Trans-stilbene based spherical mesoporous organosilica material for loading and release of hydrophobic curcumin
Year 2022,
Volume: 5 Issue: 3, 214 - 221, 30.12.2022
Yaşar Gök
,
Osman Tayyar Arlı
,
Halil Zeki Gök
Abstract
In this study, a new mesoporous organosilica carrier system was synthesized in which hydrophobic trans-stilbene is placed on the walls of the drug delivery system. In this way, it is aimed to increase the interaction between hydrophobic curcumin and the silica surface and to load more curcumin into the drug delivery system. Trans-stilbene based mesoporous organosilica (TSMON) material was prepared in the reaction of (E)-1,2-bis(4-(3-(triethoxysilyl)propyl)phenyl)ethylene (1) with tetraethyl orthosilicate in the presence of triblock copolymer cetyltrimethylammonium bromide as a template in NaOH solution. Characterization of synthesized TSMON was done by FT-IR, XRD, BET, SEM and TGA analyses. Curcumin loading into the drug delivery system TSMON was carried out by mixing curcumin and TSMON in the dark for 24 hours. After the measurements made in the UV-Vis spectrophotometer, entrapment efficiency and loading capacity for TSMON were calculated as 22% and 18.2%, respectively. Next, the time dependent release of curcumin from Cur@TSMON at physiological and endosomal pH was studied. After 5 days of UV-Vis measurements, the percentage of curcumin release from Cur@TSMON was around 1% at pH = 5 and 7.4. The low release percentage obtained indicates a strong interaction between TSMON and curcumin penetrating the pores of the TSMON. This strong interaction allowed the drug delivery system TSMON to carry 99% of the payload without leaking at pH = 5 and 7.4 without pore capping agents.
Supporting Institution
TÜBİTAK
Thanks
This work was supported by The Scientific and Technological Research Council of Turkey (TUBITAK, project no: 120Z094).
References
- Sun T., Zhang Y. S., Pang B., Hyun D. C., Yang M., & Xia Y. Engineered nanoparticles for drug delivery in cancer therapy. Angewandte Chemie - International Edition, 53(46), (2014), 12320–12364.
Nasery M. M., Abadi B., Poormoghadam D., Zarrabi A., Keyhanvar P., Khanbabaei H., Ashrafizadeh M., Mohammadinejad R., Tavakol S., & Sethi G. Curcumin delivery mediated by bio-based nanoparticles: A review. Molecules, 25(3), (2020), 1–28.
- Ferlay J., Colombet M., Soerjomataram I., Mathers C., Parkin D.M., Piñeros M., Znaor A., Bray F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. International Journal of Breast Cancer. 144(8), (2019), 1941-1953.
- Nelson K. M., Dahlin J. L., Bisson J., Graham J., Pauli G. F., & Walters M. A. The Essential Medicinal Chemistry of Curcumin Journal of Medicinal Chemistry, 60(5), (2017) 1620–1637.
- Hatcher H., Planalp R., Cho J., Torti F.M., Torti S.V. Curcumin: from ancient medicine to current clinical trials. Cellular and Molecular Life Sciences. 65, (2008), 1631–1652.
- Jin R., Xia Y., Chen Q., Li W., Chen D., Ye H., et al. Da0324, an inhibitor of nuclear factor-kappaB activation, demonstrates selective antitumor activity on human gastric cancer cells. Drug Design, Development and Therapy, 10, (2016), 979–995.
- Kilicay E., Karahaliloglu Z., Hazer B., Tekin I.O., Denkbas E.B. Concanavaline A conjugated bacterial polyester-based PHBHHx nanoparticles loaded with curcumin for breast cancer therapy. Journal of Microencapsulation, 33, (2016), 1–12.
- Park W., Amin A.R., Chen Z.G., Shin D.M. New perspectives of curcumin in cancer prevention. Cancer Prevention Research, 6, (2013), 387–400.
- Huh K. M., Lee S. C., Cho Y. W., Lee J., Jeong J. H., & Park K. Hydrotropic polymer micelle system for delivery of paclitaxel. Journal of Controlled Release, 101(1-3 SPEC. ISS.), (2005), 59–68.
- Lim E., Kim T., Paik S., Haam S., Huh Y., & Lee K. Nanomaterials for Theranostics : Recent Advances and Future Challenges. Chemical Reviews, 115, (2015), 327-394.
