Research Article
BibTex RIS Cite

RESULTS OF EXPERIMENTAL STUDIES AT CYLINDRICAL INERTIAL ELECTROSTATIC CONFINEMENT FUSION DEVICE

Year 2018, Volume: 30 Issue: 1, 7 - 12, 26.06.2018

Abstract



In this study, a cylindrical
inertial electrostatic confinement (IEC) device, designed and constructed at
the Saraykoy Nuclear Research and Training Center, is introduced and the first
results are reported. This device was designed for neutronic fusion studies based
on Deuterium–Deuterium (D-D) reactions. The cylindrical IEC device consists of cylindrical
anode and a grid-type cylindrical cathode. The anode, also called vacuum
chamber, is held at ground potential and has 11 ports to connect the vacuum
pump, vacuum gauge, high voltage load, ion sources and other peripherals. The
cathode is placed at the center of chamber and high negative voltage is applied
to it. Maximum cathode voltage is 95 kV. The operating pressure range is
between 1x10-4 mbar and 9x10-4 mbar. Two Inductively
Coupled Plasma (ICP) type ion sources are used to increase the ion
concentration and hence the fusion probability at the axis of the cathode. The
neutrons generated by fusion reactions are detected by a helium-3 filled
neutron detector. The maximum total neutron production rate is measured at
around 5x107 neutrons per second with the present configuration.




References

  • Ashley, R.P., Kulcinski, G.L., Santarius, J.F., Murali, S.K. and Piefer, G. (1999, October) D-3He Fusion in an Inertial Electrostatic Confinement Device. 18th IEEE/NPSS Symposium on Fusion Engineering, IEEE #99CH37050, Albuquerque, NM, USA.
  • Ashley, R.P., Kulcinski, G.L., Santarius, J.F., Murali, S.K., Piefer, G.R., Cipiti, B.B., Radel, R. F. and Weidner, J. (2003). Recent Progress in Steady State Fusion Using D-3He. Fusion Science and Technology, 44(2), 564-566. Doi: 10.13182/FST03-A398
  • Boris, D.R., Alderson, E., Becerra, G., Donovan, D.C., Egle, B., Emmert, G.A., Garrison, L., Kulcinski, G.L., Santarius, J.F., Schuff, C. and Zenobia, S.J. (2009). Deuterium anions in inertial electrostatic confinement devices. Phys. Rev., E 80, 036408. Doi:10.1103/PhysRevE.80.036408
  • Bölükdemir, A.S., Akgün, Y. and Alaçakır, A. (2013). Preliminary results from experimental studies of low pressure inertial electrostatic confinement device. Journal of Fusion Energy, 32, 561–565. Doi: 10.1007/s10894-013-9607-z
  • Bölükdemir, A.S. (2013). The construction and experimental studies of inertial electrostatic confinement fusion device in low pressure (PhD. Thesis, Gazi University, Ankara). Erişim adresi: http://www.acikarsiv.gazi.edu.tr/index.php?menu=2&secim=10&YayinBIK=9480#
  • Chacon, L., Bromley, B. and Miley, G. (1997, October). Prospects of the Cylindrical IEC Fusion Device as a Neutron Source. Proceedings of the 17th IEEE/NPSS Symposium Fusion Engineering, San Diego, CA.
  • Damideh, V., Sadighzadeh, A., Koohi, A., Aslezaeem, A., Heidarnia, A., Abdollahi, N., Davani, F.A. and Damideh, R. (2012). Experimental Study of the Iranian Inertial ElectrostaticConfinement Fusion Device as a Continuous Neutron Generator. J Fusion Energ, 31, 109–111. Doi: 10.1007/s10894-011-9438-8
  • Donovan, D. C. (2011). Spatial profiling using a time of flight diagnostic and applications of deuterium-deuterium fusion in inertial electrostatic confinement fusion devices (PhD Thesis, University of Wisconsin Fusion Technology Institute, Madison). Erişim adresi: http://fti.neep.wisc.edu/pdf/fdm1392.pdf
  • Ebrahimi, E.H., Amrollahi, R., Sadighzadeh, A., Torabi, M., Sedaghat, M., Sabri, R., Pourshahab, B. and Damideh, V. (2013). The influence of cathode voltage and discharge current on neutron production rate of inertial electrostatic confinement fusion (IR-IECF). J Fusion Energ, 32(1), 62–65. Doi:10.1007/s10894-012-9524-6
  • Farnsworth, P.T. patented June 28 (1966). Electric discharge device for producing interaction between nuclei. U.S. Patent #3,258,402. Erişim Adresi: https://patentimages.storage.googleapis.com/40/00/36/4437c3b8018b75/US3258402.pdf
  • Hirsch, R. L. (1967). Inertial‐Electrostatic Confinement of Ionized Fusion Gases. Journal of Applied Physics, 38, 4522. Doi:10.1063/1.1709162
  • Krane K.S. (1988). Introductory nuclear physics (2nd. ed.). New York: John Wiley.
  • Masuda, K., Taruya, K., Koyama, T., Hashimoto, H., Yoshikawa, K., Toku H., Yamamoto, Y., Ohnishi, M., Horiike, H. and Inoue, N. (2001). Performance characteristics of an inertial electrostatic confinement fusion device with a triple-grid system. Fusion Technology, 39(3), 1202–1210. Doi:10.13182/FST01-A174
  • Matsuura, H., Takaki, T., Funakoshi, K., Nakao, Y. and Kudo, K. (2000). Ion distribution function and radial profile of neutron production rate in spherical inertial electrostatic confinement plasmas. Nucl. Fusion, 40(12), 1951–1954. Erişim adresi: http://iopscience.iop.org/article/10.1088/0029-5515/40/12/101/pdf
  • Meyer, R.M., Loyalka, S.K. and Prelas, M.A. (2005). Potential well structures in spherical inertial electrostatic confinement devices. IEEE Transactions on Plasma Science, 33(4), 1377–1394. Doi:10.1109/TPS.2005.852350
  • Miley, G.H., Nadler, J., Hochberg, T., Gu, Y. and Barnouin, O. (1991). Inertial-Electrostatic Confinement: An Approach to Burning Advanced Fuels. Fusion Technol., 19, 840–845. Doi:10.13182/FST91-3
  • Miley, G.H., (1999). A portable neutron/tunable X-ray source based on inertial electrostatic conÞnement. Nuclear Instruments and Methods in Physics Research A., 422, 16–20. Erişim adresi: http://fsl.npre.illinois.edu/IEC/Miley_Phys.Research.(1999).pdf
  • Miley, G.H. and Sved, J. (2000). The IEC star-mode fusion neutron source for NAA—status and next-step designs. Applied Radiation and Isotopes, 53, 779–783. Erişim adresi: https://www.ncbi.nlm.nih.gov/pubmed/11003520
  • Miley, G.H. and Murali, S.K. (2014). Inertial electrostatic confinement (IEC) fusion. Doi: 10.1007/978-1-4614-9338-9.
  • Nebel, R. A and Barnes, D.C. (1998). The Periodically Oscillating Plasma Sphere. Fusion Science and Technology, 34(1), 28–45. Doi:10.13182/FST98-A51
  • Ohnishi, M., Sato, K. H., Yamamoto, Y. and Yoshikawa, Y. (1997). Correlation between potential well structure and neutron production in inertial electrostatic confinement fusion. Nuclear Fusion, 37(5), 611-619. Erişim adresi: http://iopscience.iop.org/article/10.1088/0029-5515/37/5/I04/pdf
  • Ohnishi, M., Hoshino, C., Yoshikawa, K., Masuda, K. and Yamamoto, Y. (2000). Beam optics in inertial electrostatic confinement fusion. Review of Scientific Instruments, 71(2), 1210-1212. Doi:10.1063/1.1150430
  • Oura, S., Yamauchi, K., Watanabe, M., Okino, A., Kohno, T. and Hotta, E. (2006). Neutron and Proton Measurements of Cylindrical Radially Convergent Beam Fusion. Journal of the Korean Physical Society, 49, 384-388. Erişim adresi: http://www.jkps.or.kr/journal/list.html?page=7&sort=&scale=10&key=&keyword=&s_v=49&s_n=9(6)&pn=vol&TG=vol&year=2006
  • Piefer, G. R., Santarius, J. F., Ashley, R. P. and Kulcinski, G. L. (2005). Design of an ion source for 3He Fusion in a low pressure IEC device. Fusion Science and Technology, 47(4): 1255-1259. Doi: 10.13182/FST05-A860
  • Rider, T. (1995). A general critique of inertial‐electrostatic confinement fusion systems. Physics of Plasmas, 2(6), 1853-1872. Doi:10.1063/1.871273
  • Takamatsu, T., Masuda, K., Kyunai, T., Toku H. and Yoshikawa, K. (2006). Inertial electrostatic confinement fusion device with an ion source using a magnetron discharge. Nucl. Fusion, 46, 142–148. Doi:10.1088/0029-5515/46/1/016
  • Weidner, J. W. (2003). The production of 13N from inertial electrostatic confinement fusion (Master of Science, University of Wisconsin Fusion Technology Institute, Madison). Erişim adresi: http://fti.neep.wisc.edu/pdf/fdm1210.pdf
  • Yamauchi, K., Ogasawara, K., Watanabe, M., Okino, A., Sunaga Y. and Hotta, E. (2001). Neutron Production Characteristics and Emission Properties of Spherically Convergent Beam Fusion. Fusion Science and Technology, 39(3), 1182-1187. Doi: 10.13182/FST01-A171

