Research Article
BibTex RIS Cite

Kaotik Sistemler Tabanlı Kriptografik Tasarımlar için Bir Analiz Aracı

Year 2023, Volume: 18 Issue: 2, 387 - 395, 01.09.2023
https://doi.org/10.55525/tjst.1287092

Abstract

Kaos tabanlı kriptografi araştırmaları, kaotik sistemlerin uygulama alanlarından biridir. Kaos ve kriptografi arasındaki bağlantıdan yararlanan çok sayıda tasarım çalışması yapılmıştır. Bu çalışma, kriptografi tasarımlarının şifresini çözmek için bu ilişkinin nasıl kullanılacağını göstermiştir. Kriptografi protokollerini analiz etmek için kaos analiz tekniklerinin kullanılıp kullanılamayacağına bakılmıştır. Rastgele sayı üreteçlerinin etkinliği, bir kaos analizi tekniği olan Lyapunov üstelleri kullanılarak değerlendirilmiştir. Araştırmanın bulguları, Lyapunov üstellerinin rasgele sayı üreteçlerini değerlendirmede bir standart olarak kullanılabileceğini göstermiştir. Makale, rasgele sayı üreteçlerinin istatistiksel özelliklerini değerlendirmek için popüler bir analiz yöntemi olan NIST test takımıyla ilgili sorunları vurgulamaktadır. Önerilen yeni test aracı ile bu sorunların olmadığı görülmüştür. Bu bulgular, önerilen stratejinin gelecekteki çeşitli uygulamalarda başarıyla uygulanabileceğini göstermektedir.

