Research Article
BibTex RIS Cite

Açık Maden İşletmelerinde İnsansız Hava Aracı (İHA) Uygulamaları

Year 2019, Volume: 62 Issue: 1, 99 - 112, 01.01.2019
https://doi.org/10.25288/tjb.519506

Abstract

Son yıllarda açık maden işletme sahalarında haritacılık işlemleri, gerek maliyet gerek zaman gerekse iş güvenliği açısından avantajlı olan İnsansız Hava Araçları (İHA) kullanılarak gerçekleştirilmektedir. İHA ile zorlu arazi şartlarında kolay, hızlı, yüksek hassasiyetli ve ekonomik ölçümler yapılabilmektedir. Bu çalışmada, açık işletmelerde İHA tabanlı haritalama uygulamalarının avantajları açıklanmıştır. Bu kapsamda, İHA fotogrametrisiyle üretilen ortofoto haritalar, Sayısal Yükseklik Modelleri (SYM), dekapaj ve üretim miktarı hesapları, stok ve döküm hacmi tespiti ve deformasyon ölçüm çalışmaları sunulmuştur.

References

  • Akyürek, S., Yılmaz, M.A., Taşkıran, M., 2012. İnsansız hava araçları: Muharebe alanında ve terörle mücadelede devrimsel dönüşüm. Bilge Adamlar Stratejik Araştırmalar Merkezi Yayınları, Rapor no: 53, İstanbul, 63 s.
  • Babinec, A., Apeltauer, J., 2016. On accuracy of position estimation from aerial imagery captured by low-flying UAVs. International Journal of Transportation Science and Technology, 5(3), 152-166.
  • Barry, P., Coakley, R., 2013. Accuracy of UAV photogrammetry compared with network RTK GPS. Int. Arch. Photogramm. Remote Sens, 2, 2731.
  • Beretta, F., Shibata, H., Cordova, R., Peroni, R.D.L., Azambuja, J., Costa, J.F.C.L., 2018. Topographic modelling using UAVs compared with traditional survey methods in mining. REM-International Engineering Journal, 71(3), 463-470.
  • Bing-jun S, Xu L, Lin-xiu L., 2013. Application of UAV in open-pit mine disaster monitoring. Opencast Mining Technology, 6, 69-71.
  • Bui, D.T., Long, N.Q., Bui, X.N., Nguyen, V.N., Van Pham, C., Van Le, C., Kristoffersen, B., 2017. Lightweight unmanned aerial vehicle and structure-from-motion photogrammetry for generating digital surface model for open-pit coal mine area and its accuracy assessment. In International Conference on Geo-Spatial Technologies and Earth Resources, Springer, Cham, 17-33.
  • Câmara, T., Fontoura, D., Peroni, R., Capponi, L., 2013. Controlling dilution and mine planning. 36th APCOM symposium applications of computers and operations research in the mineral industry, Porto Alegre, Brazil, 1-10.
  • Carvajal F, Agüera F, Pérez M., 2011. Surveying a landslide in a road embankment using unmanned aerial vehicle photogrammetry. ISPRS Zurich 2011 Workshop, International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences, 38(1/C22), 201-206.
  • Cryderman, C., Mah, S.B., Shufletoski, A., 2014. Evaluation of UAV photogrammetric accuracy for mapping and earthworks computations. Geomatica, 68(4), 309-317.
  • Deffontaines, B., Chang, K.J., Champenois, J., Fruneau, B., Pathier, E., Hu, J.C., Liu, Y.C., 2016. Active interseismic shallow deformation of the Pingting terraces (Longitudinal Valley–Eastern Taiwan) from UAV high-resolution topographic data combined with InSAR time series. Geomatics, Natural Hazards and Risk, 8(1), 120-136.
  • Eltner, A., Kaiser, A., Castillo, C., Rock, G., Neugirg, F., Abellán, A., 2016. Image-based surface reconstruction in geomorphometry–merits, limits and developments. Earth Surface Dynamics, 4(2), 359-389.
  • Gonçalves, J. A., Henriques, R., 2015. UAV photogrammetry for topographic monitoring of coastal areas. ISPRS Journal of Photogrammetry and Remote Sensing, 104, 101-111.
  • Gorkovchuk, D., Gorkovchuk, J., Hutnyk, B., 2017. Low-cost UAS photogrammetry for mining. GIM International, The Global Magazine for Geomatics, 31(11), 20-23.
  • Gül, Y., Hastaoğlu, K.Ö., Poyraz, F., 2018. Fimar, Emmioğlu ve Alternatif Mermer A.Ş.’ye ait Amasya mermer ocağı döküm sahası şevlerinde deformasyonların jeodezik yöntemle izlenmesi ve değerlendirilmesi. Nihai Rapor, Sivas Cumhuriyet Üniversitesi Mühendislik Fakültesi, Sivas, 52 s.
  • Harwin, S., Lucieer, A., 2012. Assessing the accuracy of georeferenced point clouds produced via multiview stereopsis from unmanned aerial vehicle (UAV) imagery. Remote Sensing, 4(6), 15731599.
