Research Article
BibTex RIS Cite

Evrende Moleküler Bölgeler ve Astrokimya

Year 2022, Volume: 3 Issue: 3, 61 - 67, 31.12.2022
https://doi.org/10.55064/tjaa.1038463

Abstract

1940’lı yıllardan beri yıldızlararası ortamlarda 13 atomlu molekül ve 60 ve 70 karbonlu nano kafesler dahil yüzlerce molekül keşfedilmiştir. Teleskoplarda yüksek çözünürlüğün elde edilmesi, uyarlanmış optik teknolojilerinin kullanımı, IR, mm-altı ve radyo teleskoplarının sayısının artması, moleküllerin bıraktığı parmak izlerini okumaya önemli katkılar sağlamakta ve astrokimya için çok önemli bir çağı başlatmaktadır. Dünya atmosferindeki su çizgilerinin yakın-IR bölgeyi kalabalıklaştırması uzay teleskoplarından elde edilen tayflar sayesinde ortadan kalktığı için, bu bölgedeki çizgi geçişlerini okumak kolaylaşmıştır. Fizik, kimya ve astronominin birlikte çalıştığı interdisipliner bir alan olan astrokimya, kozmik ortamda elde edilen gözlem sonuçlarını ilgili koşullardaki labaratuvar modelleriyle tutarlı hale getirmekle ilgilenir. Moleküler reaksiyonların ihtiyaç duyduğu enerjiyi başlatan koşullar, evrendeki madde dokusunun evrim süreçlerindeki dinamikleri ile iç içedir. Yıldızlararası ortam maddesi, yıldızların kütle atımı ile ortama gaz aktarımı ve nükleer yanmaların külleriyle birlikte sürekli yenilenir. Kozmik ortamda moleküler reaksiyonların oluşması, gazları iyonlaştırabilen enerji koşulları sayesinde mümkündür. Moleküler bulutlarda madde yoğunluğu ve sıcaklık düşük değerlerde olmasına rağmen, gözlemlenebilir miktarlarda karmaşık moleküller sentezlenebilmesi uzun ömürleri ve devasa büyüklükleri sayesinde mümkündür. Döteryum bolluğu bulunan ortamlar, moleküllerin elektronik, dönme ve titreşimsel geçişleri, manyetik yarılma ve spin seçilim kuralları gibi olgular, moleküler bolluk hesaplamaları için kullanılabilmektedir.

