Research Article
BibTex RIS Cite

İnsulin ve glukozun E. coli’de üreme ve mar regulonunun ekspresyonu üzerine etkisi

Year 2019, Volume: 10 Issue: 2, 209 - 216, 12.06.2019
https://doi.org/10.18663/tjcl.459417

Abstract

Amaç:Konak
faktörlerinin bakterilerin virulans, antibiyotik duyarlılığı ve üreme gibi
özelliklerini etkilediği bilinmektedir. Bu çalışmada insan insulin ve glukozunE. coli SPC105 suşunun üremesi ve
marregulonunun (marA, marR, ompF, acrA, acrB vetolC genlerini içeren) ekspresyonu üzerine etkisinin araştırılması
hedeflenmiştir.

Gereç ve Yöntemler:E. coli SPC105 triptik soy buyyonda
(TSB-kontrol) ve 20 µU/mLinsulin, 200 µU/mLinsulin, %0,1 glukoz ve 200
µU/mLinsulin + %0,1 glukoz içeren TSB’de üretilmiştir. Üremeler türbidimetrik
yöntem ile belirlenmiştir. Gen ekspresyonu düzeyleri kantitatifpolimeraz zincir
reaksiyonu (qPCR) ile araştırılmıştır. İstatistiksel analizlerde Tukey’in post
hoc-testi kullanılmıştır.

Bulgular: Absorbans
sonuçlarına göre %0,1 glukoz ve 200 µU/mLinsulin + %0,1 glukoz içeren
besiyerleri üremeyi anlamlı düzeyde düşürmüştür. acrA geninin ekspresyon seviyesinin 200µU/mL insülin içeren
besiyerinde düştüğü görülmüştür. marR
ve marA’nın ekspresyonları da benzer
şekilde 200 µU/mLinsulin, %0,1 glukoz ve 200 µU/mLinsulin + %0,1 glukoz içeren
TSB’de azalmıştır. marA, marR, acrA ekspresyonlarındaki azalış istatistiksel olarak anlamlı
bulunmuştur
(p<0.05).







Sonuç: Bu çalışmanın sonuçları bir kez daha
göstermiştir ki, konak faktörleri bir bakterinin üremesi üzerine olduğu kadar
antibiyotik direnci ile ilişkili farklı genlerinde ekspresyonu üzerinde etkili
olabilmektedir. 

