEEE K. Khelaıfa, A. Atia, H. B. Moussa, and A. Naroura, “Critical investigation of microchannel design effect on thermal performances of a PEM fuel cell”, Journal of Thermal Engineering, vol. 10, no. 1, pp. 36–49, 2024, doi: 10.18186/thermal.1363990.
ISNAD Khelaıfa, Khaoula et al. “Critical Investigation of Microchannel Design Effect on Thermal Performances of a PEM Fuel Cell”. Journal of Thermal Engineering 10/1 (January 2024), 36-49. https://doi.org/10.18186/thermal.1363990.
JAMA Khelaıfa K, Atia A, Moussa HB, Naroura A. Critical investigation of microchannel design effect on thermal performances of a PEM fuel cell. Journal of Thermal Engineering. 2024;10:36–49.
MLA Khelaıfa, Khaoula et al. “Critical Investigation of Microchannel Design Effect on Thermal Performances of a PEM Fuel Cell”. Journal of Thermal Engineering, vol. 10, no. 1, 2024, pp. 36-49, doi:10.18186/thermal.1363990.
Vancouver Khelaıfa K, Atia A, Moussa HB, Naroura A. Critical investigation of microchannel design effect on thermal performances of a PEM fuel cell. Journal of Thermal Engineering. 2024;10(1):36-49.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering