Research Article
BibTex RIS Cite

Effect of ternary deep eutectic solvents on delignification of stone pine cone

Year 2024, Volume: 25 Issue: 1, 107 - 112, 30.03.2024
https://doi.org/10.18182/tjf.1379904

Abstract

Due to their cost-effectiveness and environmentally friendly nature, deep eutectic solvents (DESs) hold great potential for applications in biomass conversion and the production of green chemicals. In this study, the delignification of the stone pine (Pinus pinea L.) cone was performed using seven different ternary deep eutectic solvents (TDESs). TDES treatments of stone pine cone samples were carried out in a microwave for 30 min. at 150 °C. The two-based components of TDESs were choline chloride (ChCl - 1 mol) and lactic acid (LA - 9 mol). The formic acid (FA – 2 mol), boric acid (BA – 1 mol), acetic acid (AA – 2 mol), sorbitol (S – 1 mol), triethylene glycol (TEG – 2 mol), ethylene glycol (EG – 2 mol), and glycerol (G – 2 mol) were used as third component of TDES. ChCl:LA:BA gave the lowest solid residue yield (57.90%) and highest lignin purity (86.89%). Klason lignin content of control was 35.08%. The lowest lignin content (19.42%) and highest delignification (68.89%) were obtained with ChCl:LA:FA treatment. The lowest and the highest L* values were obtained from ChCl:LA:BA and ChCl:LA:EG treatments with 21.76 and 37.36, respectively. This results showed that the third component of TDES affects the delignification efficiency of stone pine cone.

Thanks

The Authors Özge Özgürlük and Şeyma Özlüsoylu are both Council of Higher Education (YOK) 100/2000 doctoral students and are also supported within the scope of the 2211-A General Domestic Doctoral Scholarship Program.