References

  • 1. Alekshun MN, Levy SB. The mar regulon: multiple resistance to antibiotics and other toxic chemicals. Trends Microbiol 1999; 7: 410-13.
  • 2. Alekshun MN,Levy SB.The Escherichia coli mar Locus—Antibiotic Resistance and More. ASM News 2004; 70: 451-56.
  • 3. George AM, Levy SB. Amplifiable resistance to tetracycline, chloramphenicol, and other antibiotics in Escherichia coli: involvement of a non-plasmid-determined efflux of tetracycline. J Bacteriol1983; 155: 531-40.
  • 4. Piddock LJ. Multidrug-resistance efflux pumps - not just for resistance. Nat Rev Microbiol 2006; 4: 629-36.
  • 5. Cohen SP, LevySB, FouldsJ, RosnerJL. Salicylate induction of antibiotic resistance in Escherichia coli: activation of themaroperon and a mar-independent pathway. J Bacteriol 1993; 175: 7856-62.
  • 6. Oethingera M, Kernc WV, Goldmana JD, Levy SB. Association of organic solvent tolerance and fluoroquinolone resistance in clinical isolates of Escherichia coli. J AntimicrobChemother1998; 41: 111-14.
  • 7. Ferrari RG, Galiana A, Cremades R et al. Expression of the mar A, sox S, acr B and ram A genes relatedto the Acr AB/TolC efflux pump in Salmonella enterica strains with and without quinolone resistance-determining regions gyr A gene mutations. The Brazilian Journal of Infectious Diseases 2013; 17: 125-30.
  • 8. Maneewannakul K, Levy SB. Identification for mar mutants among quinolone-resistant clinical isolates of Escherichia coli. Antimicrob Agents Chemother 1996; 40:1695-98.
  • 9. Alekshun MN, Levy SB.Regulation of chromosomally mediated multiple antibiotic resistance: the mar regulon. Antimicrob Agents Chemother1997; 41: 2067-75.
  • 10. Gumus D, Yoruk E, Kalayci-Yuksek F, Uz G, Topal-Sarikaya A, Ang-Kucuker M.The Effects of Insulin and Glucose on Different Characteristics of a UPEC: Alterations in Growth Rate and Expression Levels of someVirulence Genes. Clin Lab 2017; 63:1589-97.
  • 11. Plotkin BJ, Viselli SM. Effect of insulin on microbial growth. Curr Microbiol 2000; 41: 60-64.
  • 12. Gönüllü N, Küçükbasmacı Ö, Büyükbaba-Boral Ö, Anğ-Küçüker M. The influence of glucose added urine on the in vitro antimicrobial activity of various antibiotics. Indian J Med Res 2008;128: 663-65.
  • 13. Lyte M, Ernst S. Catecholamine induced growth of gram negative bacteria. Life Sci 1992; 50: 203-12.
  • 14. Freestone PP, Haigh RD, Lyte M. Blockade of catecholamine-induced growth by adrenergic and dopaminergic receptor antagonists in Escherichia coli O157: H7, Salmonella enterica and Yersinia enterocolitica. BMC Microbiol 2007; 7: 8.
  • 15. Merkel SM, Alexander S, Zufall E, Oliver JD, Huet-Hudson YM. Essential Role for Estrogen in Protection against Vibrio vulnificus-induced Endotoxic Shock. Infect Immun2001; 69: 6119-22.
  • 16. Yokoyama M, Hinode D, Masuda K, Yoshioka M, Grenier D. Effect of female sex hormones on Campylobacter rectus and human gingival fibroblasts. Oral MicrobiolImmunol 2005; 20: 239-43.
  • 17. Sandrini S, Alghofaili F, Freestone P, Yesilkaya H. Host stress hormone norepinephrine stimulates pneumococcal growth, biofilm formation and virulence gene expression. BMC Microbiology 2014; 14: 180.
  • 18. Clark DT, Soory M. The influence of cholesterol, progesterone, 4-androstenedione and testosterone on the growth of Treponemadenticola ATCC 33520 in batch cultures. Anaerobe 2006; 12: 267-73.
  • 19. Rickard AH, Lindsay S, Lockwood GB, Gilbert P. Induction of the mar operon by miscellaneous groceries. Journal of Applied Microbiology 2004; 97:1063–68.
  • 20. LeRoith D, Shiloach J, Roth J, Lesniak MA. Insulin or a closely related molecule is native to Escherichia coli. J Biol Chem 1981; 256: 6533-36.
  • 21. LeRoith D, Pickens W, Vinik AI, Shiloach J. Bacillus subtilis contains multiple forms of somatostatin like material. Biochem Biophys Res Commun1985; 127: 713-19.
  • 22. Aun F, Soeldner JS, Meguid MM, Stolf NA. Urinary insulin levels in health and disease-a concise review. Postgrad Med J 1975; 51: 622-26.
  • 23. Pfaffl MW. A new mathematical model for relative quantification in real-Time RT-PCR. Nucleic Acids Research 2001; 29: 2003-2007.
  • 24. Randall LP, Woodward MJ. Multiple antibiotic resistance (mar) locus in Salmonella entericaserovartyphimurium DT104. Appl Environ Microbiol 2001; 67: 1190-97.
  • 25. Barbosa TM, Levy SB. Differential expression of over 60 chromosomal genes in Escherichia coli by constitutive expression of MarA. J Bacteriol 2000; 182: 3467-74.