  • Hemmelder, S., Marra, W., Markies, H., De Jong, S.M., 2018. Monitoring river morphology & bank erosion using UAV imagery–A case study of the river Buëch, Hautes-Alpes, France. International Journal of Applied Earth Observation and Geoinformation, 73, 428-437. Hugenholtz, C.H., Whitehead, K., Brown, O.W.,
  • Barchyn, T.E., Moorman, B.J., LeClair, A., Hamilton, T., 2013. Geomorphological mapping with a small unmanned aircraft system (sUAS): Feature detection and accuracy assessment of a photogrammetrically-derived digital terrain model. Geomorphology, 194, 16-24.
  • Immerzeel, W.W., Kraaijenbrink, P.D.A., Shea, J.M., Shrestha, A.B., Pellicciotti, F., Bierkens, M.F.P., De Jong, S.M., 2014. High-resolution monitoring of Himalayan glacier dynamics using unmanned aerial vehicles. Remote Sensing of Environment, 150, 93-103.
  • Kılınçoğlu D.B., 2016. Farklı insansız hava araçları ile elde edilen görüntülerin otomatik fotogrametrik yöntemlerle değerlendirilmesi ve doğruluk analizi. İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, Yüksek Lisans Tezi, 131 s.
  • Kršák, B., Blišťan, P., Pauliková, A., Puškárová, P., Kovanič, Ľ., Palková, J., Zelizňaková, V., 2016. Use of low-cost UAV photogrammetry to analyze the accuracy of a digital elevation model in a case study. Measurement, 91, 276-287.
  • McLeod, T., Samson, C., Labrie, M., Shehata, K., Mah, J., Lai, P., Elder, J.H., 2013. Using video acquired from an unmanned aerial vehicle (UAV) to measure fracture orientation in an open-pit mine. Geomatica, 67(3), 173-180.
  • Niethammer, U., James, M.R., Rothmund, S., Travelletti, J., Joswig, M., 2012. UAV-based remote sensing of the Super-Sauze landslide: Evaluation and results. Engineering Geology, 128, 2-11.
  • Niethammer, U., Rothmund, S., Schwaderer, U., Zeman, J., Joswig, M., 2011. Open source image-processing tools for low-cost UAV-based landslide investigations. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 38(1)/C22, 57-62.
  • Peterman, V., 2015. Landslide activity monitoring with the help of unmanned aerial vehicle. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 40(1/W4), 215-218.
  • Popescu, G., Iordan, D., Păunescu, V., 2016. The resultant positional accuracy for the orthophotos obtained with unmanned aerial vehicles (UAVs). Agriculture and Agricultural Science Procedia, 10, 458-464.
  • Rau, J.Y., Jhan, J.P., Lo, C.F., Lin, Y.S., 2011. Landslide mapping using imagery acquired by a fixed-wing UAV. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci, 38(1/C22), 195-200.
  • Rossi, P., Mancini, F., Dubbini, M., Mazzone, F., Capra, A., 2017. Combining nadir and oblique UAV imagery to reconstruct quarry topography: Methodology and feasibility analysis. European Journal of Remote Sensing, 50(1), 211-221.
  • Seki, M., Tiryakioğlu, İ., Uysal, M., 2017. Farklı veri toplama yöntemleriyle yapılan hacim hesaplarının karşılaştırılması. Geomatik Dergisi, 2(2), 106-111.
  • Shahbazi, M., Sohn, G., Théau, J., Ménard, P., 2015. UAV-based point cloud generation for open-pit mine modelling. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 40(1/W4), 313-320.
  • Shi J., Jinling W, Yaming X., 2011. Object-based change detection using georeferenced UAV images. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 38, 177-182.
  • Tong X, Liu X, Chen P, Liu S, Luan K, Li L, Liu S, Liu X, Xie H, Jin Y, Hong Z., 2015. Integration of UAV-based photogrammetry and terrestrial laser scanning for the three-dimensional mapping and monitoring of open-pit mine areas. Remote Sensing, 7(6), 6635-6662.
  • Udin, W.S., Ahmad, A., 2014. Assessment of photogrammetric mapping accuracy based on variation flying altitude using unmanned aerial vehicle. IOP Conference Series: Earth and Environmental Science, IOP Publishing, 18(1), 012027.
  • Ulusoy, İ., Şen, E., Tuncer, A., Sönmez, H., Bayhan, H., 2017. 3D multi-view stereo modelling of an open mine pit using a lightweight UAV. Türkiye Jeoloji Bülteni/Geological Bulletin of Turkey, 60(2), 223242.
  • Yusoff, A.R., Ariff, M.F.M., Idris, K.M., Majid, Z., Chong, A.K., 2017. Camera calibration accuracy at different UAV flying heights. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 42(2/W3), 595600.
  • Url-1 < https://www.pix4d.com/>, erişim tarihi: 2018.