Thanks

Ege Üniversitesi Gözlemevi Çalıştay Ekibi

References

  • Bergin E. A., Neufeld D. A., Kleiner S. C., Wang Z., Melnick G. J.,2001, Comet C/1999 T1 (McNaught-Hartley, IAU Circ., 7596, 3, ADS
  • Blum J., et al., 2002, Physico-chemistry of ices in space: from Earth to the ISS to the solar system and beyond, in 34th COSPAR Scientific Assembly. p. 2433
  • Cherchneff I., 2012, The inner wind of IRC+10216 revisited: new exotic chemistry and diagnostic for dust condensation in carbon stars, A&A, 545, A12
  • Crutcher R. M., Hakobian N., Troland T. H., 2009, Testing Magnetic Star Formation Theory, ApJ, 692, 844
  • Ehrenfreund P., 2002, From dark clouds to comets, in 34th COSPAR Scientific Assembly. p. 2863
  • Fraser H. J., McCoustra M. R. S., Williams D. A., 2002, Astrochemistry : The molecular universe, Astronomyand Geophysics, 43, 2.10
  • Geballe T. R., Oka T., 1996, Detection of H3+ in interstellar space, Nature, 384, 334
  • Gibb E. L., et al., 2000, An Inventory of Interstellar Ices toward the Embedded Protostar W33A, ApJ, 536, 347
  • Kurtz S., Cesaroni R., Churchwell E., Hofner P., Walmsley C. M.,2000, Hot Molecular Cores and the Earliest Phases of High-Mass Star Formation, in Mannings V., Boss A. P., Russell S. S., eds, Protostarsand Planets IV. pp 299–326
  • Lis D. C., Gerin M., Phillips T. G., Motte F., 2002, The Role of Outflows and C Shocks in the Strong Deuteration of L1689N, ApJ, 569, 322
  • Loinard L., Lequeux J., Tilanus R. P. T., Lagage P. O., 2003, inArthur J., Henney W. J., eds, Revista Mexicana de Astronomiay Astrofisica Conference Series Vol. 15, Revista Mexicana deAstronomia y Astrofisica Conference Series. pp 267–269
  • Maret S., et al., 2004, Comet C/1999 T1 (McNaught-Hartley, A&A, 416, 577
  • Millar T. J., 2015, Astrochemistry}, Plasma Sources Science Technology, 24, 043001
  • Millar T. J., Hatchell J., 1998, Chemical models of hot molecular cores, Faraday Discussions, 109, 15
  • Papanastassiou D. A., Lee T., Wasserburg G. J., 1977, in DelsemmeA. H., ed., IAU Colloq. 39: Comets, Asteroids, Meteorites: Interrelations, Evolution and Origins. pp 343–349
  • Preibisch T., Balega Y. Y., Schertl D., Smith M. D., Weigelt G.,2001, High-resolution near-infrared study of the deeply embedded young stellar object S140 IRS 3, A&A, 378, 539
  • Roberts H., Millar T. J., 2007, A survey of [ D2CO] /[ H2CO] and [ N2D+] /[ N2H+] ratios towards protostellar cores, A&A, 471, 849
  • Schilke P., et al., 2014, Ubiquitous Argonium, ArH+, in the Diffuse Interstellar Medium, in 69th International Symposium on Molecular Spectroscopy. p. TF02, doi:10.15278/isms.2014.TF02
  • Sharp C. M., Huebner W. F., 1990, Molecular Equilibrium with Condensation, ApJS, 72, 417
  • Smith D., 2004, Basic Atomic and Molecular Spectroscopy. Von J. Michael Hollas, Angewandte Chemie, 116, 5229
  • Visser R., 2009, Chemical Evolution from Cores to Disks, PhD thesis
  • Ziurys L. M., 2006, Interstellar Chemistry Special Feature: The chemistry in circumstellar envelopes of evolved stars: Following the origin of the elements to the origin of life, Proceedings of the National Academy of Science,103, 12274
  • van Dishoeck E. F., 2014, Astrochemistry of dust, ice and gas: introduction and overview, Faraday Discussions, 168, 9,

Molecular Universe and Astrochemistry

Year 2022, Volume: 3 Issue: 3, 61 - 67, 31.12.2022
https://doi.org/10.55064/tjaa.1038463

Abstract

Since the 1940s, hundreds of molecules have been discovered in interstellar mediums, including molecules of 13 atoms and nanolattices of 60 and 70 carbons. Achieving high resolution in telescopes, the use of adapted optical technologies, and the increase in the number of IR, sub-mm and radio telescopes make important contributions to reading the fingerprints left by molecules and start a very important era for astrochemistry. Since the water lines crowding the near-IR region in the Earth's atmosphere are eliminated by the spectra obtained from space telescopes, it is easier to read the line crossings in this region. Astrochemistry, an interdisciplinary field in which physics, chemistry and astronomy work together, is concerned with making observations obtained in the cosmic environment consistent with laboratory models in the relevant conditions. The conditions that initiate the energy needed by molecular reactions are intertwined with the evolutionary processes of the dynamics of the material tissue in the universe. The interstellar medium is constantly replenished, along with the stellar mass ejection, gas transfer to the medium, and the ashes of nuclear combustion. The occurrence of molecular reactions in the cosmic environment is possible only with the energy conditions that can ionize gases. Although the matter density and temperature are low in molecular clouds, their long lifetimes and gigantic sizes make it possible to obtain data for the observable amounts of complex molecules. Environments with deuterium abundance, electronic, rotational and vibrational transitions of molecules, magnetic splitting and spin selection rules can be used for molecular abundance calculations.