  • 26. Blair JM, Piddock LJ. Structure, function and inhibition of RND efflux pumps in Gram-negative bacteria: an update. Curr Opin Microbiol2009; 12: 512-19.
  • 27. White DG, Maneewannakul K, Von Hofe E, Zillman M, Eisenberg W, Field AK, Levy SB. Inhibition of the multiple antibiotic resistance (mar) operon in Escherichia coli by antisense DNA analogs. Antimicrob Agents Chemother 1997; 41: 2699-704.
  • 28. Zgurskaya HI, Krishnamoorthy G, Ntreh A, Lu S. Mechanism and Function of the Outer Membrane Channel TolC in Multidrug Resistance and Physiology of Enterobacteria. Front Microbiol 2011; 2: 189.
  • 29. Chollet R, Chevalier J, Bollet C, Pages JM,Davin-Regli A. RamA Is an Alternate Activator of the Multidrug Resistance Cascade in Enterobacteraerogenes. Antimicrob Agents Chemother 2004; 48: 2518–23.
  • 30. White DG, Maneewannakul K, Von Hofe E, Zıllman M, Eisenberg W, Field AK, Levy SB. Inhibition of the Multiple Antibiotic Resistance (mar) Operon in Escherichia coli by Antisense DNA Analogs. Antimicrob Agents Chemother 1997; 41: 2699–704.
  • 31. Cohen SP, McMurry LM, Levy SB.marA locus causes decreased expression of OmpFporin in multiple-antibiotic-resistant (Mar) mutants of Escherichia coli. J Bacteriol 1988; 170: 5416-22.
  • 32. Coyer J, Andersen J, Forst SA, Inouye M, Delihas N.micF RNA in ompB mutants of Escherichia coli: different pathways regulate micF RNA levels in response to osmolarity and temperature change. Bacteriol1990; 172: 4143-50.
  • 33. Agafitei O, Kim EJ, Maguire T, JaredS. The Role of Escherichia coli Porins OmpC and OmpF in Antibiotic Cross Resistance Induced by Sub-inhibitory Concentrations of Kanamycin.Journal of Experimental Microbiology and Immunology (JEMI) 2010; 14: 34-39.
  • 34. Freestone PP, Sandrini S: Mechanisims by which cathecholamines ınduce growth in Gram negative and Gram positive human pathogens. In:Microbial Endocrinology: Inter kingdom Signaling in Infectious Disease and Health, Lyte M. Freestone PP (eds). 1sted. New York: Springer; 2010: 53-68.
  • 35. Lyte M. Bacteria and hormones: Why the science of microbial endocrinology matters to disease and well-being. In: Bacterial species as partners and pathogens, Heidt PJ, Midtvedt T, Rusch V, Versalovic J (eds). Herborn-Dill: Old Herborn University Foundation; 2012: 17-29.
  • 36. Plotkin BJ, Konakieva MI. Attenuation of antimicrobial activity by the human steroid hormones. Steroids 2017; 128: 120–127.
  • 37. deMicheli M, Jacques B, Schueller C, Sanglard DA. Common drug-responsive element mediates the upregulation of the Candida albicans ABC transporters CDR1 and CDR2, two genes involved in antifungal drug resistance. Molecular Microbiology 2002; 43: 1197–214.
  • 38. Banerjee D, Martin N, Nandi S, Shukla S, Dominguez A, Mukhopadhyay G, Prasad R. A genome-wide steroid response study of the major human fungal pathogen Candida albicans. Mycopathologia 2007; 164: 1–17.
  • 39. Peng B, Ma YM, Zhang JY, Li H. Metabolome strategy against Edwardsiellatarda infection through glucose-enhanced metabolic modulation in tilapias. Fish Shellfish Immunol 2015; 45: 869-76.
  • 40. Allison KR, Brynildsen MP, Collins JJ. Metabolite-enabled eradication of bacterial persisters by aminoglycosides. Nature 2011; 473: 216-21.
  • 41. Li W, Lyte M, Freestone PP, Ajmal A, Colmer-Hamood JA, Hamood AN. Norepinephrine represses the expression of toxA and the siderophore genes in Pseudomonas aeruginosa. FEMS Microbiol Lett 2009; 299: 100-109
  • 42. Kornman KS, Loesche WJ. Effects of estradiol and progesterone on Bacteroidesmelaninogenicus and Bacteroidesgingivalis. Infect Immun1982; 35: 256-63.
  • 43. Intarak N, Muangsombut V, Vattanaviboon P, Stevens MP, Korbsrisate S. Growth, motility and resistance to oxidative stress of the melioidosis pathogen Burkholderiapseudomallei are enhanced by epinephrine. Pathog Dis 2014; 72: 24-31.
  • 44. Woods DE, Jones AL, Hill PJ. Interaction of insulin with Pseudomonas pseudomallei. Infect Immun1993; 61: 4045-50.
  • 45. Bakholdina SI, Sanina NM, Krasikova IN, Popova OB, Solov’eva TF. The impact of abiotic factors (temperature and glucose) on physicochemical properties of lipids from Yersinia pseudotuberculosis.Biochimie 2004; 86: 875-81.
  • 46. Schroeder M., Brooks BD., Brooks AE. The Complex Relationship between Virulence and Antibiotic Resistance. Genes2017; 8: 1-23.