Applications of Unmanned Aerial Vehicle (UAV) in open-pit mines

Year 2019, Volume: 62 Issue: 1, 99 - 112, 01.01.2019
https://doi.org/10.25288/tjb.519506

Abstract

In recent years, mapping operations in open-pit mines are made by using Unmanned Aerial Vehicles (UAV) having the advantages of cost, time and occupational safety. Using UAVs, easy, fast, high sensitive and economic measurements can be done in difficult field conditions. The advantages of UAV based mapping applications in open-pit mines are explained in this study. Within this scope, orthophoto maps produced by UAV, digital elevation models (DEM), amount of stripping and production calculations, stock and dumping volume determinations and deformation measurement studies are presented.

References

  • Akyürek, S., Yılmaz, M.A., Taşkıran, M., 2012. İnsansız hava araçları: Muharebe alanında ve terörle mücadelede devrimsel dönüşüm. Bilge Adamlar Stratejik Araştırmalar Merkezi Yayınları, Rapor no: 53, İstanbul, 63 s.
  • Babinec, A., Apeltauer, J., 2016. On accuracy of position estimation from aerial imagery captured by low-flying UAVs. International Journal of Transportation Science and Technology, 5(3), 152-166.
  • Barry, P., Coakley, R., 2013. Accuracy of UAV photogrammetry compared with network RTK GPS. Int. Arch. Photogramm. Remote Sens, 2, 2731.
  • Beretta, F., Shibata, H., Cordova, R., Peroni, R.D.L., Azambuja, J., Costa, J.F.C.L., 2018. Topographic modelling using UAVs compared with traditional survey methods in mining. REM-International Engineering Journal, 71(3), 463-470.
  • Bing-jun S, Xu L, Lin-xiu L., 2013. Application of UAV in open-pit mine disaster monitoring. Opencast Mining Technology, 6, 69-71.
  • Bui, D.T., Long, N.Q., Bui, X.N., Nguyen, V.N., Van Pham, C., Van Le, C., Kristoffersen, B., 2017. Lightweight unmanned aerial vehicle and structure-from-motion photogrammetry for generating digital surface model for open-pit coal mine area and its accuracy assessment. In International Conference on Geo-Spatial Technologies and Earth Resources, Springer, Cham, 17-33.
  • Câmara, T., Fontoura, D., Peroni, R., Capponi, L., 2013. Controlling dilution and mine planning. 36th APCOM symposium applications of computers and operations research in the mineral industry, Porto Alegre, Brazil, 1-10.
  • Carvajal F, Agüera F, Pérez M., 2011. Surveying a landslide in a road embankment using unmanned aerial vehicle photogrammetry. ISPRS Zurich 2011 Workshop, International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences, 38(1/C22), 201-206.
  • Cryderman, C., Mah, S.B., Shufletoski, A., 2014. Evaluation of UAV photogrammetric accuracy for mapping and earthworks computations. Geomatica, 68(4), 309-317.
  • Deffontaines, B., Chang, K.J., Champenois, J., Fruneau, B., Pathier, E., Hu, J.C., Liu, Y.C., 2016. Active interseismic shallow deformation of the Pingting terraces (Longitudinal Valley–Eastern Taiwan) from UAV high-resolution topographic data combined with InSAR time series. Geomatics, Natural Hazards and Risk, 8(1), 120-136.
  • Eltner, A., Kaiser, A., Castillo, C., Rock, G., Neugirg, F., Abellán, A., 2016. Image-based surface reconstruction in geomorphometry–merits, limits and developments. Earth Surface Dynamics, 4(2), 359-389.
  • Gonçalves, J. A., Henriques, R., 2015. UAV photogrammetry for topographic monitoring of coastal areas. ISPRS Journal of Photogrammetry and Remote Sensing, 104, 101-111.
  • Gorkovchuk, D., Gorkovchuk, J., Hutnyk, B., 2017. Low-cost UAS photogrammetry for mining. GIM International, The Global Magazine for Geomatics, 31(11), 20-23.
  • Gül, Y., Hastaoğlu, K.Ö., Poyraz, F., 2018. Fimar, Emmioğlu ve Alternatif Mermer A.Ş.’ye ait Amasya mermer ocağı döküm sahası şevlerinde deformasyonların jeodezik yöntemle izlenmesi ve değerlendirilmesi. Nihai Rapor, Sivas Cumhuriyet Üniversitesi Mühendislik Fakültesi, Sivas, 52 s.
  • Harwin, S., Lucieer, A., 2012. Assessing the accuracy of georeferenced point clouds produced via multiview stereopsis from unmanned aerial vehicle (UAV) imagery. Remote Sensing, 4(6), 15731599.