- He Y., Shao L., Usman I., Hu Y., Pan A., Liang S., & Xu H. A pH-responsive dissociable mesoporous silica-based nanoplatform enabling efficient dual-drug co-delivery and rapid clearance for cancer therapy. Biomaterials Science, 21:8(12), (2020), 3418-3429.
- Giri S., Trewyn B.G., Lin V.S. Mesoporous silica nanomaterial-based biotechnological and biomedical delivery systems. 2, (2007), 99-111.
- Croissant J. G., Fatieiev Y., Julfakyan K., Lu J., Emwas A. H., Anjum D. H., Omar H., Tamanoi F., Zink J. I., & Khashab N. M. Biodegradable Oxamide-Phenylene-Based Mesoporous Organosilica Nanoparticles with Unprecedented Drug Payloads for Delivery in Cells. Chemistry - A European Journal, 22(42), (2016), 14806–14811.
- Croissant J. G., Fatieiev Y., Almalik A., & Khashab N. M. Mesoporous Silica and Organosilica Nanoparticles: Physical Chemistry, Biosafety, Delivery Strategies, and Biomedical Applications. Advanced Healthcare Materials, 7(4), (2018), 1700831
- Bharti C., Gulati N., Nagaic, U., & Pal A. Mesoporous silica nanoparticles in target drug delivery system: A review. International Journal of Pharmaceutical Investigation, 5(3), (2015) 124.
- Gök Y., Kılıçarslan S., Gök H.Z., Karayiğit İ.Ü. Enantioselective Ethylation of Various Aldehydes Catalyzed by Readily Accessible Chiral Diols. Chirality, 28, (2016), 593-598.
- Perrin DD, Armarego WFL (1989): Purification of Laboratory Chemicals. In: Second ed., Pergamon Press, Oxford.
Chen C., Sun W., Wang X., Wang Y., & Wang P. Rational design of curcumin loaded multifunctional mesoporous silica nanoparticles to enhance the cytotoxicity for targeted and controlled drug release. Materials Science and Engineering C, 85, (2018), 88–96.
- Sun X., Wang N., Yang L. Y., Ouyang X. K., & Huang F. Folic acid and pei modified mesoporous silica for targeted delivery of curcumin, Pharmaceutics, 11(9), (2019), 11090430.
- Palanikumar L., Kim H. Y., Oh J. Y., Thomas A. P., Choi E. S., Jeena M. T., Joo S. H., & Ryu J. H. Noncovalent surface locking of mesoporous silica nanoparticles for exceptionally high hydrophobic drug loading and enhanced colloidal stability. Biomacromolecules, 16(9), (2015), 2701–2714.
- Nasab N. A., Kumleh H. H., Beygzadeh M., Teimourian S., & Kazemzad M. Delivery of curcumin by a pH-responsive chitosan mesoporous silica nanoparticles for cancer treatment. Artificial Cells. Nanomedicine and Biotechnology, 46(1), (2018), 75–81. https://doi.org/10.1080/21691401.2017.1290648
- Sing K. S. W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem., 57, (1985), 603.
Year 2022,
Volume: 5 Issue: 3, 214 - 221, 30.12.2022
Yaşar Gök
,
Osman Tayyar Arlı
,
Halil Zeki Gök
References
- Sun T., Zhang Y. S., Pang B., Hyun D. C., Yang M., & Xia Y. Engineered nanoparticles for drug delivery in cancer therapy. Angewandte Chemie - International Edition, 53(46), (2014), 12320–12364.
Nasery M. M., Abadi B., Poormoghadam D., Zarrabi A., Keyhanvar P., Khanbabaei H., Ashrafizadeh M., Mohammadinejad R., Tavakol S., & Sethi G. Curcumin delivery mediated by bio-based nanoparticles: A review. Molecules, 25(3), (2020), 1–28.
- Ferlay J., Colombet M., Soerjomataram I., Mathers C., Parkin D.M., Piñeros M., Znaor A., Bray F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. International Journal of Breast Cancer. 144(8), (2019), 1941-1953.
- Nelson K. M., Dahlin J. L., Bisson J., Graham J., Pauli G. F., & Walters M. A. The Essential Medicinal Chemistry of Curcumin Journal of Medicinal Chemistry, 60(5), (2017) 1620–1637.
- Hatcher H., Planalp R., Cho J., Torti F.M., Torti S.V. Curcumin: from ancient medicine to current clinical trials. Cellular and Molecular Life Sciences. 65, (2008), 1631–1652.