References

  • Ayrilmis, N., Buyuksari, U., Avci, E., Koc, E., 2009. Utilization of pine (Pinus pinea L.) cone in manufacture of wood based composite. Forest Ecology and Management, 259(1): 65-70. https://doi.org/10.1016/j.foreco.2009.09.043
  • Buyuksari, U., Avci, E., Ayrilmis, N., Akkilic, H., 2010. Effect of pine cone ratio on the wettability and surface roughness of particleboard. BioResources, 5(3): 1824-1833.
  • Calama, R., Gordo, J., Madrigal, G., Mutke, S., Conde, M., Montero, G., Pardos, M., 2016. Enhanced tools for predicting annual stone pine (Pinus pinea L.) cone production at tree and forest scale in Inner Spain. Forest Systems, 25(3): e079. http://dx.doi.org/10.5424/fs/2016253-09671
  • Choi, K.H., Lee, M.K., Ryu, J.Y., 2016a. Effect of molar ratios of DES on lignin contents and handsheets properties of thermomechanical pulp. J Korea TAPPI, 48(2): 8-33. https://doi.org/10.7584/ktappi.2016.48.2.028
  • Choi, K.H., Nam, Y.S., Lee, M.K., Ryu, J.Y., 2016b. Changes of BCTMP fibers and handsheets properties by the treatment of LB DES at different molar ratios. J Korea TAPPI, 48(7): 5-81. https://doi.org/10.7584/ktappi.2016.48.1.075.
  • Costa, R.A., Lourenço, A., Patrício, H., Quilhó, T., Gominho, J., 2023. Valorization of Pine Nut Industry Residues on a Biorefinery Concept. Waste and Biomass Valorization, 1-19. https://doi.org/10.1007/s12649-023-02068-w
  • Dönmez, I.E., Hafizoğlu, H., Kilic, A., Tümen, I., Sivrikaya, H., 2012. Chemical composition of fourteen different coniferous species cones growing naturally in Turkey. Wood Res, 57(2): 339-344.
  • Ee, L.Y., Tan, Y.K., Miao, J., Chu, H.T., Li, S.F.Y., 2023. High-purity lignin from selective biomass fractionation with ternary deep eutectic solvents. Green Chemistry, 25(8): 3137-3151. https://doi.org/10.1039/D3GC00080J
  • Fengel, D., Wegener, G., 1989. Wood: Chemistry, Ultrastructure, Reactions. Walter de Gruyter.
  • Gonultas, O., Ucar, M.B., 2013. Chemical characteristics of the cone and wood of Pinus pinea. Lignocellulose, 2(1): 262-269.
  • Gulsoy, S.K., Ozturk, F., 2015. Kraft pulping properties of European black pine cone. Maderas. Ciencia y Tecnología, 17(4): 875-882. http://dx.doi.org/10.4067/S0718-221X2015005000076
  • Gülsoy, S.K., Hafızoğlu, H., Pekgözlü, A.K., Tümen, İ., Dönmez, İ.E., Sivrikaya, H., 2017. Fiber properties of axis and scale of eleven different coniferous cones. Industrial Crops and Products, 109: 45-52. https://doi.org/10.1016/j.indcrop.2017. 07.044
  • Gülsoy, S.K., Küçüle, A., Gençer, A., 2022a. Deep eutectic solvent pulping from sorghum stalks. Maderas-Cienc Tecnol, 24(50):1-12. http://dx.doi.org/10.4067/s0718-221x2022000100450
  • Gülsoy, S.K., Gitti, Ü.B., Gençer, A., 2022b. Comparison of soda, kraft, and DES pulp properties of European black poplar. Drvna Industrija, 73(2): 215-226. https://doi.org/10.5552/drvind.2022. 2112
  • Gülsoy, S.K., 2023. Comparison of kraft and ternary deep eutectic solvent pulping of scots pine. Industrial Crops and Products, 206, 117596. https://doi.org/10.1016/j.indcrop.2023.117596
  • Jablonsky, M., Haz, A., Majova, V., 2019. Assessing the opportunities for applying deep eutectic solvents for fractionation of beech wood and wheat straw. Cellulose, 26: 7675-7684. https://doi.org/10.1007/s10570-019-02629-0
  • Ji, Q., Yu, X., Yagoub, A.E.G.A., Chen, L., Zhou, C., 2020. Efficient removal of lignin from vegetable wastes by ultrasonic and microwave-assisted treatment with ternary deep eutectic solvent. Industrial crops and products, 149:112357. https://doi.org/10.1016/j.indcrop.2020.112357
  • Kohli, K., Katuwal, S., Biswas, A., Sharma, B.K., 2020. Effective delignification of lignocellulosic biomass by microwave assisted deep eutectic solvents. Bioresour Technol, 303: 122897. https://doi.org/10.1016/j.biortech.2020.122897
  • Kwon, G.J., Yang, B.S., Park, C.W., Bandi, R., Lee, E.A., Park, J.S., Han, S.Y., Kim, N.H., Lee, S.H., 2020. Treatment effects of choline chloride-based deep eutectic solvent on the chemical composition of Red Pine (Pinus densiflora). BioResources, 15: 6457-6470.
  • Li, T., Lyu, G., Liu, Y., Lou, R., Lucia, L.A., Yang, G., Chen, J., Saeed, H.A., 2017. Deep Eutectic Solvents (DESs) for the isolation of willow lignin (Salix matsudana cv. Zhuliu). International Journal of Molecular Sciences, 18: 2266. https://doi.org/10.3390/ijms18112266