The effects of insulin and glucose on growth and expression of mar regulon in E. coli

Year 2019, Volume: 10 Issue: 2, 209 - 216, 12.06.2019
https://doi.org/10.18663/tjcl.459417

Abstract

Aim:Host factors
are known to modulate virulence, antibiotic susceptibility and growth of
bacteria. In the present study we aimed to investigate the effect of human
insulin and glucose on growth and expression of mar regulon (marA, marR, ompF, acrA, acrB and tolC) of E. coli SPC105.

Material and Methods:E. coli SPC105 was
grown in tryptic soy broth (TSB-control) and TSB containing 20 µU/mL insulin,
200 µU/mL insulin, 0.1% glucose and 200 µU/mL insulin + 0.1% glucose. Growths
were determined via turbidimetric method. 
Quantitative polymerase chain reaction (qPCR) was used to determine the
gene expression levels. Statistical analysis were performed via Tukey’s post
hoc-test.

Results:According to
absorbance values, it has been shown that 0.1% glucose and 200 µU/mL insulin +
0.1% glucose have led a significant decrease on growth. Expression of acrA gene was shown to be decreased in
the presence of 200μIU insulin. Expressions of marR and marA were also
decreased in 200μU insulin, 0.1 % glucose+200μU insulin and 0.1% glucose added
TSB. Decreasing of marA, marR and acrA expressions were shown to be statistically significant
(p<0.05).







Conclusion:The results
of the present study has shown once more that host factors may influence the
growth of a bacterium as well as gene expressions associated with antibiotic
susceptibilities.