SİLİNDİRİK EYLEMSİZ ELEKTROSTATİK SIKIŞTIRMALI FÜZYON CİHAZINDA ALINAN DENEYSEL SONUÇLAR

Year 2018, Volume: 30 Issue: 1, 7 - 12, 26.06.2018

Abstract



Bu
çalışmada, Sarayköy Nükleer Araştırma ve Eğitim Merkezi (SANAEM)’ nde
tasarlanıp kurulan silindirik eylemsiz elektrostatik sıkıştırmalı füzyon cihazı
ile alınan ilk sonuçlar sunulmuştur. Bu cihaz, Döteryum-Döteryum (D-D) füzyon reaksiyonlarına
dayanan nötron çalışmaları için tasarlanmış olup silindirik anot ve ızgara tipi
silindirik katottan oluşmaktadır.
Vakum odacığı olarak da adlandırılan
anot, sıfır potansiyelde tutulur ve vakum pompası, vakum ölçer, yüksek voltaj
besleme elemanı, iyon kaynakları ve sistem için gerekli olabilecek diğer bağlantılar
için 11 adet girişe sahiptir. Katot ise vakum odacığının merkezine
yerleştirilir ve katoda yüksek negatif voltaj uygulanır. Uygulanan maksimum
katot voltajı 95 kV’dir. Çalışma basıncı 1x10-4 mbar ve 9x10-4 mbar
aralığındadır. Vakum odacığındaki iyon konsantrasyonunu arttırmak için iki adet
indüktif eşleşmiş plazma (ICP) tipi iyon kaynağı kullanılır ve böylece katot
ekseni boyunca füzyon olasılığı da artar. Füzyon reaksiyonları ile üretilen
nötronlar, helyum-3 dolu bir nötron detektörü ile tespit edilir.
Mevcut
sistem ile yapılan çalışma sonucunda elde edilen maksimum toplam nötron sayısı
yaklaşık olarak 5x107 nötron/saniyedir.