  • Liu, Q., Yuan, T., Fu, Q. J., Bai, Y.Y., Peng, F., Yao, C. L., 2019. Choline chloride-lactic acid deep eutectic solvent for delignification and nanocellulose production of moso bamboo. Cellulose, 26: 9447-9462. https://doi.org/10.1007/s10570-019-02726-0(0123456789
  • Lu, C., Xu, J., Xie, J., Zhu, S., Wang, B., Li, J., Chen, K., 2022. Preparation, characterization of light-colored lignin from corn stover by new ternary deep eutectic solvent extraction. International Journal of Biological Macromolecules, 222: 2512-2522. https://doi.org/10.1016/j.ijbiomac.2022.10.035
  • Lyu, G., Li, T., Ji, X., Yang, G., Liu, Y., Lucia, L.A., Chen, J., 2018. Characterization of lignin extracted from willow by deep eutectic solvent treatments. Polymers, 10(8): 869. https://doi.org/10.3390/polym10080869
  • Muley, P.D., Mobley, J.K., Tong, X., Novak, B., Stevens, J., Moldovan, D., Boldor, D., 2019. Rapid microwave-assisted biomass delignification and lignin depolymerization in deep eutectic solvents. Energy Conversion and Management, 196: 1080-1088. https://doi.org/10.1016/j.enconman.2019.06.070
  • Mutke, S., Calama, R., González-Martínez, S.C., Montero, G., Javier Gordo, F., Bono, D., Gil, L., 2012. Mediterranean stone pine: Botany and horticulture. Horticultural Reviews, 39(1): 153-201.
  • Mutke, S., Guadaño, C., Iglesias, S., León, D., Arribas, S., Gordo, J., Gil, L., Montero, G., 2017. Selection and identification of Spanish elite clones for Mediterranean pine nut as orchard crop. Options Méditerranéennes, Série A, Séminaires Méditerranéens, (122), 71-75.
  • Mutke, S., Vendramin, G.G., Fady, B., Bagnoli, F., González-Martínez, S.C., 2019. Molecular and quantitative genetics of stone pine (Pinus pinea). Chapter 3. Genetic diversity in horticultural plants, 61-84.
  • OGM, 2021. Ormancılık istatistikleri 2021. Resmi istatistik programı kapsamındaki ormancılık istatistikleri, Orman Genel Müdürlüğü, Ankara, https://www.ogm.gov.tr/tr/e-kutuphane/resmi-istatistikler, Accessed: 20.10.2023.
  • Pan, M., Zhao, G., Ding, C., Wu, B., Lian, Z., Lian, H., 2017. Physicochemical transformation of rice straw after pretreatment with a deep eutectic solvent of choline chloride/urea. Carbohydrate Polymers, 176: 307-314. https://doi.org/10.1016/j.carbpol.2017.08.088
  • Sbay, H., and Hajib, S., 2016. Le pin pignon: Une espèce de choix dans le contexte des changements climatiques. Centre de recherches forestières, Maroc, 77pp.
  • Smink, D., Juan, A., Schuur, B., Kersten, S.R., 2019. Understanding the role of choline chloride in deep eutectic solvents used for biomass delignification. Ind Eng Chem Res, 58:16348-16357. https://doi.org/10.1021/acs.iecr.9b03588
  • Sumer, Z., Van Lehn, R.C., 2022. Data-centric development of lignin structure–solubility relationships in deep eutectic solvents using molecular simulations. ACS Sustain Chem Eng, 10(31):10144-10156. https://doi.org/10.1021/acssuschemeng.2c01375
  • Web of Science, 2023. www.webofscience.com, Accessed: 13.06.2023.
  • Wu, C., Yang, Y., Sun, K., Luo, D., Liu, X., Xiao, H., Dai, H., 2023. Lignin decolorization in organic solvents and their application in natural sunscreen. International Journal of Biological Macromolecules, 237: 124081. https://doi.org/10.1016/j.ijbiomac.2023.124081
  • Xu, F., Sun, J., Wehrs, M., Kim, K.H., Rau, S.S., Chan, A.M., Singh, S., 2018. Biocompatible choline-based deep eutectic solvents enable one-pot production of cellulosic ethanol. ACS Sustainable Chemistry & Engineering, 6(7): 8914-8919. https://doi.org/10.1021/acssuschemeng.8b01271
  • Yan, Z., Wang, Z., Chen, Y., Liu, C., Liu, Y., Li, R., Si, M., Shi, Y., 2023. Preparation of lignin nanoparticles via ultra‐fast microwave‐assisted fractionation of lignocellulose using ternary deep eutectic solvents. Biotechnology and Bioengineering, 120(6): 1557-1568. https://doi.org/10.1002/bit.28373
  • Zhang, Q., Vigier, K.D.O., Royer, S., Jerome, F., 2012. Deep eutectic solvents: Syntheses, properties and applications. Chem Soc Rev, 41:7108-7146. https://doi.org/10.1039/C2CS35178A
  • Zhang, M., Zhang, X., Liu, Y., Wu, K., Zhu, Yi, Lu, H., Liang, B., 2021. Insights into the relationships between physicochemical properties, solvent performance, and applications of deep eutectic solvents. Environ Sci Pollut Res, 28(27):35537-35563. https://doi.org/10.1007/s11356-021-14485-2