References

  • 1. Alekshun MN, Levy SB. The mar regulon: multiple resistance to antibiotics and other toxic chemicals. Trends Microbiol 1999; 7: 410-13.
  • 2. Alekshun MN,Levy SB.The Escherichia coli mar Locus—Antibiotic Resistance and More. ASM News 2004; 70: 451-56.
  • 3. George AM, Levy SB. Amplifiable resistance to tetracycline, chloramphenicol, and other antibiotics in Escherichia coli: involvement of a non-plasmid-determined efflux of tetracycline. J Bacteriol1983; 155: 531-40.
  • 4. Piddock LJ. Multidrug-resistance efflux pumps - not just for resistance. Nat Rev Microbiol 2006; 4: 629-36.
  • 5. Cohen SP, LevySB, FouldsJ, RosnerJL. Salicylate induction of antibiotic resistance in Escherichia coli: activation of themaroperon and a mar-independent pathway. J Bacteriol 1993; 175: 7856-62.
  • 6. Oethingera M, Kernc WV, Goldmana JD, Levy SB. Association of organic solvent tolerance and fluoroquinolone resistance in clinical isolates of Escherichia coli. J AntimicrobChemother1998; 41: 111-14.
  • 7. Ferrari RG, Galiana A, Cremades R et al. Expression of the mar A, sox S, acr B and ram A genes relatedto the Acr AB/TolC efflux pump in Salmonella enterica strains with and without quinolone resistance-determining regions gyr A gene mutations. The Brazilian Journal of Infectious Diseases 2013; 17: 125-30.
  • 8. Maneewannakul K, Levy SB. Identification for mar mutants among quinolone-resistant clinical isolates of Escherichia coli. Antimicrob Agents Chemother 1996; 40:1695-98.
  • 9. Alekshun MN, Levy SB.Regulation of chromosomally mediated multiple antibiotic resistance: the mar regulon. Antimicrob Agents Chemother1997; 41: 2067-75.
  • 10. Gumus D, Yoruk E, Kalayci-Yuksek F, Uz G, Topal-Sarikaya A, Ang-Kucuker M.The Effects of Insulin and Glucose on Different Characteristics of a UPEC: Alterations in Growth Rate and Expression Levels of someVirulence Genes. Clin Lab 2017; 63:1589-97.
  • 11. Plotkin BJ, Viselli SM. Effect of insulin on microbial growth. Curr Microbiol 2000; 41: 60-64.
  • 12. Gönüllü N, Küçükbasmacı Ö, Büyükbaba-Boral Ö, Anğ-Küçüker M. The influence of glucose added urine on the in vitro antimicrobial activity of various antibiotics. Indian J Med Res 2008;128: 663-65.
  • 13. Lyte M, Ernst S. Catecholamine induced growth of gram negative bacteria. Life Sci 1992; 50: 203-12.
  • 14. Freestone PP, Haigh RD, Lyte M. Blockade of catecholamine-induced growth by adrenergic and dopaminergic receptor antagonists in Escherichia coli O157: H7, Salmonella enterica and Yersinia enterocolitica. BMC Microbiol 2007; 7: 8.
  • 15. Merkel SM, Alexander S, Zufall E, Oliver JD, Huet-Hudson YM. Essential Role for Estrogen in Protection against Vibrio vulnificus-induced Endotoxic Shock. Infect Immun2001; 69: 6119-22.
  • 16. Yokoyama M, Hinode D, Masuda K, Yoshioka M, Grenier D. Effect of female sex hormones on Campylobacter rectus and human gingival fibroblasts. Oral MicrobiolImmunol 2005; 20: 239-43.
  • 17. Sandrini S, Alghofaili F, Freestone P, Yesilkaya H. Host stress hormone norepinephrine stimulates pneumococcal growth, biofilm formation and virulence gene expression. BMC Microbiology 2014; 14: 180.
  • 18. Clark DT, Soory M. The influence of cholesterol, progesterone, 4-androstenedione and testosterone on the growth of Treponemadenticola ATCC 33520 in batch cultures. Anaerobe 2006; 12: 267-73.
  • 19. Rickard AH, Lindsay S, Lockwood GB, Gilbert P. Induction of the mar operon by miscellaneous groceries. Journal of Applied Microbiology 2004; 97:1063–68.
  • 20. LeRoith D, Shiloach J, Roth J, Lesniak MA. Insulin or a closely related molecule is native to Escherichia coli. J Biol Chem 1981; 256: 6533-36.
  • 21. LeRoith D, Pickens W, Vinik AI, Shiloach J. Bacillus subtilis contains multiple forms of somatostatin like material. Biochem Biophys Res Commun1985; 127: 713-19.
  • 22. Aun F, Soeldner JS, Meguid MM, Stolf NA. Urinary insulin levels in health and disease-a concise review. Postgrad Med J 1975; 51: 622-26.
  • 23. Pfaffl MW. A new mathematical model for relative quantification in real-Time RT-PCR. Nucleic Acids Research 2001; 29: 2003-2007.
  • 24. Randall LP, Woodward MJ. Multiple antibiotic resistance (mar) locus in Salmonella entericaserovartyphimurium DT104. Appl Environ Microbiol 2001; 67: 1190-97.
  • 25. Barbosa TM, Levy SB. Differential expression of over 60 chromosomal genes in Escherichia coli by constitutive expression of MarA. J Bacteriol 2000; 182: 3467-74.
