Research Article
BibTex RIS Cite

Controlling Output Voltage and Correcting Power Factor Using Fractional PI Controller with Average Current Method in Wireless Energy Transfer

Year 2023, Volume: 2 Issue: 1, 1 - 8, 21.05.2023

Abstract

Single-phase AC/DC converters with Power Factor Correction (PFC) circuit are used as full-wave
controlled rectifiers in many power electronics circuits to provide high standards of efficiency and improve power
quality. In parallel with the changes in the circuit topologies used, new algorithms are being developed in control
methods. In recent years, new control and modeling methods using fractional derivatives and integrals have been
developed. In this study, it is aimed to correct the power factor on AC side of the circuit and to keep the output voltage
constant at the desired value by using a boost converter for wireless energy transfer. Fractional order PI (FOPI)
controller is used to control output voltage and a classical PI controller is used to generate a reference current of boost
converter. The Particle Swarm Optimization method was used to optimize the controller coefficients. As a result of the
simulation studies, the power coefficient was kept at 0.99.

Supporting Institution

Balikesir University

Project Number

BAP project 2022/012

Thanks

This study is supported by the BAP project 2022/012 Balikesir University.

References

  • A. Bouafassa, L. Rahmani, and S. Mekhilef, “Design and real time implementation of single phase boost power factor correction converter,” ISA Trans., vol. 55, pp. 267–274, Oct. 2014.
  • A. Kessal and L. Rahmani, “Analysis and design of sliding mode controller gains for boost power factor corrector,” ISA Trans., vol. 52, no. 5, pp. 638–643, Jun. 2013.
  • Z. Botao, W. Qi, and Z. Min, “Analytical solution for output voltage ripple coefficient of boost converter,” Electrical Engineering, Jan. 2022.
  • IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems, IEEE Std. 519, 2014.
  • C. H. K. Jensen, R. B. Lind, J. C. Hertel, A. M. Ammar, A. Knott, and M. A. E. Andersen, “A Time-Based Control Scheme for Power Factor Correction Boost Converter,” 2019 IEEE Nord. Circuits and System conference Proc., 2019.
  • J. R. Ortiz-castrillón, G. E. Mejía-ruíz, N. Muñoz-galeano, J. M. López-lezama, and S. D. Saldarriaga-zuluaga, “PFC Single-Phase AC / DC Boost Converters: Bridge, Semi-Bridgeless, and Bridgeless Topologies,” Aug. 2021.
  • I. Kocaarslan, S. Kart, N. Genc, and H. Uzmus, “Design and application of PEM fuel cell-based cascade boost converter,” Electr. Eng., vol. 101, no. 4, pp. 1323–1332, Nov. 2019.
  • H. Calik, G. Yalcin, and E. Sehirli, “Power Factor Correction in Induction Heating System Using PFC Boost Converter,” Eur. J. Tech., vol. 10, no. 2, pp. 464–475, Nov. 2020.
  • O. Turksoy, U. Yilmaz, and A. Teke, “Efficient AC-DC power factor corrected boost converter design for battery charger in electric vehicles,” Energy, vol. 221, p. 119765, Jan. 2021.
  • M. A. Senol, “Fuzzy Logic Based Power Factor Correction in Single Phase AC-DC System,” Bitlis Eren Üniversitesi Fen Bilim. Derg., vol. 10, no. 2, pp. 602–612, April. 2021.
  • O. Maroufi, A. Choucha, and L. Chaib, “Hybrid fractional fuzzy PID design for MPPT-pitch control of wind turbine-based bat algorithm,” Electr. Eng., vol. 102, no. 4, pp. 2149–2160, May. 2020.
  • H. Arpaci, “Fractional Model Reference Adaptive PIλDµ Control,” J. New Results Sci., vol. 5, no. 11, pp. 102–117, Dec. 2016.
