Research Article
BibTex RIS Cite

Isı Kuyuları Kullanılarak Bir Termoelektrik Jeneratörün Sıcak ve Soğuk Yüzeyindeki Isı Transferinin Sayısal Olarak İncelenmesi

Year 2023, Volume: 18 Issue: 2, 363 - 378, 01.09.2023
https://doi.org/10.55525/tjst.1277586

Abstract

Bu çalışmada, sıcak havanın atık ısısını geri kazanmak için ısı kuyuları kullanılarak bir termoelektrik jeneratörün (TEG) iki yüzeyindeki ısı transferinin iyileştirilmesi için yapılan Hesaplamalı Akışkanlar Dinamiği (HAD) analizleri sunulmaktadır. Bu bağlamda, ısı transferinin ve buna bağlı olarak TEG'in çıkış gücünün iyileştirilmesi için TEG'in sıcak ve soğuk yüzeyleri arasındaki sıcaklık farkı, sıcak ve soğuk yüzeyindeki ısı transfer hızı ve sıcak ve soğuk havanın giriş ve çıkışı arasındaki basınç düşüşü değişken sıcak hava giriş sıcaklığı ve Re sayısı için incelenmiştir. Sayısal sonuçlara göre, 600 °C sıcak hava giriş sıcaklığı ve 16800 Re sayısı için maksimum sıcaklık farkı sırasıyla 418,9 °C ve 478,1 °C olarak belirlenmiştir. Isı transferi açısından, 600 °C sıcak hava giriş sıcaklığı ve 16800 Re sayısı için sıcak yüzeydeki maksimum ısı transfer hızı sırasıyla 180,4 W ve 205,1 W olarak belirlenirken soğuk yüzeydeki maksimum ısı transfer hızı 168,0 W ve 192,6 W olarak belirlenmiştir. Maksimum basınç düşüşü, 16800 Re sayısı için 304,4 Pa olarak gerçekleşmiştir. Sonuç olarak, artan sıcak hava giriş sıcaklığı ve Re sayısı, sıcaklık farkı ve sıcak ve soğuk yüzeylerdeki ısı transfer hızlarında artışa neden olmuştur. Ayrıca, basınç düşüşü, artan Re sayısı ile artmıştır.

References

  • Erturun U, Erermis K, Mossi K. Influence of leg sizing and spacing on power generation and thermal stresses of thermoelectric devices. Appl. Energy 2015; 159: 19–27.
  • Ma Q, Fang H, Zhang M. Theoretical analysis and design optimization of thermoelectric generator. Appl. Therm. Eng. 2017; 127: 758–764.
  • Högblom O, Andersson R. A simulation framework for prediction of thermoelectric generator system performance. Appl. Energy 2016; 180: 472–482.
  • Esarte J, Min G, Rowe DM. Modelling heat exchangers for thermoelectric generators. J. Power Sources 2001; 93: 72–76.
  • Erturun U, Mossi K. Thermoelectric devices with rotated and coaxial leg configurations: Numerical analysis of performance. Appl. Therm. Eng. 2015; 85: 304–312.
  • Huang K, Li B, Yan Y, Li Y, Twaha S, Zhu J. A comprehensive study on a novel concentric cylindrical thermoelectric power generation system. Appl. Therm. Eng. 2017; 117: 501–510.
  • Liao M, He Z, Jiang C, Fan X, Li Y, Qi F. A three-dimensional model for thermoelectric generator and the influence of Peltier effect on the performance and heat transfer. Appl. Therm. Eng. 2018; 133: 493–500.
  • Lee H, Sharp J, Stokes D, Pearson M, Priya S. Modeling and analysis of the effect of thermal losses on thermoelectric generator performance using effective properties. Appl. Energy 2018; 211: 987–996.
  • Li W, Paul MC, Montecucco A, Siviter J, Knox AR, Sweet T, Gao M, Baig H, et al. Multiphysics simulations of thermoelectric generator modules with cold and hot blocks and effects of some factors. Case Stud. Therm. Eng. 2017; 10: 63–72.
  • Miao Z, Meng X, Zhou S, Zhu M. Investigation for power generation based on single-vertex movement of thermoelectric module. Sustainable Cities Soc. 2020; 53: 101929.
  • Nour Eddine A, Chalet D, Faure X, Aixala L, Chessé P. Optimization and characterization of a thermoelectric generator prototype for marine engine application. Energy 2018; 143: 682–695.
  • Nour Eddine A, Sara H, Chalet D, Faure X, Aixala L, Cormerais M. Modeling and simulation of a thermoelectric generator using bismuth telluride for waste heat recovery in automotive diesel engines. J. Electron. Mater. 2019; 48 (4): 2036–2045.
  • Gürbüz H, Akçay H, Topalcı Ü. Experimental investigation of a novel thermoelectric generator design for exhaust waste heat recovery in a gas-fueled SI engine. Appl. Therm. Eng. 2022; 216 (March): 119122.
  • Topalcı Ü, Gürbüz H, Akçay H, Demirtürk S. Buji Ateşlemeli̇ Bi̇r Motorda Egzoz Atık Isı Geri̇ Kazanımı İçi̇n Termoelektri̇k Jeneratör Modeli̇nin Geli̇şti̇ri̇lmesi̇. Mühendislik Bilimleri ve Tasarım Dergisi 2020; 8 (2): 582–596.
  • Kunt MA, Gunes H. An experimental study on design and performance of a waste heat recovery system with a thermoelectric generator to be used in exhaust systems of motorcycle engines. Proceedings of the Institution of Mechanical Engineers, Part E: J. Process Mech. Eng. 2021; 236 (3): 779–789.
  • Schwurack R, Unz S, Beckmann M. The Importance of considering parasitic heat losses when modeling teg performance for high-temperature applications. J. Electron. Mater. 2019; 48 (4): 1917–1925.
  • Akçay H, Gürbüz H, Demirtürk S, Topalcı Ü. Tipik Bir Buji Ateşlemeli Motorda Egzoz Atık Isısı Enerjisinin Geri Kazanımı İçin Geliştirilen Termoelektrik Jeneratörün HAD Analizi. El-Cezeri Fen ve Mühendislik Dergisi 2020; (3): 1088–1100.
  • Ökmen AB, Gürbüz H. CFD analysis of optimum exhaust heat exchanger arrangement in thermoelectric generator designed for exhaust waste heat recovery of spark ignition engine. El-Cezeri J. Sci. Eng. 2021; 8 (2): 1060–1080.
  • Wang Y, Dai C, Wang S. Theoretical analysis of a thermoelectric generator using exhaust gas of vehicles as heat source. Appl. Energy 2013; 112: 1171–1180.
  • Chen WH, Wang CM, Huat Saw L, Hoang AT, Bandala AA. Performance evaluation and improvement of thermoelectric generators (TEG): Fin installation and compromise optimization. Energ. Convers. Manage. 2021; 250 (October): 114858.
  • Kim TY, Lee S, Lee J. Fabrication of thermoelectric modules and heat transfer analysis on internal plate fin structures of a thermoelectric generator. Energ. Convers. Manage. 2016; 124: 470–479.
  • Zhou F, Catton I. Numerical evaluation of flow and heat transfer in plate-pin fin heat sinks with various pin cross-sections. Numer. Heat Tr. A-Appl. 2011; 60 (2): 107–128.

Numerical Investigation of Heat Transfer on Hot and Cold Sides of a Thermoelectric Generator Using Heat Sinks

Year 2023, Volume: 18 Issue: 2, 363 - 378, 01.09.2023
https://doi.org/10.55525/tjst.1277586

Abstract

This study represents Computational Fluid Dynamics (CFD) analyses to improve the heat transfer on the two sides of a thermoelectric generator (TEG) by utilizing heat sinks to recover the waste heat of hot air. In this respect, the temperature difference between the hot and cold sides of the TEG, the heat transfer rate on the hot and cold sides and the pressure drop between the inlet and outlet of the hot and cold air are investigated for varying hot air inlet temperature and Re number in terms of improving the heat transfer and accordingly the output power of the TEG. According to the numerical results, the maximum temperature difference between the hot and cold sides of the TEG concerning hot air inlet temperature of 600 °C and Re number of 16800 is specified as 418.9 °C and 478.1 °C, respectively. In terms of heat transfer, maximum heat transfer rate on the hot side for hot air inlet temperature of 600 °C and Re number of 16800 is specified as 180.4 W and 205.1 W, respectively, while the maximum heat transfer rate on the cold side is specified as 168.0 W and 192.6 W. The maximum pressure drop occurs as 304.4 Pa for the Re number of 16800. As a result, increasing hot air inlet temperature and Re number yields an increase in the temperature difference, the heat transfer rate on the hot side, and the heat transfer rate on the cold side. Besides, pressure drop increases with increasing Re number.