References

  • Ashley, R.P., Kulcinski, G.L., Santarius, J.F., Murali, S.K. and Piefer, G. (1999, October) D-3He Fusion in an Inertial Electrostatic Confinement Device. 18th IEEE/NPSS Symposium on Fusion Engineering, IEEE #99CH37050, Albuquerque, NM, USA.
  • Ashley, R.P., Kulcinski, G.L., Santarius, J.F., Murali, S.K., Piefer, G.R., Cipiti, B.B., Radel, R. F. and Weidner, J. (2003). Recent Progress in Steady State Fusion Using D-3He. Fusion Science and Technology, 44(2), 564-566. Doi: 10.13182/FST03-A398
  • Boris, D.R., Alderson, E., Becerra, G., Donovan, D.C., Egle, B., Emmert, G.A., Garrison, L., Kulcinski, G.L., Santarius, J.F., Schuff, C. and Zenobia, S.J. (2009). Deuterium anions in inertial electrostatic confinement devices. Phys. Rev., E 80, 036408. Doi:10.1103/PhysRevE.80.036408
  • Bölükdemir, A.S., Akgün, Y. and Alaçakır, A. (2013). Preliminary results from experimental studies of low pressure inertial electrostatic confinement device. Journal of Fusion Energy, 32, 561–565. Doi: 10.1007/s10894-013-9607-z
  • Bölükdemir, A.S. (2013). The construction and experimental studies of inertial electrostatic confinement fusion device in low pressure (PhD. Thesis, Gazi University, Ankara). Erişim adresi: http://www.acikarsiv.gazi.edu.tr/index.php?menu=2&secim=10&YayinBIK=9480#
  • Chacon, L., Bromley, B. and Miley, G. (1997, October). Prospects of the Cylindrical IEC Fusion Device as a Neutron Source. Proceedings of the 17th IEEE/NPSS Symposium Fusion Engineering, San Diego, CA.
  • Damideh, V., Sadighzadeh, A., Koohi, A., Aslezaeem, A., Heidarnia, A., Abdollahi, N., Davani, F.A. and Damideh, R. (2012). Experimental Study of the Iranian Inertial ElectrostaticConfinement Fusion Device as a Continuous Neutron Generator. J Fusion Energ, 31, 109–111. Doi: 10.1007/s10894-011-9438-8
  • Donovan, D. C. (2011). Spatial profiling using a time of flight diagnostic and applications of deuterium-deuterium fusion in inertial electrostatic confinement fusion devices (PhD Thesis, University of Wisconsin Fusion Technology Institute, Madison). Erişim adresi: http://fti.neep.wisc.edu/pdf/fdm1392.pdf
  • Ebrahimi, E.H., Amrollahi, R., Sadighzadeh, A., Torabi, M., Sedaghat, M., Sabri, R., Pourshahab, B. and Damideh, V. (2013). The influence of cathode voltage and discharge current on neutron production rate of inertial electrostatic confinement fusion (IR-IECF). J Fusion Energ, 32(1), 62–65. Doi:10.1007/s10894-012-9524-6
  • Farnsworth, P.T. patented June 28 (1966). Electric discharge device for producing interaction between nuclei. U.S. Patent #3,258,402. Erişim Adresi: https://patentimages.storage.googleapis.com/40/00/36/4437c3b8018b75/US3258402.pdf
  • Hirsch, R. L. (1967). Inertial‐Electrostatic Confinement of Ionized Fusion Gases. Journal of Applied Physics, 38, 4522. Doi:10.1063/1.1709162
  • Krane K.S. (1988). Introductory nuclear physics (2nd. ed.). New York: John Wiley.
  • Masuda, K., Taruya, K., Koyama, T., Hashimoto, H., Yoshikawa, K., Toku H., Yamamoto, Y., Ohnishi, M., Horiike, H. and Inoue, N. (2001). Performance characteristics of an inertial electrostatic confinement fusion device with a triple-grid system. Fusion Technology, 39(3), 1202–1210. Doi:10.13182/FST01-A174