Üçlü derin ötektik çözücülerin fıstık çamı kozalağının delignifikasyonuna etkisi

Year 2024, Volume: 25 Issue: 1, 107 - 112, 30.03.2024
https://doi.org/10.18182/tjf.1379904

Abstract

Uygun maliyetli olmaları ve çevre dostu doğaları nedeniyle derin ötektik çözücüler (DÖÇ), biyokütle dönüşümü ve yeşil kimyasalların üretimindeki uygulamalar için büyük potansiyele sahiptir. Bu çalışmada, Fıstık çamı (Pinus pinea L.) kozalaklarının delignifikasyonu yedi farklı üçlü derin ötektik çözücü (ÜDÖÇ) kullanılarak gerçekleştirildi. Fıstık çamı kozalağı örneklerinin ÜDÖÇ işlemleri mikrodalgada 150 °C'de 30 dakika süreyle gerçekleştirildi. ÜDÖÇ’lerin iki bazlı bileşenleri kolin klorür (ChCl - 1 mol) ve laktik asittir (LA - 9 mol). ÜDÖÇ’in üçüncü bileşeni olarak formik asit (FA – 2 mol), borik asit (BA – 1 mol), asetik asit (AA – 2 mol), sorbitol (S – 1 mol), trietilen glikol (TEG – 2 mol), etilen glikol (EG –2 mol) ve gliserol (G - 2 mol) kullanıldı. ChCl:LA:BA en düşük katı kalıntı verimini (%57,90) ve en yüksek lignin saflığını (%86,89) verdi. Kontrolün Klason lignin içeriği %35.08 idi. En düşük lignin içeriği (%19,42) ve en yüksek delignifikasyon (%68,89) ChCl:LA:FA işlemiyle elde edildi. En düşük ve en yüksek L* değerleri sırasıyla 21,76 ve 37,36 ile ChCl:LA:BA ve ChCl:LA:EG işlemlerinden elde edildi. Bu sonuçlar, ÜDÖÇ 'ün üçüncü bileşeninin fıstık çamı kozalağının delignifikasyon verimini etkilediğini göstermiştir.