  • F. Ahmad and M. Demitas, “Fractional PI Controller to Correct the Power Factor for Variable Loads,” in 1st ICEANS 2022 Konya, Turkey, 2022, pp. 1339–1342.
  • T. W. Versloot, D. J. Barker, and X. O. One, “Optimization of Near-Field Wireless Power Transfer Using Evolutionary Strategies,” Esa.Int, pp. 2436–2440.
  • T. Thabet and D. John, “An Approach to Calculate the Efficiency for an N-Receiver Wireless Power Transfer System,” Int. J. Adv. Comput. Sci. Appl., vol. 6, no. 9, pp. 91–98, Nov. 2015.
  • J. Wang, S. L. Ho, W. N. Fu, and M. Sun, “Analytical design study of a novel witricity charger with lateral and angular misalignments for efficient wireless energy transmission,” IEEE Trans. Magn., vol. 47, no. 10, pp. 2616– 2619, Oct. 2011.
  • I. Okasili, A. Elkhateb, and T. Littler, “A Review of Wireless Power Transfer Systems for Electric Vehicle Battery Charging with a Focus on Inductive Coupling,” Electron., vol. 11, no. 9, April 2022.
  • Huang Xueliang, J. Qingjing, T. Linlin, W. Wei, Z. Jiaming, and Z. Yalong, “Study on SeriesParallel Model of Wireless Power Transfer via Magnetic Resonance Coupling,” Trans. CHINA Electrotech. Soc. Vol.28, vol. 28, no. 3, pp. 171– 176, Mar 2013.
  • F. Ahmad and M. Demirtas, “Fractional Order PI Controller for Wireless Power Transfer with High Efficiency,” in 3rd ICAENS, July 20-23, 2022, Konya, Turkey, 2022, pp. 1085–1089.
  • K. Ding, “Active power factor correction using sliding mode control with reaching law,” ICIEA 2007: 2007 Second IEEE Conference on Industrial Electronics and Applications, May 23-25, 2007.
  • Lloyd Dixon, “Average Current Mode Control of Switching Power Supplies,” Proc. Intersec. Energy Convers. Eng. Conf., vol. 1, pp. 218–223, 1991.
  • P. R. Mohanty and A. K. Panda, “FixedFrequency Sliding-Mode Control Scheme Based on Current Control Manifold for Improved Dynamic Performance of Boost PFC Converter,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 5, no. 1, pp. 576–586, March. 2017.
  • Y. Yan, W. Shi, and X. Zhang, “Design of UAV wireless power transmission system based on coupling coil structure optimization,” Eurasip J. Wirel. Commun. Netw., vol. 2020, no. 1, March. 2020.
  • N. Ramsaroop and O. O. Olugbara, “Wireless power transfer using harvested radio frequency energy with magnetic resonance coupling to charge mobile device batteries,” Appl. Sci., vol. 11, no. 16, Aug. 2021.
  • Y. Liu, J. Fan, T. Zuo, Y. Zhang, L. Dong, and J. Liu, “Simulation study on series model of wireless power transfer via magnetic resonance coupling,” Proc. 2017 IEEE 3rd Inf. Technol. Mechatronics Eng. Conf. ITOEC 2017, vol. 2017, pp. 191–195, Oct. 2017.
  • H. S.-R. Silva-Ortigoza, Control Design Techniques in Power Electronics Devices. Springer; 2006 edition, pp. 20-30.
  • E. Ilten and M. Demirtas, “Fractional order super-twisting sliding mode observer for sensorless control of induction motor,” COMPEL - Int. J. Comput. Math. Electr. Electron. Eng., vol. 38, no. 2, pp. 878–892, Jan. 2019.
  • M. Çelebi and A. B. Aşçi, “Fractional order control of a sinusoidal output inverter,” Istanbul Univ. - J. Electr. Electron. Eng., vol. 16, no. 2, pp. 3037–3042, May. 2016.
  • R. El-Khazali, “Fractional-order PIλDµ controller design,” Comput. Math. with Appl., vol. 66, no. 5, pp. 639–646, Sep. 2013.
  • H. Calgan and M. Demirtas, “A robust LQRFOPIλDµ controller design for output voltage regulation of stand-alone self-excited induction generator,” Electr. Power Syst. Res., vol. 196, no. March, p. 107175, March. 2021.