  • 26. Blair JM, Piddock LJ. Structure, function and inhibition of RND efflux pumps in Gram-negative bacteria: an update. Curr Opin Microbiol2009; 12: 512-19.
  • 27. White DG, Maneewannakul K, Von Hofe E, Zillman M, Eisenberg W, Field AK, Levy SB. Inhibition of the multiple antibiotic resistance (mar) operon in Escherichia coli by antisense DNA analogs. Antimicrob Agents Chemother 1997; 41: 2699-704.
  • 28. Zgurskaya HI, Krishnamoorthy G, Ntreh A, Lu S. Mechanism and Function of the Outer Membrane Channel TolC in Multidrug Resistance and Physiology of Enterobacteria. Front Microbiol 2011; 2: 189.
  • 29. Chollet R, Chevalier J, Bollet C, Pages JM,Davin-Regli A. RamA Is an Alternate Activator of the Multidrug Resistance Cascade in Enterobacteraerogenes. Antimicrob Agents Chemother 2004; 48: 2518–23.
  • 30. White DG, Maneewannakul K, Von Hofe E, Zıllman M, Eisenberg W, Field AK, Levy SB. Inhibition of the Multiple Antibiotic Resistance (mar) Operon in Escherichia coli by Antisense DNA Analogs. Antimicrob Agents Chemother 1997; 41: 2699–704.
  • 31. Cohen SP, McMurry LM, Levy SB.marA locus causes decreased expression of OmpFporin in multiple-antibiotic-resistant (Mar) mutants of Escherichia coli. J Bacteriol 1988; 170: 5416-22.
  • 32. Coyer J, Andersen J, Forst SA, Inouye M, Delihas N.micF RNA in ompB mutants of Escherichia coli: different pathways regulate micF RNA levels in response to osmolarity and temperature change. Bacteriol1990; 172: 4143-50.
  • 33. Agafitei O, Kim EJ, Maguire T, JaredS. The Role of Escherichia coli Porins OmpC and OmpF in Antibiotic Cross Resistance Induced by Sub-inhibitory Concentrations of Kanamycin.Journal of Experimental Microbiology and Immunology (JEMI) 2010; 14: 34-39.
  • 34. Freestone PP, Sandrini S: Mechanisims by which cathecholamines ınduce growth in Gram negative and Gram positive human pathogens. In:Microbial Endocrinology: Inter kingdom Signaling in Infectious Disease and Health, Lyte M. Freestone PP (eds). 1sted. New York: Springer; 2010: 53-68.
  • 35. Lyte M. Bacteria and hormones: Why the science of microbial endocrinology matters to disease and well-being. In: Bacterial species as partners and pathogens, Heidt PJ, Midtvedt T, Rusch V, Versalovic J (eds). Herborn-Dill: Old Herborn University Foundation; 2012: 17-29.
  • 36. Plotkin BJ, Konakieva MI. Attenuation of antimicrobial activity by the human steroid hormones. Steroids 2017; 128: 120–127.
  • 37. deMicheli M, Jacques B, Schueller C, Sanglard DA. Common drug-responsive element mediates the upregulation of the Candida albicans ABC transporters CDR1 and CDR2, two genes involved in antifungal drug resistance. Molecular Microbiology 2002; 43: 1197–214.
  • 38. Banerjee D, Martin N, Nandi S, Shukla S, Dominguez A, Mukhopadhyay G, Prasad R. A genome-wide steroid response study of the major human fungal pathogen Candida albicans. Mycopathologia 2007; 164: 1–17.
  • 39. Peng B, Ma YM, Zhang JY, Li H. Metabolome strategy against Edwardsiellatarda infection through glucose-enhanced metabolic modulation in tilapias. Fish Shellfish Immunol 2015; 45: 869-76.
  • 40. Allison KR, Brynildsen MP, Collins JJ. Metabolite-enabled eradication of bacterial persisters by aminoglycosides. Nature 2011; 473: 216-21.
  • 41. Li W, Lyte M, Freestone PP, Ajmal A, Colmer-Hamood JA, Hamood AN. Norepinephrine represses the expression of toxA and the siderophore genes in Pseudomonas aeruginosa. FEMS Microbiol Lett 2009; 299: 100-109
  • 42. Kornman KS, Loesche WJ. Effects of estradiol and progesterone on Bacteroidesmelaninogenicus and Bacteroidesgingivalis. Infect Immun1982; 35: 256-63.
  • 43. Intarak N, Muangsombut V, Vattanaviboon P, Stevens MP, Korbsrisate S. Growth, motility and resistance to oxidative stress of the melioidosis pathogen Burkholderiapseudomallei are enhanced by epinephrine. Pathog Dis 2014; 72: 24-31.
  • 44. Woods DE, Jones AL, Hill PJ. Interaction of insulin with Pseudomonas pseudomallei. Infect Immun1993; 61: 4045-50.
  • 45. Bakholdina SI, Sanina NM, Krasikova IN, Popova OB, Solov’eva TF. The impact of abiotic factors (temperature and glucose) on physicochemical properties of lipids from Yersinia pseudotuberculosis.Biochimie 2004; 86: 875-81.
  • 46. Schroeder M., Brooks BD., Brooks AE. The Complex Relationship between Virulence and Antibiotic Resistance. Genes2017; 8: 1-23.
There are 46 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Orıgınal Artıcle
Authors