References

  • Erturun U, Erermis K, Mossi K. Influence of leg sizing and spacing on power generation and thermal stresses of thermoelectric devices. Appl. Energy 2015; 159: 19–27.
  • Ma Q, Fang H, Zhang M. Theoretical analysis and design optimization of thermoelectric generator. Appl. Therm. Eng. 2017; 127: 758–764.
  • Högblom O, Andersson R. A simulation framework for prediction of thermoelectric generator system performance. Appl. Energy 2016; 180: 472–482.
  • Esarte J, Min G, Rowe DM. Modelling heat exchangers for thermoelectric generators. J. Power Sources 2001; 93: 72–76.
  • Erturun U, Mossi K. Thermoelectric devices with rotated and coaxial leg configurations: Numerical analysis of performance. Appl. Therm. Eng. 2015; 85: 304–312.
  • Huang K, Li B, Yan Y, Li Y, Twaha S, Zhu J. A comprehensive study on a novel concentric cylindrical thermoelectric power generation system. Appl. Therm. Eng. 2017; 117: 501–510.
  • Liao M, He Z, Jiang C, Fan X, Li Y, Qi F. A three-dimensional model for thermoelectric generator and the influence of Peltier effect on the performance and heat transfer. Appl. Therm. Eng. 2018; 133: 493–500.
  • Lee H, Sharp J, Stokes D, Pearson M, Priya S. Modeling and analysis of the effect of thermal losses on thermoelectric generator performance using effective properties. Appl. Energy 2018; 211: 987–996.
  • Li W, Paul MC, Montecucco A, Siviter J, Knox AR, Sweet T, Gao M, Baig H, et al. Multiphysics simulations of thermoelectric generator modules with cold and hot blocks and effects of some factors. Case Stud. Therm. Eng. 2017; 10: 63–72.
  • Miao Z, Meng X, Zhou S, Zhu M. Investigation for power generation based on single-vertex movement of thermoelectric module. Sustainable Cities Soc. 2020; 53: 101929.
  • Nour Eddine A, Chalet D, Faure X, Aixala L, Chessé P. Optimization and characterization of a thermoelectric generator prototype for marine engine application. Energy 2018; 143: 682–695.
  • Nour Eddine A, Sara H, Chalet D, Faure X, Aixala L, Cormerais M. Modeling and simulation of a thermoelectric generator using bismuth telluride for waste heat recovery in automotive diesel engines. J. Electron. Mater. 2019; 48 (4): 2036–2045.
  • Gürbüz H, Akçay H, Topalcı Ü. Experimental investigation of a novel thermoelectric generator design for exhaust waste heat recovery in a gas-fueled SI engine. Appl. Therm. Eng. 2022; 216 (March): 119122.
  • Topalcı Ü, Gürbüz H, Akçay H, Demirtürk S. Buji Ateşlemeli̇ Bi̇r Motorda Egzoz Atık Isı Geri̇ Kazanımı İçi̇n Termoelektri̇k Jeneratör Modeli̇nin Geli̇şti̇ri̇lmesi̇. Mühendislik Bilimleri ve Tasarım Dergisi 2020; 8 (2): 582–596.
  • Kunt MA, Gunes H. An experimental study on design and performance of a waste heat recovery system with a thermoelectric generator to be used in exhaust systems of motorcycle engines. Proceedings of the Institution of Mechanical Engineers, Part E: J. Process Mech. Eng. 2021; 236 (3): 779–789.
  • Schwurack R, Unz S, Beckmann M. The Importance of considering parasitic heat losses when modeling teg performance for high-temperature applications. J. Electron. Mater. 2019; 48 (4): 1917–1925.
  • Akçay H, Gürbüz H, Demirtürk S, Topalcı Ü. Tipik Bir Buji Ateşlemeli Motorda Egzoz Atık Isısı Enerjisinin Geri Kazanımı İçin Geliştirilen Termoelektrik Jeneratörün HAD Analizi. El-Cezeri Fen ve Mühendislik Dergisi 2020; (3): 1088–1100.
  • Ökmen AB, Gürbüz H. CFD analysis of optimum exhaust heat exchanger arrangement in thermoelectric generator designed for exhaust waste heat recovery of spark ignition engine. El-Cezeri J. Sci. Eng. 2021; 8 (2): 1060–1080.
  • Wang Y, Dai C, Wang S. Theoretical analysis of a thermoelectric generator using exhaust gas of vehicles as heat source. Appl. Energy 2013; 112: 1171–1180.
  • Chen WH, Wang CM, Huat Saw L, Hoang AT, Bandala AA. Performance evaluation and improvement of thermoelectric generators (TEG): Fin installation and compromise optimization. Energ. Convers. Manage. 2021; 250 (October): 114858.
  • Kim TY, Lee S, Lee J. Fabrication of thermoelectric modules and heat transfer analysis on internal plate fin structures of a thermoelectric generator. Energ. Convers. Manage. 2016; 124: 470–479.
  • Zhou F, Catton I. Numerical evaluation of flow and heat transfer in plate-pin fin heat sinks with various pin cross-sections. Numer. Heat Tr. A-Appl. 2011; 60 (2): 107–128.
There are 22 citations in total.