References

  • Ayrilmis, N., Buyuksari, U., Avci, E., Koc, E., 2009. Utilization of pine (Pinus pinea L.) cone in manufacture of wood based composite. Forest Ecology and Management, 259(1): 65-70. https://doi.org/10.1016/j.foreco.2009.09.043
  • Buyuksari, U., Avci, E., Ayrilmis, N., Akkilic, H., 2010. Effect of pine cone ratio on the wettability and surface roughness of particleboard. BioResources, 5(3): 1824-1833.
  • Calama, R., Gordo, J., Madrigal, G., Mutke, S., Conde, M., Montero, G., Pardos, M., 2016. Enhanced tools for predicting annual stone pine (Pinus pinea L.) cone production at tree and forest scale in Inner Spain. Forest Systems, 25(3): e079. http://dx.doi.org/10.5424/fs/2016253-09671
  • Choi, K.H., Lee, M.K., Ryu, J.Y., 2016a. Effect of molar ratios of DES on lignin contents and handsheets properties of thermomechanical pulp. J Korea TAPPI, 48(2): 8-33. https://doi.org/10.7584/ktappi.2016.48.2.028
  • Choi, K.H., Nam, Y.S., Lee, M.K., Ryu, J.Y., 2016b. Changes of BCTMP fibers and handsheets properties by the treatment of LB DES at different molar ratios. J Korea TAPPI, 48(7): 5-81. https://doi.org/10.7584/ktappi.2016.48.1.075.
  • Costa, R.A., Lourenço, A., Patrício, H., Quilhó, T., Gominho, J., 2023. Valorization of Pine Nut Industry Residues on a Biorefinery Concept. Waste and Biomass Valorization, 1-19. https://doi.org/10.1007/s12649-023-02068-w
  • Dönmez, I.E., Hafizoğlu, H., Kilic, A., Tümen, I., Sivrikaya, H., 2012. Chemical composition of fourteen different coniferous species cones growing naturally in Turkey. Wood Res, 57(2): 339-344.
  • Ee, L.Y., Tan, Y.K., Miao, J., Chu, H.T., Li, S.F.Y., 2023. High-purity lignin from selective biomass fractionation with ternary deep eutectic solvents. Green Chemistry, 25(8): 3137-3151. https://doi.org/10.1039/D3GC00080J
  • Fengel, D., Wegener, G., 1989. Wood: Chemistry, Ultrastructure, Reactions. Walter de Gruyter.
  • Gonultas, O., Ucar, M.B., 2013. Chemical characteristics of the cone and wood of Pinus pinea. Lignocellulose, 2(1): 262-269.
  • Gulsoy, S.K., Ozturk, F., 2015. Kraft pulping properties of European black pine cone. Maderas. Ciencia y Tecnología, 17(4): 875-882. http://dx.doi.org/10.4067/S0718-221X2015005000076
  • Gülsoy, S.K., Hafızoğlu, H., Pekgözlü, A.K., Tümen, İ., Dönmez, İ.E., Sivrikaya, H., 2017. Fiber properties of axis and scale of eleven different coniferous cones. Industrial Crops and Products, 109: 45-52. https://doi.org/10.1016/j.indcrop.2017. 07.044
  • Gülsoy, S.K., Küçüle, A., Gençer, A., 2022a. Deep eutectic solvent pulping from sorghum stalks. Maderas-Cienc Tecnol, 24(50):1-12. http://dx.doi.org/10.4067/s0718-221x2022000100450
  • Gülsoy, S.K., Gitti, Ü.B., Gençer, A., 2022b. Comparison of soda, kraft, and DES pulp properties of European black poplar. Drvna Industrija, 73(2): 215-226. https://doi.org/10.5552/drvind.2022. 2112
  • Gülsoy, S.K., 2023. Comparison of kraft and ternary deep eutectic solvent pulping of scots pine. Industrial Crops and Products, 206, 117596. https://doi.org/10.1016/j.indcrop.2023.117596
  • Jablonsky, M., Haz, A., Majova, V., 2019. Assessing the opportunities for applying deep eutectic solvents for fractionation of beech wood and wheat straw. Cellulose, 26: 7675-7684. https://doi.org/10.1007/s10570-019-02629-0
  • Ji, Q., Yu, X., Yagoub, A.E.G.A., Chen, L., Zhou, C., 2020. Efficient removal of lignin from vegetable wastes by ultrasonic and microwave-assisted treatment with ternary deep eutectic solvent. Industrial crops and products, 149:112357. https://doi.org/10.1016/j.indcrop.2020.112357
  • Kohli, K., Katuwal, S., Biswas, A., Sharma, B.K., 2020. Effective delignification of lignocellulosic biomass by microwave assisted deep eutectic solvents. Bioresour Technol, 303: 122897. https://doi.org/10.1016/j.biortech.2020.122897
  • Kwon, G.J., Yang, B.S., Park, C.W., Bandi, R., Lee, E.A., Park, J.S., Han, S.Y., Kim, N.H., Lee, S.H., 2020. Treatment effects of choline chloride-based deep eutectic solvent on the chemical composition of Red Pine (Pinus densiflora). BioResources, 15: 6457-6470.
  • Li, T., Lyu, G., Liu, Y., Lou, R., Lucia, L.A., Yang, G., Chen, J., Saeed, H.A., 2017. Deep Eutectic Solvents (DESs) for the isolation of willow lignin (Salix matsudana cv. Zhuliu). International Journal of Molecular Sciences, 18: 2266. https://doi.org/10.3390/ijms18112266