References

  • Bergin E. A., Neufeld D. A., Kleiner S. C., Wang Z., Melnick G. J.,2001, Comet C/1999 T1 (McNaught-Hartley, IAU Circ., 7596, 3, ADS
  • Blum J., et al., 2002, Physico-chemistry of ices in space: from Earth to the ISS to the solar system and beyond, in 34th COSPAR Scientific Assembly. p. 2433
  • Cherchneff I., 2012, The inner wind of IRC+10216 revisited: new exotic chemistry and diagnostic for dust condensation in carbon stars, A&A, 545, A12
  • Crutcher R. M., Hakobian N., Troland T. H., 2009, Testing Magnetic Star Formation Theory, ApJ, 692, 844
  • Ehrenfreund P., 2002, From dark clouds to comets, in 34th COSPAR Scientific Assembly. p. 2863
  • Fraser H. J., McCoustra M. R. S., Williams D. A., 2002, Astrochemistry : The molecular universe, Astronomyand Geophysics, 43, 2.10
  • Geballe T. R., Oka T., 1996, Detection of H3+ in interstellar space, Nature, 384, 334
  • Gibb E. L., et al., 2000, An Inventory of Interstellar Ices toward the Embedded Protostar W33A, ApJ, 536, 347
  • Kurtz S., Cesaroni R., Churchwell E., Hofner P., Walmsley C. M.,2000, Hot Molecular Cores and the Earliest Phases of High-Mass Star Formation, in Mannings V., Boss A. P., Russell S. S., eds, Protostarsand Planets IV. pp 299–326
  • Lis D. C., Gerin M., Phillips T. G., Motte F., 2002, The Role of Outflows and C Shocks in the Strong Deuteration of L1689N, ApJ, 569, 322
  • Loinard L., Lequeux J., Tilanus R. P. T., Lagage P. O., 2003, inArthur J., Henney W. J., eds, Revista Mexicana de Astronomiay Astrofisica Conference Series Vol. 15, Revista Mexicana deAstronomia y Astrofisica Conference Series. pp 267–269
  • Maret S., et al., 2004, Comet C/1999 T1 (McNaught-Hartley, A&A, 416, 577
  • Millar T. J., 2015, Astrochemistry}, Plasma Sources Science Technology, 24, 043001
  • Millar T. J., Hatchell J., 1998, Chemical models of hot molecular cores, Faraday Discussions, 109, 15
  • Papanastassiou D. A., Lee T., Wasserburg G. J., 1977, in DelsemmeA. H., ed., IAU Colloq. 39: Comets, Asteroids, Meteorites: Interrelations, Evolution and Origins. pp 343–349
  • Preibisch T., Balega Y. Y., Schertl D., Smith M. D., Weigelt G.,2001, High-resolution near-infrared study of the deeply embedded young stellar object S140 IRS 3, A&A, 378, 539
  • Roberts H., Millar T. J., 2007, A survey of [ D2CO] /[ H2CO] and [ N2D+] /[ N2H+] ratios towards protostellar cores, A&A, 471, 849
  • Schilke P., et al., 2014, Ubiquitous Argonium, ArH+, in the Diffuse Interstellar Medium, in 69th International Symposium on Molecular Spectroscopy. p. TF02, doi:10.15278/isms.2014.TF02
  • Sharp C. M., Huebner W. F., 1990, Molecular Equilibrium with Condensation, ApJS, 72, 417
  • Smith D., 2004, Basic Atomic and Molecular Spectroscopy. Von J. Michael Hollas, Angewandte Chemie, 116, 5229
  • Visser R., 2009, Chemical Evolution from Cores to Disks, PhD thesis
  • Ziurys L. M., 2006, Interstellar Chemistry Special Feature: The chemistry in circumstellar envelopes of evolved stars: Following the origin of the elements to the origin of life, Proceedings of the National Academy of Science,103, 12274
  • van Dishoeck E. F., 2014, Astrochemistry of dust, ice and gas: introduction and overview, Faraday Discussions, 168, 9,
There are 23 citations in total.

Details

Primary Language Turkish
Subjects Astronomical Sciences (Other)
Journal Section Articles
Authors

Şengül Yalgın 0000-0002-9007-2109

Publication Date December 31, 2022
Submission Date December 19, 2021
Acceptance Date January 14, 2022
Published in Issue Year 2022 Volume: 3 Issue: 3

Cite

TJAA is a publication of Turkish Astronomical Society (TAD).