  • Matsuura, H., Takaki, T., Funakoshi, K., Nakao, Y. and Kudo, K. (2000). Ion distribution function and radial profile of neutron production rate in spherical inertial electrostatic confinement plasmas. Nucl. Fusion, 40(12), 1951–1954. Erişim adresi: http://iopscience.iop.org/article/10.1088/0029-5515/40/12/101/pdf
  • Meyer, R.M., Loyalka, S.K. and Prelas, M.A. (2005). Potential well structures in spherical inertial electrostatic confinement devices. IEEE Transactions on Plasma Science, 33(4), 1377–1394. Doi:10.1109/TPS.2005.852350
  • Miley, G.H., Nadler, J., Hochberg, T., Gu, Y. and Barnouin, O. (1991). Inertial-Electrostatic Confinement: An Approach to Burning Advanced Fuels. Fusion Technol., 19, 840–845. Doi:10.13182/FST91-3
  • Miley, G.H., (1999). A portable neutron/tunable X-ray source based on inertial electrostatic conÞnement. Nuclear Instruments and Methods in Physics Research A., 422, 16–20. Erişim adresi: http://fsl.npre.illinois.edu/IEC/Miley_Phys.Research.(1999).pdf
  • Miley, G.H. and Sved, J. (2000). The IEC star-mode fusion neutron source for NAA—status and next-step designs. Applied Radiation and Isotopes, 53, 779–783. Erişim adresi: https://www.ncbi.nlm.nih.gov/pubmed/11003520
  • Miley, G.H. and Murali, S.K. (2014). Inertial electrostatic confinement (IEC) fusion. Doi: 10.1007/978-1-4614-9338-9.
  • Nebel, R. A and Barnes, D.C. (1998). The Periodically Oscillating Plasma Sphere. Fusion Science and Technology, 34(1), 28–45. Doi:10.13182/FST98-A51
  • Ohnishi, M., Sato, K. H., Yamamoto, Y. and Yoshikawa, Y. (1997). Correlation between potential well structure and neutron production in inertial electrostatic confinement fusion. Nuclear Fusion, 37(5), 611-619. Erişim adresi: http://iopscience.iop.org/article/10.1088/0029-5515/37/5/I04/pdf
  • Ohnishi, M., Hoshino, C., Yoshikawa, K., Masuda, K. and Yamamoto, Y. (2000). Beam optics in inertial electrostatic confinement fusion. Review of Scientific Instruments, 71(2), 1210-1212. Doi:10.1063/1.1150430
  • Oura, S., Yamauchi, K., Watanabe, M., Okino, A., Kohno, T. and Hotta, E. (2006). Neutron and Proton Measurements of Cylindrical Radially Convergent Beam Fusion. Journal of the Korean Physical Society, 49, 384-388. Erişim adresi: http://www.jkps.or.kr/journal/list.html?page=7&sort=&scale=10&key=&keyword=&s_v=49&s_n=9(6)&pn=vol&TG=vol&year=2006
  • Piefer, G. R., Santarius, J. F., Ashley, R. P. and Kulcinski, G. L. (2005). Design of an ion source for 3He Fusion in a low pressure IEC device. Fusion Science and Technology, 47(4): 1255-1259. Doi: 10.13182/FST05-A860
  • Rider, T. (1995). A general critique of inertial‐electrostatic confinement fusion systems. Physics of Plasmas, 2(6), 1853-1872. Doi:10.1063/1.871273
  • Takamatsu, T., Masuda, K., Kyunai, T., Toku H. and Yoshikawa, K. (2006). Inertial electrostatic confinement fusion device with an ion source using a magnetron discharge. Nucl. Fusion, 46, 142–148. Doi:10.1088/0029-5515/46/1/016
  • Weidner, J. W. (2003). The production of 13N from inertial electrostatic confinement fusion (Master of Science, University of Wisconsin Fusion Technology Institute, Madison). Erişim adresi: http://fti.neep.wisc.edu/pdf/fdm1210.pdf
  • Yamauchi, K., Ogasawara, K., Watanabe, M., Okino, A., Sunaga Y. and Hotta, E. (2001). Neutron Production Characteristics and Emission Properties of Spherically Convergent Beam Fusion. Fusion Science and Technology, 39(3), 1182-1187. Doi: 10.13182/FST01-A171
There are 28 citations in total.