Kablosuz Enerji Transferinde Ortalama Akım Yöntemi ile Kesirli PI Kontrolör Kullanılarak Çıkış Gerilimin Kontrolü ve Güç Katsayısının Düzeltilmesi

Year 2023, Volume: 2 Issue: 1, 1 - 8, 21.05.2023

Abstract

Güç Faktörü Düzeltme (PFC) devreli tek fazlı AC/DC dönüştürücüler yüksek standartlarda verim sağlamak ve güç
kalitesini iyileştirmek amacıyla birçok güç elektroniği devresinde tam dalga kontrollü doğrultucu olarak
kullanılmaktadır. Kullanılan devre topolojilerindeki değişikliklere paralel olarak kontrol yöntemlerinde de yeni
algoritmalar geliştirilmektedir. Son yıllarda kesirli türev ve integralin kullanıldığı yeni kontrol ve modelleme
yöntemleri geliştirilmektedir. Yapılan çalışmada kablosuz enerji transferinde yükseltici dönüştürücü kullanılarak
devrenin AC tarafında güç katsayısının düzeltilmesi ve çıkış geriliminin istenen değerde sabit tutulması
amaçlanmaktadır. Çıkış gerilimini kontrol için Kesirli PI kontrolör ve yükseltici dönüştürücünün referans akımını
üretmek için ise klasik PI kontrolör kullanmıştır. Kontrolör katsayılarının optimize edilmesi için Parçacık Sürü
Optimizasyon yöntemi kullanılmıştır. Benzetim çalışmaları sonucu güç katsayısı 0.99 değerinde tutulmuştur.