Supporting Institution

TÜBİTAK

Project Number

120e444

References

  • Strogatz SH. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. Boca Raton, Fl Westview Press, 2014.
  • Özkaynak F. Brief review on application of nonlinear dynamics in image encryption. Nonlinear Dyn. 2018; 92: 305–313.
  • Li C, Zhang Y, Xie EY. When an attacker meets a cipher-image in 2018: A year in review. Journal of Information Security and Applications 2019; 48: 102361.
  • Özkaynak F. Role of NPCR and UACI tests in security problems of chaos based image encryption algorithms and possible solution proposals. 2017 International Conference on Computer Science and Engineering (UBMK); 2017; Antalya,Turkey. pp. 621-624
  • Liu X, Song Y, Jiang G. Hierarchical Bit-Level image encryption based on Chaotic Map and Feistel network. Int. J. Bifurcation Chaos 2019; 29: 1950016.
  • Shen Q, Liu Y. A novel digital image encryption algorithm based on orbit variation of phase diagram. Int. J. Bifurcation Chaos 2017; 27(13): 1750204.
  • Yin Q, Wang C. A new chaotic image encryption scheme using Breadth-First search and dynamic diffusion. Int. J. Bifurcation Chaos 2018; 28(4): 1850047.
  • Ye G, Pan C, Huang X, Zhao Z, He J. A chaotic image encryption algorithm based on information entropy. Int. J. Bifurcation Chaos 2018; 28(1): 1850010.
  • Chenaghlu MA, Jamali S, Nikzad-Khasmakhi N. A novel keyed parallel hashing scheme based on a new chaotic system. Chaos, Solitons & Fractals 2016; 87: 216–25.
  • Li Y, Li X. Chaotic hash function based on circular shifts with variable parameters. Chaos, Solitons & Fractals 2016; 91: 639–48.
  • Solami EA, Ahmad M, Volos C, Doja MN, Beg MMS. A new hyperchaotic System-Based design for efficient bijective Substitution-Boxes. Entropy 2018; 20: 525.
  • Tanyıldızı E, Özkaynak F. A new chaotic S-Box generation method using parameter optimization of one dimensional chaotic maps. IEEE Access 2019; 7: 117829–38.
  • Kanso A, Ghebleh M. A fast and efficient chaos-based keyed hash function. Commun. Nonlinear Sci. Numer. Simul. 2013; 18: 109–23.
  • Lambić D, Nikolić M. Pseudo-random number generator based on discrete-space chaotic map. Nonlinear Dyn. 2017; 90: 223–32.
  • Sahari ML, Boukemara I. A pseudo-random numbers generator based on a novel 3D chaotic map with an application to color image encryption. Nonlinear Dyn. 2018; 94: 723–44.
  • Zambrano-Serrano E, Munoz-Pacheco JM, Campos-Cantón E. Chaos generation in fractional-order switched systems and its digital implementation. AEU Int. J. Electron. Commun. AEU International 2017; 79: 43–52.
  • Avaroğlu E. Pseudorandom number generator based on Arnold cat map and statistical analysis. Turk. J. Electr. Eng. Comput. Sci. 2017; 25: 633–43.
  • Avaroğlu E, Koyuncu İ, Özer AB, Türk M. Hybrid pseudo-random number generator for cryptographic systems. Nonlinear Dyn. 2015; 82: 239–48.
  • Türk Ö. FPGA simulation of chaotic tent map‐based S‐Box design. Int. J. Circuit Theory Appl. 2022; 50: 1589–603.
  • Koyuncu İ, Özcerit AT, Pehlivan I, Avaroğlu E. Design and implementation of chaos based true random number generator on FPGA. 22nd Signal Processing and Communications Applications Conference; 2014; Trabzon, Turkey. pp. 236-239
  • Hilborn RC. Chaos and Nonlinear Dynamics: An Introduction for Scientists and Engineers. New York: Oxford Univ. Press, 2000.
  • Sprott JC. Chaos and Time-Series Analysis. USA : Oxford University Press, 2003.
  • Kantz H, Schreiber T. Nonlinear Time Series Analysis. Technometrics 2005; 47: 381.
  • Özkaynak F. Cryptographically secure random number generator with chaotic additional input. Nonlinear Dyn. 2014; 78: 2015–20.
  • Rukhin AL, Soto J, Nechvatal J, Smid ME, Barker EB. A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications., 2010.
  • Arroyo D, Hernández F, Orue AB. Cryptanalysis of a Classical Chaos-Based Cryptosystem with Some Quantum Cryptography Features. Int. J. Bifurcation Chaos 2017; 27: 1750004.
  • Li C, Lin D, Lu J, Hao F. Cryptanalyzing an image encryption algorithm based on autoblocking and electrocardiography. IEEE MultiMedia 2018; 25: 46–56.
  • Li C, Lo K-T. Optimal quantitative cryptanalysis of permutation-only multimedia ciphers against plaintext attacks. Signal Process. 2011; 91: 949–54.
  • Li S, Li C, Chen G, Bourbakis NG, Lo K-T. A general quantitative cryptanalysis of permutation-only multimedia ciphers against plaintext attacks. Signal Process. Image Commun. 2008; 23: 212–23.
  • Lin Z, Yu S, Feng X-L, Lu J. Cryptanalysis of a chaotic stream cipher and its improved scheme. Int. J. Bifurcation Chaos 2018; 28: 1850086.
  • Muhammad ZMZ, Özkaynak F. Security problems of chaotic image encryption algorithms based on cryptanalysis driven design technique. IEEE Access 2019; 7: 99945–53.
  • Ari A. CDIEA: Chaos and DNA based Image Encryption Algorithm. TJST 2023; 18: 261–73.

An Analysis Tool for Cryptographic Designs Based on Chaotic Systems

Year 2023, Volume: 18 Issue: 2, 387 - 395, 01.09.2023
https://doi.org/10.55525/tjst.1287092

Abstract

Chaos-based cryptography research is one of the application areas for chaotic systems. Numerous design studies have been put up that take use of the connection between chaos and cryptography. This study has demonstrated how to exploit this relationship to decrypt cryptography designs. It has been looked at if chaos analysis techniques may be used to analyze cryptography protocols. The effectiveness of random number generators has been evaluated using Lyapunov exponents, a chaos analysis technique. The findings of the investigation demonstrated that Lyapunov exponents can be utilized as a standard in assessing random number generators. The paper highlights the issues with the NIST test suite, a popular method of analysis for assessing the statistical characteristics of random number generators. These issues have been seen to not exist with the new test tool that has been suggested. These findings demonstrate that the suggested strategy can be successfully applied in a variety of future applications.