  • Hemmelder, S., Marra, W., Markies, H., De Jong, S.M., 2018. Monitoring river morphology & bank erosion using UAV imagery–A case study of the river Buëch, Hautes-Alpes, France. International Journal of Applied Earth Observation and Geoinformation, 73, 428-437. Hugenholtz, C.H., Whitehead, K., Brown, O.W.,
  • Barchyn, T.E., Moorman, B.J., LeClair, A., Hamilton, T., 2013. Geomorphological mapping with a small unmanned aircraft system (sUAS): Feature detection and accuracy assessment of a photogrammetrically-derived digital terrain model. Geomorphology, 194, 16-24.
  • Immerzeel, W.W., Kraaijenbrink, P.D.A., Shea, J.M., Shrestha, A.B., Pellicciotti, F., Bierkens, M.F.P., De Jong, S.M., 2014. High-resolution monitoring of Himalayan glacier dynamics using unmanned aerial vehicles. Remote Sensing of Environment, 150, 93-103.
  • Kılınçoğlu D.B., 2016. Farklı insansız hava araçları ile elde edilen görüntülerin otomatik fotogrametrik yöntemlerle değerlendirilmesi ve doğruluk analizi. İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, Yüksek Lisans Tezi, 131 s.
  • Kršák, B., Blišťan, P., Pauliková, A., Puškárová, P., Kovanič, Ľ., Palková, J., Zelizňaková, V., 2016. Use of low-cost UAV photogrammetry to analyze the accuracy of a digital elevation model in a case study. Measurement, 91, 276-287.
  • McLeod, T., Samson, C., Labrie, M., Shehata, K., Mah, J., Lai, P., Elder, J.H., 2013. Using video acquired from an unmanned aerial vehicle (UAV) to measure fracture orientation in an open-pit mine. Geomatica, 67(3), 173-180.
  • Niethammer, U., James, M.R., Rothmund, S., Travelletti, J., Joswig, M., 2012. UAV-based remote sensing of the Super-Sauze landslide: Evaluation and results. Engineering Geology, 128, 2-11.
  • Niethammer, U., Rothmund, S., Schwaderer, U., Zeman, J., Joswig, M., 2011. Open source image-processing tools for low-cost UAV-based landslide investigations. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 38(1)/C22, 57-62.
  • Peterman, V., 2015. Landslide activity monitoring with the help of unmanned aerial vehicle. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 40(1/W4), 215-218.
  • Popescu, G., Iordan, D., Păunescu, V., 2016. The resultant positional accuracy for the orthophotos obtained with unmanned aerial vehicles (UAVs). Agriculture and Agricultural Science Procedia, 10, 458-464.
  • Rau, J.Y., Jhan, J.P., Lo, C.F., Lin, Y.S., 2011. Landslide mapping using imagery acquired by a fixed-wing UAV. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci, 38(1/C22), 195-200.
  • Rossi, P., Mancini, F., Dubbini, M., Mazzone, F., Capra, A., 2017. Combining nadir and oblique UAV imagery to reconstruct quarry topography: Methodology and feasibility analysis. European Journal of Remote Sensing, 50(1), 211-221.
  • Seki, M., Tiryakioğlu, İ., Uysal, M., 2017. Farklı veri toplama yöntemleriyle yapılan hacim hesaplarının karşılaştırılması. Geomatik Dergisi, 2(2), 106-111.
  • Shahbazi, M., Sohn, G., Théau, J., Ménard, P., 2015. UAV-based point cloud generation for open-pit mine modelling. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 40(1/W4), 313-320.
  • Shi J., Jinling W, Yaming X., 2011. Object-based change detection using georeferenced UAV images. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 38, 177-182.
  • Tong X, Liu X, Chen P, Liu S, Luan K, Li L, Liu S, Liu X, Xie H, Jin Y, Hong Z., 2015. Integration of UAV-based photogrammetry and terrestrial laser scanning for the three-dimensional mapping and monitoring of open-pit mine areas. Remote Sensing, 7(6), 6635-6662.
  • Udin, W.S., Ahmad, A., 2014. Assessment of photogrammetric mapping accuracy based on variation flying altitude using unmanned aerial vehicle. IOP Conference Series: Earth and Environmental Science, IOP Publishing, 18(1), 012027.
  • Ulusoy, İ., Şen, E., Tuncer, A., Sönmez, H., Bayhan, H., 2017. 3D multi-view stereo modelling of an open mine pit using a lightweight UAV. Türkiye Jeoloji Bülteni/Geological Bulletin of Turkey, 60(2), 223242.
  • Yusoff, A.R., Ariff, M.F.M., Idris, K.M., Majid, Z., Chong, A.K., 2017. Camera calibration accuracy at different UAV flying heights. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 42(2/W3), 595600.
  • Url-1 < https://www.pix4d.com/>, erişim tarihi: 2018.
There are 35 citations in total.