- Jin R., Xia Y., Chen Q., Li W., Chen D., Ye H., et al. Da0324, an inhibitor of nuclear factor-kappaB activation, demonstrates selective antitumor activity on human gastric cancer cells. Drug Design, Development and Therapy, 10, (2016), 979–995.
- Kilicay E., Karahaliloglu Z., Hazer B., Tekin I.O., Denkbas E.B. Concanavaline A conjugated bacterial polyester-based PHBHHx nanoparticles loaded with curcumin for breast cancer therapy. Journal of Microencapsulation, 33, (2016), 1–12.
- Park W., Amin A.R., Chen Z.G., Shin D.M. New perspectives of curcumin in cancer prevention. Cancer Prevention Research, 6, (2013), 387–400.
- Huh K. M., Lee S. C., Cho Y. W., Lee J., Jeong J. H., & Park K. Hydrotropic polymer micelle system for delivery of paclitaxel. Journal of Controlled Release, 101(1-3 SPEC. ISS.), (2005), 59–68.
- Lim E., Kim T., Paik S., Haam S., Huh Y., & Lee K. Nanomaterials for Theranostics : Recent Advances and Future Challenges. Chemical Reviews, 115, (2015), 327-394.
- He Y., Shao L., Usman I., Hu Y., Pan A., Liang S., & Xu H. A pH-responsive dissociable mesoporous silica-based nanoplatform enabling efficient dual-drug co-delivery and rapid clearance for cancer therapy. Biomaterials Science, 21:8(12), (2020), 3418-3429.
- Giri S., Trewyn B.G., Lin V.S. Mesoporous silica nanomaterial-based biotechnological and biomedical delivery systems. 2, (2007), 99-111.
- Croissant J. G., Fatieiev Y., Julfakyan K., Lu J., Emwas A. H., Anjum D. H., Omar H., Tamanoi F., Zink J. I., & Khashab N. M. Biodegradable Oxamide-Phenylene-Based Mesoporous Organosilica Nanoparticles with Unprecedented Drug Payloads for Delivery in Cells. Chemistry - A European Journal, 22(42), (2016), 14806–14811.
- Croissant J. G., Fatieiev Y., Almalik A., & Khashab N. M. Mesoporous Silica and Organosilica Nanoparticles: Physical Chemistry, Biosafety, Delivery Strategies, and Biomedical Applications. Advanced Healthcare Materials, 7(4), (2018), 1700831
- Bharti C., Gulati N., Nagaic, U., & Pal A. Mesoporous silica nanoparticles in target drug delivery system: A review. International Journal of Pharmaceutical Investigation, 5(3), (2015) 124.
- Gök Y., Kılıçarslan S., Gök H.Z., Karayiğit İ.Ü. Enantioselective Ethylation of Various Aldehydes Catalyzed by Readily Accessible Chiral Diols. Chirality, 28, (2016), 593-598.
- Perrin DD, Armarego WFL (1989): Purification of Laboratory Chemicals. In: Second ed., Pergamon Press, Oxford.
Chen C., Sun W., Wang X., Wang Y., & Wang P. Rational design of curcumin loaded multifunctional mesoporous silica nanoparticles to enhance the cytotoxicity for targeted and controlled drug release. Materials Science and Engineering C, 85, (2018), 88–96.
- Sun X., Wang N., Yang L. Y., Ouyang X. K., & Huang F. Folic acid and pei modified mesoporous silica for targeted delivery of curcumin, Pharmaceutics, 11(9), (2019), 11090430.
- Palanikumar L., Kim H. Y., Oh J. Y., Thomas A. P., Choi E. S., Jeena M. T., Joo S. H., & Ryu J. H. Noncovalent surface locking of mesoporous silica nanoparticles for exceptionally high hydrophobic drug loading and enhanced colloidal stability. Biomacromolecules, 16(9), (2015), 2701–2714.
- Nasab N. A., Kumleh H. H., Beygzadeh M., Teimourian S., & Kazemzad M. Delivery of curcumin by a pH-responsive chitosan mesoporous silica nanoparticles for cancer treatment. Artificial Cells. Nanomedicine and Biotechnology, 46(1), (2018), 75–81. https://doi.org/10.1080/21691401.2017.1290648
- Sing K. S. W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem., 57, (1985), 603.