Project Number

120e444

References

  • Strogatz SH. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. Boca Raton, Fl Westview Press, 2014.
  • Özkaynak F. Brief review on application of nonlinear dynamics in image encryption. Nonlinear Dyn. 2018; 92: 305–313.
  • Li C, Zhang Y, Xie EY. When an attacker meets a cipher-image in 2018: A year in review. Journal of Information Security and Applications 2019; 48: 102361.
  • Özkaynak F. Role of NPCR and UACI tests in security problems of chaos based image encryption algorithms and possible solution proposals. 2017 International Conference on Computer Science and Engineering (UBMK); 2017; Antalya,Turkey. pp. 621-624
  • Liu X, Song Y, Jiang G. Hierarchical Bit-Level image encryption based on Chaotic Map and Feistel network. Int. J. Bifurcation Chaos 2019; 29: 1950016.
  • Shen Q, Liu Y. A novel digital image encryption algorithm based on orbit variation of phase diagram. Int. J. Bifurcation Chaos 2017; 27(13): 1750204.
  • Yin Q, Wang C. A new chaotic image encryption scheme using Breadth-First search and dynamic diffusion. Int. J. Bifurcation Chaos 2018; 28(4): 1850047.
  • Ye G, Pan C, Huang X, Zhao Z, He J. A chaotic image encryption algorithm based on information entropy. Int. J. Bifurcation Chaos 2018; 28(1): 1850010.
  • Chenaghlu MA, Jamali S, Nikzad-Khasmakhi N. A novel keyed parallel hashing scheme based on a new chaotic system. Chaos, Solitons & Fractals 2016; 87: 216–25.
  • Li Y, Li X. Chaotic hash function based on circular shifts with variable parameters. Chaos, Solitons & Fractals 2016; 91: 639–48.
  • Solami EA, Ahmad M, Volos C, Doja MN, Beg MMS. A new hyperchaotic System-Based design for efficient bijective Substitution-Boxes. Entropy 2018; 20: 525.
  • Tanyıldızı E, Özkaynak F. A new chaotic S-Box generation method using parameter optimization of one dimensional chaotic maps. IEEE Access 2019; 7: 117829–38.
  • Kanso A, Ghebleh M. A fast and efficient chaos-based keyed hash function. Commun. Nonlinear Sci. Numer. Simul. 2013; 18: 109–23.
  • Lambić D, Nikolić M. Pseudo-random number generator based on discrete-space chaotic map. Nonlinear Dyn. 2017; 90: 223–32.
  • Sahari ML, Boukemara I. A pseudo-random numbers generator based on a novel 3D chaotic map with an application to color image encryption. Nonlinear Dyn. 2018; 94: 723–44.
  • Zambrano-Serrano E, Munoz-Pacheco JM, Campos-Cantón E. Chaos generation in fractional-order switched systems and its digital implementation. AEU Int. J. Electron. Commun. AEU International 2017; 79: 43–52.
  • Avaroğlu E. Pseudorandom number generator based on Arnold cat map and statistical analysis. Turk. J. Electr. Eng. Comput. Sci. 2017; 25: 633–43.
  • Avaroğlu E, Koyuncu İ, Özer AB, Türk M. Hybrid pseudo-random number generator for cryptographic systems. Nonlinear Dyn. 2015; 82: 239–48.
  • Türk Ö. FPGA simulation of chaotic tent map‐based S‐Box design. Int. J. Circuit Theory Appl. 2022; 50: 1589–603.
  • Koyuncu İ, Özcerit AT, Pehlivan I, Avaroğlu E. Design and implementation of chaos based true random number generator on FPGA. 22nd Signal Processing and Communications Applications Conference; 2014; Trabzon, Turkey. pp. 236-239
  • Hilborn RC. Chaos and Nonlinear Dynamics: An Introduction for Scientists and Engineers. New York: Oxford Univ. Press, 2000.
  • Sprott JC. Chaos and Time-Series Analysis. USA : Oxford University Press, 2003.
  • Kantz H, Schreiber T. Nonlinear Time Series Analysis. Technometrics 2005; 47: 381.
  • Özkaynak F. Cryptographically secure random number generator with chaotic additional input. Nonlinear Dyn. 2014; 78: 2015–20.
  • Rukhin AL, Soto J, Nechvatal J, Smid ME, Barker EB. A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications., 2010.
  • Arroyo D, Hernández F, Orue AB. Cryptanalysis of a Classical Chaos-Based Cryptosystem with Some Quantum Cryptography Features. Int. J. Bifurcation Chaos 2017; 27: 1750004.
  • Li C, Lin D, Lu J, Hao F. Cryptanalyzing an image encryption algorithm based on autoblocking and electrocardiography. IEEE MultiMedia 2018; 25: 46–56.
  • Li C, Lo K-T. Optimal quantitative cryptanalysis of permutation-only multimedia ciphers against plaintext attacks. Signal Process. 2011; 91: 949–54.
  • Li S, Li C, Chen G, Bourbakis NG, Lo K-T. A general quantitative cryptanalysis of permutation-only multimedia ciphers against plaintext attacks. Signal Process. Image Commun. 2008; 23: 212–23.
  • Lin Z, Yu S, Feng X-L, Lu J. Cryptanalysis of a chaotic stream cipher and its improved scheme. Int. J. Bifurcation Chaos 2018; 28: 1850086.
  • Muhammad ZMZ, Özkaynak F. Security problems of chaotic image encryption algorithms based on cryptanalysis driven design technique. IEEE Access 2019; 7: 99945–53.
  • Ari A. CDIEA: Chaos and DNA based Image Encryption Algorithm. TJST 2023; 18: 261–73.
There are 32 citations in total.