  • Liu, Q., Yuan, T., Fu, Q. J., Bai, Y.Y., Peng, F., Yao, C. L., 2019. Choline chloride-lactic acid deep eutectic solvent for delignification and nanocellulose production of moso bamboo. Cellulose, 26: 9447-9462. https://doi.org/10.1007/s10570-019-02726-0(0123456789
  • Lu, C., Xu, J., Xie, J., Zhu, S., Wang, B., Li, J., Chen, K., 2022. Preparation, characterization of light-colored lignin from corn stover by new ternary deep eutectic solvent extraction. International Journal of Biological Macromolecules, 222: 2512-2522. https://doi.org/10.1016/j.ijbiomac.2022.10.035
  • Lyu, G., Li, T., Ji, X., Yang, G., Liu, Y., Lucia, L.A., Chen, J., 2018. Characterization of lignin extracted from willow by deep eutectic solvent treatments. Polymers, 10(8): 869. https://doi.org/10.3390/polym10080869
  • Muley, P.D., Mobley, J.K., Tong, X., Novak, B., Stevens, J., Moldovan, D., Boldor, D., 2019. Rapid microwave-assisted biomass delignification and lignin depolymerization in deep eutectic solvents. Energy Conversion and Management, 196: 1080-1088. https://doi.org/10.1016/j.enconman.2019.06.070
  • Mutke, S., Calama, R., González-Martínez, S.C., Montero, G., Javier Gordo, F., Bono, D., Gil, L., 2012. Mediterranean stone pine: Botany and horticulture. Horticultural Reviews, 39(1): 153-201.
  • Mutke, S., Guadaño, C., Iglesias, S., León, D., Arribas, S., Gordo, J., Gil, L., Montero, G., 2017. Selection and identification of Spanish elite clones for Mediterranean pine nut as orchard crop. Options Méditerranéennes, Série A, Séminaires Méditerranéens, (122), 71-75.
  • Mutke, S., Vendramin, G.G., Fady, B., Bagnoli, F., González-Martínez, S.C., 2019. Molecular and quantitative genetics of stone pine (Pinus pinea). Chapter 3. Genetic diversity in horticultural plants, 61-84.
  • OGM, 2021. Ormancılık istatistikleri 2021. Resmi istatistik programı kapsamındaki ormancılık istatistikleri, Orman Genel Müdürlüğü, Ankara, https://www.ogm.gov.tr/tr/e-kutuphane/resmi-istatistikler, Accessed: 20.10.2023.
  • Pan, M., Zhao, G., Ding, C., Wu, B., Lian, Z., Lian, H., 2017. Physicochemical transformation of rice straw after pretreatment with a deep eutectic solvent of choline chloride/urea. Carbohydrate Polymers, 176: 307-314. https://doi.org/10.1016/j.carbpol.2017.08.088
  • Sbay, H., and Hajib, S., 2016. Le pin pignon: Une espèce de choix dans le contexte des changements climatiques. Centre de recherches forestières, Maroc, 77pp.
  • Smink, D., Juan, A., Schuur, B., Kersten, S.R., 2019. Understanding the role of choline chloride in deep eutectic solvents used for biomass delignification. Ind Eng Chem Res, 58:16348-16357. https://doi.org/10.1021/acs.iecr.9b03588
  • Sumer, Z., Van Lehn, R.C., 2022. Data-centric development of lignin structure–solubility relationships in deep eutectic solvents using molecular simulations. ACS Sustain Chem Eng, 10(31):10144-10156. https://doi.org/10.1021/acssuschemeng.2c01375
  • Web of Science, 2023. www.webofscience.com, Accessed: 13.06.2023.
  • Wu, C., Yang, Y., Sun, K., Luo, D., Liu, X., Xiao, H., Dai, H., 2023. Lignin decolorization in organic solvents and their application in natural sunscreen. International Journal of Biological Macromolecules, 237: 124081. https://doi.org/10.1016/j.ijbiomac.2023.124081
  • Xu, F., Sun, J., Wehrs, M., Kim, K.H., Rau, S.S., Chan, A.M., Singh, S., 2018. Biocompatible choline-based deep eutectic solvents enable one-pot production of cellulosic ethanol. ACS Sustainable Chemistry & Engineering, 6(7): 8914-8919. https://doi.org/10.1021/acssuschemeng.8b01271
  • Yan, Z., Wang, Z., Chen, Y., Liu, C., Liu, Y., Li, R., Si, M., Shi, Y., 2023. Preparation of lignin nanoparticles via ultra‐fast microwave‐assisted fractionation of lignocellulose using ternary deep eutectic solvents. Biotechnology and Bioengineering, 120(6): 1557-1568. https://doi.org/10.1002/bit.28373
  • Zhang, Q., Vigier, K.D.O., Royer, S., Jerome, F., 2012. Deep eutectic solvents: Syntheses, properties and applications. Chem Soc Rev, 41:7108-7146. https://doi.org/10.1039/C2CS35178A
  • Zhang, M., Zhang, X., Liu, Y., Wu, K., Zhu, Yi, Lu, H., Liang, B., 2021. Insights into the relationships between physicochemical properties, solvent performance, and applications of deep eutectic solvents. Environ Sci Pollut Res, 28(27):35537-35563. https://doi.org/10.1007/s11356-021-14485-2
There are 38 citations in total.