Project Number

BAP project 2022/012

References

  • A. Bouafassa, L. Rahmani, and S. Mekhilef, “Design and real time implementation of single phase boost power factor correction converter,” ISA Trans., vol. 55, pp. 267–274, Oct. 2014.
  • A. Kessal and L. Rahmani, “Analysis and design of sliding mode controller gains for boost power factor corrector,” ISA Trans., vol. 52, no. 5, pp. 638–643, Jun. 2013.
  • Z. Botao, W. Qi, and Z. Min, “Analytical solution for output voltage ripple coefficient of boost converter,” Electrical Engineering, Jan. 2022.
  • IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems, IEEE Std. 519, 2014.
  • C. H. K. Jensen, R. B. Lind, J. C. Hertel, A. M. Ammar, A. Knott, and M. A. E. Andersen, “A Time-Based Control Scheme for Power Factor Correction Boost Converter,” 2019 IEEE Nord. Circuits and System conference Proc., 2019.
  • J. R. Ortiz-castrillón, G. E. Mejía-ruíz, N. Muñoz-galeano, J. M. López-lezama, and S. D. Saldarriaga-zuluaga, “PFC Single-Phase AC / DC Boost Converters: Bridge, Semi-Bridgeless, and Bridgeless Topologies,” Aug. 2021.
  • I. Kocaarslan, S. Kart, N. Genc, and H. Uzmus, “Design and application of PEM fuel cell-based cascade boost converter,” Electr. Eng., vol. 101, no. 4, pp. 1323–1332, Nov. 2019.
  • H. Calik, G. Yalcin, and E. Sehirli, “Power Factor Correction in Induction Heating System Using PFC Boost Converter,” Eur. J. Tech., vol. 10, no. 2, pp. 464–475, Nov. 2020.
  • O. Turksoy, U. Yilmaz, and A. Teke, “Efficient AC-DC power factor corrected boost converter design for battery charger in electric vehicles,” Energy, vol. 221, p. 119765, Jan. 2021.
  • M. A. Senol, “Fuzzy Logic Based Power Factor Correction in Single Phase AC-DC System,” Bitlis Eren Üniversitesi Fen Bilim. Derg., vol. 10, no. 2, pp. 602–612, April. 2021.
  • O. Maroufi, A. Choucha, and L. Chaib, “Hybrid fractional fuzzy PID design for MPPT-pitch control of wind turbine-based bat algorithm,” Electr. Eng., vol. 102, no. 4, pp. 2149–2160, May. 2020.
  • H. Arpaci, “Fractional Model Reference Adaptive PIλDµ Control,” J. New Results Sci., vol. 5, no. 11, pp. 102–117, Dec. 2016.
  • F. Ahmad and M. Demitas, “Fractional PI Controller to Correct the Power Factor for Variable Loads,” in 1st ICEANS 2022 Konya, Turkey, 2022, pp. 1339–1342.
  • T. W. Versloot, D. J. Barker, and X. O. One, “Optimization of Near-Field Wireless Power Transfer Using Evolutionary Strategies,” Esa.Int, pp. 2436–2440.
  • T. Thabet and D. John, “An Approach to Calculate the Efficiency for an N-Receiver Wireless Power Transfer System,” Int. J. Adv. Comput. Sci. Appl., vol. 6, no. 9, pp. 91–98, Nov. 2015.
  • J. Wang, S. L. Ho, W. N. Fu, and M. Sun, “Analytical design study of a novel witricity charger with lateral and angular misalignments for efficient wireless energy transmission,” IEEE Trans. Magn., vol. 47, no. 10, pp. 2616– 2619, Oct. 2011.
  • I. Okasili, A. Elkhateb, and T. Littler, “A Review of Wireless Power Transfer Systems for Electric Vehicle Battery Charging with a Focus on Inductive Coupling,” Electron., vol. 11, no. 9, April 2022.
  • Huang Xueliang, J. Qingjing, T. Linlin, W. Wei, Z. Jiaming, and Z. Yalong, “Study on SeriesParallel Model of Wireless Power Transfer via Magnetic Resonance Coupling,” Trans. CHINA Electrotech. Soc. Vol.28, vol. 28, no. 3, pp. 171– 176, Mar 2013.
  • F. Ahmad and M. Demirtas, “Fractional Order PI Controller for Wireless Power Transfer with High Efficiency,” in 3rd ICAENS, July 20-23, 2022, Konya, Turkey, 2022, pp. 1085–1089.
  • K. Ding, “Active power factor correction using sliding mode control with reaching law,” ICIEA 2007: 2007 Second IEEE Conference on Industrial Electronics and Applications, May 23-25, 2007.
  • Lloyd Dixon, “Average Current Mode Control of Switching Power Supplies,” Proc. Intersec. Energy Convers. Eng. Conf., vol. 1, pp. 218–223, 1991.
  • P. R. Mohanty and A. K. Panda, “FixedFrequency Sliding-Mode Control Scheme Based on Current Control Manifold for Improved Dynamic Performance of Boost PFC Converter,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 5, no. 1, pp. 576–586, March. 2017.
  • Y. Yan, W. Shi, and X. Zhang, “Design of UAV wireless power transmission system based on coupling coil structure optimization,” Eurasip J. Wirel. Commun. Netw., vol. 2020, no. 1, March. 2020.
  • N. Ramsaroop and O. O. Olugbara, “Wireless power transfer using harvested radio frequency energy with magnetic resonance coupling to charge mobile device batteries,” Appl. Sci., vol. 11, no. 16, Aug. 2021.
  • Y. Liu, J. Fan, T. Zuo, Y. Zhang, L. Dong, and J. Liu, “Simulation study on series model of wireless power transfer via magnetic resonance coupling,” Proc. 2017 IEEE 3rd Inf. Technol. Mechatronics Eng. Conf. ITOEC 2017, vol. 2017, pp. 191–195, Oct. 2017.
  • H. S.-R. Silva-Ortigoza, Control Design Techniques in Power Electronics Devices. Springer; 2006 edition, pp. 20-30.
  • E. Ilten and M. Demirtas, “Fractional order super-twisting sliding mode observer for sensorless control of induction motor,” COMPEL - Int. J. Comput. Math. Electr. Electron. Eng., vol. 38, no. 2, pp. 878–892, Jan. 2019.
  • M. Çelebi and A. B. Aşçi, “Fractional order control of a sinusoidal output inverter,” Istanbul Univ. - J. Electr. Electron. Eng., vol. 16, no. 2, pp. 3037–3042, May. 2016.
  • R. El-Khazali, “Fractional-order PIλDµ controller design,” Comput. Math. with Appl., vol. 66, no. 5, pp. 639–646, Sep. 2013.
  • H. Calgan and M. Demirtas, “A robust LQRFOPIλDµ controller design for output voltage regulation of stand-alone self-excited induction generator,” Electr. Power Syst. Res., vol. 196, no. March, p. 107175, March. 2021.
There are 30 citations in total.