Details

Primary Language English
Subjects Metrology, Applied and Industrial Physics
Journal Section Articles
Authors

Arife Seda Bölükdemir

Betül Yasatekin

Emre Coşgun This is me

İhsan Kılıç This is me

Yeşim Olgaç This is me

Ali Alaçakır

Publication Date June 26, 2018
Published in Issue Year 2018 Volume: 30 Issue: 1

Cite

APA Bölükdemir, A. S., Yasatekin, B., Coşgun, E., Kılıç, İ., et al. (2018). RESULTS OF EXPERIMENTAL STUDIES AT CYLINDRICAL INERTIAL ELECTROSTATIC CONFINEMENT FUSION DEVICE. Turkish Journal of Nuclear Sciences, 30(1), 7-12.
AMA Bölükdemir AS, Yasatekin B, Coşgun E, Kılıç İ, Olgaç Y, Alaçakır A. RESULTS OF EXPERIMENTAL STUDIES AT CYLINDRICAL INERTIAL ELECTROSTATIC CONFINEMENT FUSION DEVICE. Turkish Journal of Nuclear Sciences. June 2018;30(1):7-12.
Chicago Bölükdemir, Arife Seda, Betül Yasatekin, Emre Coşgun, İhsan Kılıç, Yeşim Olgaç, and Ali Alaçakır. “RESULTS OF EXPERIMENTAL STUDIES AT CYLINDRICAL INERTIAL ELECTROSTATIC CONFINEMENT FUSION DEVICE”. Turkish Journal of Nuclear Sciences 30, no. 1 (June 2018): 7-12.
EndNote Bölükdemir AS, Yasatekin B, Coşgun E, Kılıç İ, Olgaç Y, Alaçakır A (June 1, 2018) RESULTS OF EXPERIMENTAL STUDIES AT CYLINDRICAL INERTIAL ELECTROSTATIC CONFINEMENT FUSION DEVICE. Turkish Journal of Nuclear Sciences 30 1 7–12.
IEEE A. S. Bölükdemir, B. Yasatekin, E. Coşgun, İ. Kılıç, Y. Olgaç, and A. Alaçakır, “RESULTS OF EXPERIMENTAL STUDIES AT CYLINDRICAL INERTIAL ELECTROSTATIC CONFINEMENT FUSION DEVICE”, Turkish Journal of Nuclear Sciences, vol. 30, no. 1, pp. 7–12, 2018.
ISNAD Bölükdemir, Arife Seda et al. “RESULTS OF EXPERIMENTAL STUDIES AT CYLINDRICAL INERTIAL ELECTROSTATIC CONFINEMENT FUSION DEVICE”. Turkish Journal of Nuclear Sciences 30/1 (June 2018), 7-12.
JAMA Bölükdemir AS, Yasatekin B, Coşgun E, Kılıç İ, Olgaç Y, Alaçakır A. RESULTS OF EXPERIMENTAL STUDIES AT CYLINDRICAL INERTIAL ELECTROSTATIC CONFINEMENT FUSION DEVICE. Turkish Journal of Nuclear Sciences. 2018;30:7–12.
MLA Bölükdemir, Arife Seda et al. “RESULTS OF EXPERIMENTAL STUDIES AT CYLINDRICAL INERTIAL ELECTROSTATIC CONFINEMENT FUSION DEVICE”. Turkish Journal of Nuclear Sciences, vol. 30, no. 1, 2018, pp. 7-12.
Vancouver Bölükdemir AS, Yasatekin B, Coşgun E, Kılıç İ, Olgaç Y, Alaçakır A. RESULTS OF EXPERIMENTAL STUDIES AT CYLINDRICAL INERTIAL ELECTROSTATIC CONFINEMENT FUSION DEVICE. Turkish Journal of Nuclear Sciences. 2018;30(1):7-12.