Details

Primary Language English
Subjects Forestry Biomass and Bioproducts
Journal Section Orijinal Araştırma Makalesi
Authors

Özge Özgürlük 0000-0002-7403-5885

Şeyma Özlüsoylu 0000-0003-3255-0341

Sezgin Koray Gülsoy 0000-0002-3079-9015

Ayben Kılıç Pekgözlü 0000-0002-3640-6198

Publication Date March 30, 2024
Submission Date October 23, 2023
Acceptance Date December 4, 2023
Published in Issue Year 2024 Volume: 25 Issue: 1

Cite

APA Özgürlük, Ö., Özlüsoylu, Ş., Gülsoy, S. K., Kılıç Pekgözlü, A. (2024). Effect of ternary deep eutectic solvents on delignification of stone pine cone. Turkish Journal of Forestry, 25(1), 107-112. https://doi.org/10.18182/tjf.1379904
AMA Özgürlük Ö, Özlüsoylu Ş, Gülsoy SK, Kılıç Pekgözlü A. Effect of ternary deep eutectic solvents on delignification of stone pine cone. Turkish Journal of Forestry. March 2024;25(1):107-112. doi:10.18182/tjf.1379904
Chicago Özgürlük, Özge, Şeyma Özlüsoylu, Sezgin Koray Gülsoy, and Ayben Kılıç Pekgözlü. “Effect of Ternary Deep Eutectic Solvents on Delignification of Stone Pine Cone”. Turkish Journal of Forestry 25, no. 1 (March 2024): 107-12. https://doi.org/10.18182/tjf.1379904.
EndNote Özgürlük Ö, Özlüsoylu Ş, Gülsoy SK, Kılıç Pekgözlü A (March 1, 2024) Effect of ternary deep eutectic solvents on delignification of stone pine cone. Turkish Journal of Forestry 25 1 107–112.
IEEE Ö. Özgürlük, Ş. Özlüsoylu, S. K. Gülsoy, and A. Kılıç Pekgözlü, “Effect of ternary deep eutectic solvents on delignification of stone pine cone”, Turkish Journal of Forestry, vol. 25, no. 1, pp. 107–112, 2024, doi: 10.18182/tjf.1379904.
ISNAD Özgürlük, Özge et al. “Effect of Ternary Deep Eutectic Solvents on Delignification of Stone Pine Cone”. Turkish Journal of Forestry 25/1 (March 2024), 107-112. https://doi.org/10.18182/tjf.1379904.
JAMA Özgürlük Ö, Özlüsoylu Ş, Gülsoy SK, Kılıç Pekgözlü A. Effect of ternary deep eutectic solvents on delignification of stone pine cone. Turkish Journal of Forestry. 2024;25:107–112.
MLA Özgürlük, Özge et al. “Effect of Ternary Deep Eutectic Solvents on Delignification of Stone Pine Cone”. Turkish Journal of Forestry, vol. 25, no. 1, 2024, pp. 107-12, doi:10.18182/tjf.1379904.
Vancouver Özgürlük Ö, Özlüsoylu Ş, Gülsoy SK, Kılıç Pekgözlü A. Effect of ternary deep eutectic solvents on delignification of stone pine cone. Turkish Journal of Forestry. 2024;25(1):107-12.