Details

Primary Language Turkish
Subjects Geological Sciences and Engineering (Other)
Journal Section Makaleler - Articles
Authors

Yavuz Gül

Publication Date January 1, 2019
Submission Date November 28, 2018
Acceptance Date January 25, 2019
Published in Issue Year 2019 Volume: 62 Issue: 1

Cite

APA Gül, Y. (2019). Açık Maden İşletmelerinde İnsansız Hava Aracı (İHA) Uygulamaları. Türkiye Jeoloji Bülteni, 62(1), 99-112. https://doi.org/10.25288/tjb.519506
AMA Gül Y. Açık Maden İşletmelerinde İnsansız Hava Aracı (İHA) Uygulamaları. Geol. Bull. Turkey. January 2019;62(1):99-112. doi:10.25288/tjb.519506
Chicago Gül, Yavuz. “Açık Maden İşletmelerinde İnsansız Hava Aracı (İHA) Uygulamaları”. Türkiye Jeoloji Bülteni 62, no. 1 (January 2019): 99-112. https://doi.org/10.25288/tjb.519506.
EndNote Gül Y (January 1, 2019) Açık Maden İşletmelerinde İnsansız Hava Aracı (İHA) Uygulamaları. Türkiye Jeoloji Bülteni 62 1 99–112.
IEEE Y. Gül, “Açık Maden İşletmelerinde İnsansız Hava Aracı (İHA) Uygulamaları”, Geol. Bull. Turkey, vol. 62, no. 1, pp. 99–112, 2019, doi: 10.25288/tjb.519506.
ISNAD Gül, Yavuz. “Açık Maden İşletmelerinde İnsansız Hava Aracı (İHA) Uygulamaları”. Türkiye Jeoloji Bülteni 62/1 (January 2019), 99-112. https://doi.org/10.25288/tjb.519506.
JAMA Gül Y. Açık Maden İşletmelerinde İnsansız Hava Aracı (İHA) Uygulamaları. Geol. Bull. Turkey. 2019;62:99–112.
MLA Gül, Yavuz. “Açık Maden İşletmelerinde İnsansız Hava Aracı (İHA) Uygulamaları”. Türkiye Jeoloji Bülteni, vol. 62, no. 1, 2019, pp. 99-112, doi:10.25288/tjb.519506.
Vancouver Gül Y. Açık Maden İşletmelerinde İnsansız Hava Aracı (İHA) Uygulamaları. Geol. Bull. Turkey. 2019;62(1):99-112.

Cited By










Instructions for Authors: http://www.jmo.org.tr/yayinlar/tjb_yazim_kurallari.php
Ethical Statement and Copyrighy Form:  https://www.jmo.org.tr/yayinlar/tjb_telif_etik_formlar.php