Details

Primary Language English
Subjects Numerical Methods in Mechanical Engineering, Mechanical Engineering (Other)
Journal Section TJST
Authors

Enes Kılınç 0000-0002-9585-998X

Publication Date September 1, 2023
Submission Date April 5, 2023
Published in Issue Year 2023 Volume: 18 Issue: 2

Cite

APA Kılınç, E. (2023). Numerical Investigation of Heat Transfer on Hot and Cold Sides of a Thermoelectric Generator Using Heat Sinks. Turkish Journal of Science and Technology, 18(2), 363-378. https://doi.org/10.55525/tjst.1277586
AMA Kılınç E. Numerical Investigation of Heat Transfer on Hot and Cold Sides of a Thermoelectric Generator Using Heat Sinks. TJST. September 2023;18(2):363-378. doi:10.55525/tjst.1277586
Chicago Kılınç, Enes. “Numerical Investigation of Heat Transfer on Hot and Cold Sides of a Thermoelectric Generator Using Heat Sinks”. Turkish Journal of Science and Technology 18, no. 2 (September 2023): 363-78. https://doi.org/10.55525/tjst.1277586.
EndNote Kılınç E (September 1, 2023) Numerical Investigation of Heat Transfer on Hot and Cold Sides of a Thermoelectric Generator Using Heat Sinks. Turkish Journal of Science and Technology 18 2 363–378.
IEEE E. Kılınç, “Numerical Investigation of Heat Transfer on Hot and Cold Sides of a Thermoelectric Generator Using Heat Sinks”, TJST, vol. 18, no. 2, pp. 363–378, 2023, doi: 10.55525/tjst.1277586.
ISNAD Kılınç, Enes. “Numerical Investigation of Heat Transfer on Hot and Cold Sides of a Thermoelectric Generator Using Heat Sinks”. Turkish Journal of Science and Technology 18/2 (September 2023), 363-378. https://doi.org/10.55525/tjst.1277586.
JAMA Kılınç E. Numerical Investigation of Heat Transfer on Hot and Cold Sides of a Thermoelectric Generator Using Heat Sinks. TJST. 2023;18:363–378.
MLA Kılınç, Enes. “Numerical Investigation of Heat Transfer on Hot and Cold Sides of a Thermoelectric Generator Using Heat Sinks”. Turkish Journal of Science and Technology, vol. 18, no. 2, 2023, pp. 363-78, doi:10.55525/tjst.1277586.
Vancouver Kılınç E. Numerical Investigation of Heat Transfer on Hot and Cold Sides of a Thermoelectric Generator Using Heat Sinks. TJST. 2023;18(2):363-78.