Details

Primary Language English
Subjects Information Security and Cryptology
Journal Section TJST
Authors

Yılmaz Aydın 0000-0001-6057-3693

Fatih Özkaynak 0000-0003-1292-8490

Project Number 120e444
Publication Date September 1, 2023
Submission Date April 24, 2023
Published in Issue Year 2023 Volume: 18 Issue: 2

Cite

APA Aydın, Y., & Özkaynak, F. (2023). An Analysis Tool for Cryptographic Designs Based on Chaotic Systems. Turkish Journal of Science and Technology, 18(2), 387-395. https://doi.org/10.55525/tjst.1287092
AMA Aydın Y, Özkaynak F. An Analysis Tool for Cryptographic Designs Based on Chaotic Systems. TJST. September 2023;18(2):387-395. doi:10.55525/tjst.1287092
Chicago Aydın, Yılmaz, and Fatih Özkaynak. “An Analysis Tool for Cryptographic Designs Based on Chaotic Systems”. Turkish Journal of Science and Technology 18, no. 2 (September 2023): 387-95. https://doi.org/10.55525/tjst.1287092.
EndNote Aydın Y, Özkaynak F (September 1, 2023) An Analysis Tool for Cryptographic Designs Based on Chaotic Systems. Turkish Journal of Science and Technology 18 2 387–395.
IEEE Y. Aydın and F. Özkaynak, “An Analysis Tool for Cryptographic Designs Based on Chaotic Systems”, TJST, vol. 18, no. 2, pp. 387–395, 2023, doi: 10.55525/tjst.1287092.
ISNAD Aydın, Yılmaz - Özkaynak, Fatih. “An Analysis Tool for Cryptographic Designs Based on Chaotic Systems”. Turkish Journal of Science and Technology 18/2 (September 2023), 387-395. https://doi.org/10.55525/tjst.1287092.
JAMA Aydın Y, Özkaynak F. An Analysis Tool for Cryptographic Designs Based on Chaotic Systems. TJST. 2023;18:387–395.
MLA Aydın, Yılmaz and Fatih Özkaynak. “An Analysis Tool for Cryptographic Designs Based on Chaotic Systems”. Turkish Journal of Science and Technology, vol. 18, no. 2, 2023, pp. 387-95, doi:10.55525/tjst.1287092.
Vancouver Aydın Y, Özkaynak F. An Analysis Tool for Cryptographic Designs Based on Chaotic Systems. TJST. 2023;18(2):387-95.