Details

Primary Language English
Subjects Electrical Engineering
Journal Section Research Articles
Authors

Farhad Ahmad This is me 0000-0002-1338-4328

Metin Demirtaş This is me 0000-0003-2622-5286

Project Number BAP project 2022/012
Publication Date May 21, 2023
Published in Issue Year 2023 Volume: 2 Issue: 1

Cite

APA Ahmad, F., & Demirtaş, M. (2023). Controlling Output Voltage and Correcting Power Factor Using Fractional PI Controller with Average Current Method in Wireless Energy Transfer. Türk Mühendislik Araştırma Ve Eğitimi Dergisi, 2(1), 1-8.
AMA Ahmad F, Demirtaş M. Controlling Output Voltage and Correcting Power Factor Using Fractional PI Controller with Average Current Method in Wireless Energy Transfer. TUR J ENG RES & EDUC. May 2023;2(1):1-8.
Chicago Ahmad, Farhad, and Metin Demirtaş. “Controlling Output Voltage and Correcting Power Factor Using Fractional PI Controller With Average Current Method in Wireless Energy Transfer”. Türk Mühendislik Araştırma Ve Eğitimi Dergisi 2, no. 1 (May 2023): 1-8.
EndNote Ahmad F, Demirtaş M (May 1, 2023) Controlling Output Voltage and Correcting Power Factor Using Fractional PI Controller with Average Current Method in Wireless Energy Transfer. Türk Mühendislik Araştırma ve Eğitimi Dergisi 2 1 1–8.
IEEE F. Ahmad and M. Demirtaş, “Controlling Output Voltage and Correcting Power Factor Using Fractional PI Controller with Average Current Method in Wireless Energy Transfer”, TUR J ENG RES & EDUC, vol. 2, no. 1, pp. 1–8, 2023.
ISNAD Ahmad, Farhad - Demirtaş, Metin. “Controlling Output Voltage and Correcting Power Factor Using Fractional PI Controller With Average Current Method in Wireless Energy Transfer”. Türk Mühendislik Araştırma ve Eğitimi Dergisi 2/1 (May 2023), 1-8.
JAMA Ahmad F, Demirtaş M. Controlling Output Voltage and Correcting Power Factor Using Fractional PI Controller with Average Current Method in Wireless Energy Transfer. TUR J ENG RES & EDUC. 2023;2:1–8.
MLA Ahmad, Farhad and Metin Demirtaş. “Controlling Output Voltage and Correcting Power Factor Using Fractional PI Controller With Average Current Method in Wireless Energy Transfer”. Türk Mühendislik Araştırma Ve Eğitimi Dergisi, vol. 2, no. 1, 2023, pp. 1-8.
Vancouver Ahmad F, Demirtaş M. Controlling Output Voltage and Correcting Power Factor Using Fractional PI Controller with Average Current Method in Wireless Energy Transfer. TUR J ENG RES & EDUC. 2023;2(1):1-8.