Defne Gümüş 0000-0003-4070-6924

Fatma Kalaycı Yüksek 0000-0002-0028-5646

Gülşen Uz This is me 0000-0001-9895-5187

Aslı Bayraktar This is me

Pınar Köseoğlu This is me 0000-0003-4681-0968

Yağmur Ofluoğlu This is me 0000-0002-2709-7346

Benay Daylan This is me

Mine Anğ Küçüker 0000-0002-4809-3985

Publication Date June 12, 2019
Published in Issue Year 2019 Volume: 10 Issue: 2

Cite

APA Gümüş, D., Kalaycı Yüksek, F., Uz, G., Bayraktar, A., et al. (2019). The effects of insulin and glucose on growth and expression of mar regulon in E. coli. Turkish Journal of Clinics and Laboratory, 10(2), 209-216. https://doi.org/10.18663/tjcl.459417
AMA Gümüş D, Kalaycı Yüksek F, Uz G, Bayraktar A, Köseoğlu P, Ofluoğlu Y, Daylan B, Anğ Küçüker M. The effects of insulin and glucose on growth and expression of mar regulon in E. coli. TJCL. June 2019;10(2):209-216. doi:10.18663/tjcl.459417
Chicago Gümüş, Defne, Fatma Kalaycı Yüksek, Gülşen Uz, Aslı Bayraktar, Pınar Köseoğlu, Yağmur Ofluoğlu, Benay Daylan, and Mine Anğ Küçüker. “The Effects of Insulin and Glucose on Growth and Expression of Mar Regulon in E. Coli”. Turkish Journal of Clinics and Laboratory 10, no. 2 (June 2019): 209-16. https://doi.org/10.18663/tjcl.459417.
EndNote Gümüş D, Kalaycı Yüksek F, Uz G, Bayraktar A, Köseoğlu P, Ofluoğlu Y, Daylan B, Anğ Küçüker M (June 1, 2019) The effects of insulin and glucose on growth and expression of mar regulon in E. coli. Turkish Journal of Clinics and Laboratory 10 2 209–216.
IEEE D. Gümüş, F. Kalaycı Yüksek, G. Uz, A. Bayraktar, P. Köseoğlu, Y. Ofluoğlu, B. Daylan, and M. Anğ Küçüker, “The effects of insulin and glucose on growth and expression of mar regulon in E. coli”, TJCL, vol. 10, no. 2, pp. 209–216, 2019, doi: 10.18663/tjcl.459417.
ISNAD Gümüş, Defne et al. “The Effects of Insulin and Glucose on Growth and Expression of Mar Regulon in E. Coli”. Turkish Journal of Clinics and Laboratory 10/2 (June 2019), 209-216. https://doi.org/10.18663/tjcl.459417.
JAMA Gümüş D, Kalaycı Yüksek F, Uz G, Bayraktar A, Köseoğlu P, Ofluoğlu Y, Daylan B, Anğ Küçüker M. The effects of insulin and glucose on growth and expression of mar regulon in E. coli. TJCL. 2019;10:209–216.
MLA Gümüş, Defne et al. “The Effects of Insulin and Glucose on Growth and Expression of Mar Regulon in E. Coli”. Turkish Journal of Clinics and Laboratory, vol. 10, no. 2, 2019, pp. 209-16, doi:10.18663/tjcl.459417.
Vancouver Gümüş D, Kalaycı Yüksek F, Uz G, Bayraktar A, Köseoğlu P, Ofluoğlu Y, Daylan B, Anğ Küçüker M. The effects of insulin and glucose on growth and expression of mar regulon in E. coli. TJCL. 2019;10(2):209-16.


e-ISSN: 2149-8296

The content of this site is intended for health care professionals. All the published articles are distributed under the terms of

Creative Commons Attribution Licence,

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.