Controlling Output Voltage and Correcting Power Factor Using Fractional PI Controller with Average Current Method in Wireless Energy Transfer
Year 2023,
Volume: 2 Issue: 1, 1 - 8, 21.05.2023
Farhad Ahmad
Metin Demirtaş
Abstract
Single-phase AC/DC converters with Power Factor Correction (PFC) circuit are used as full-wave
controlled rectifiers in many power electronics circuits to provide high standards of efficiency and improve power
quality. In parallel with the changes in the circuit topologies used, new algorithms are being developed in control
methods. In recent years, new control and modeling methods using fractional derivatives and integrals have been
developed. In this study, it is aimed to correct the power factor on AC side of the circuit and to keep the output voltage
constant at the desired value by using a boost converter for wireless energy transfer. Fractional order PI (FOPI)
controller is used to control output voltage and a classical PI controller is used to generate a reference current of boost
converter. The Particle Swarm Optimization method was used to optimize the controller coefficients. As a result of the
simulation studies, the power coefficient was kept at 0.99.
Supporting Institution
Balikesir University
Project Number
BAP project 2022/012
Thanks
This study is supported by the BAP project 2022/012 Balikesir University.
References
- A. Bouafassa, L. Rahmani, and S. Mekhilef,
“Design and real time implementation of single
phase boost power factor correction converter,”
ISA Trans., vol. 55, pp. 267–274, Oct. 2014.
- A. Kessal and L. Rahmani, “Analysis and
design of sliding mode controller gains for
boost power factor corrector,” ISA Trans., vol.
52, no. 5, pp. 638–643, Jun. 2013.
- Z. Botao, W. Qi, and Z. Min, “Analytical
solution for output voltage ripple coefficient of
boost converter,” Electrical Engineering, Jan.
2022.
- IEEE Recommended Practice and
Requirements for Harmonic Control in Electric
Power Systems, IEEE Std. 519, 2014.
- C. H. K. Jensen, R. B. Lind, J. C. Hertel, A. M.
Ammar, A. Knott, and M. A. E. Andersen, “A
Time-Based Control Scheme for Power Factor
Correction Boost Converter,” 2019 IEEE Nord.
Circuits and System conference Proc., 2019.
- J. R. Ortiz-castrillón, G. E. Mejía-ruíz, N.
Muñoz-galeano, J. M. López-lezama, and S. D.
Saldarriaga-zuluaga, “PFC Single-Phase AC /
DC Boost Converters: Bridge, Semi-Bridgeless,
and Bridgeless Topologies,” Aug. 2021.
- I. Kocaarslan, S. Kart, N. Genc, and H. Uzmus,
“Design and application of PEM fuel cell-based
cascade boost converter,” Electr. Eng., vol. 101,
no. 4, pp. 1323–1332, Nov. 2019.
- H. Calik, G. Yalcin, and E. Sehirli, “Power
Factor Correction in Induction Heating System
Using PFC Boost Converter,” Eur. J. Tech., vol.
10, no. 2, pp. 464–475, Nov. 2020.
- O. Turksoy, U. Yilmaz, and A. Teke, “Efficient
AC-DC power factor corrected boost converter
design for battery charger in electric vehicles,”
Energy, vol. 221, p. 119765, Jan. 2021.
- M. A. Senol, “Fuzzy Logic Based Power Factor
Correction in Single Phase AC-DC System,”
Bitlis Eren Üniversitesi Fen Bilim. Derg., vol. 10,
no. 2, pp. 602–612, April. 2021.
- O. Maroufi, A. Choucha, and L. Chaib, “Hybrid
fractional fuzzy PID design for MPPT-pitch
control of wind turbine-based bat algorithm,”
Electr. Eng., vol. 102, no. 4, pp. 2149–2160, May.
2020.
- H. Arpaci, “Fractional Model Reference
Adaptive PIλDµ Control,” J. New Results Sci.,
vol. 5, no. 11, pp. 102–117, Dec. 2016.
- F. Ahmad and M. Demitas, “Fractional PI
Controller to Correct the Power Factor for
Variable Loads,” in 1st ICEANS 2022 Konya,
Turkey, 2022, pp. 1339–1342.
- T. W. Versloot, D. J. Barker, and X. O. One,
“Optimization of Near-Field Wireless Power
Transfer Using Evolutionary Strategies,”
Esa.Int, pp. 2436–2440.
- T. Thabet and D. John, “An Approach to
Calculate the Efficiency for an N-Receiver
Wireless Power Transfer System,” Int. J. Adv.
Comput. Sci. Appl., vol. 6, no. 9, pp. 91–98, Nov.
2015.
- J. Wang, S. L. Ho, W. N. Fu, and M. Sun,
“Analytical design study of a novel witricity
charger with lateral and angular misalignments
for efficient wireless energy transmission,”
IEEE Trans. Magn., vol. 47, no. 10, pp. 2616–
2619, Oct. 2011.
- I. Okasili, A. Elkhateb, and T. Littler, “A Review
of Wireless Power Transfer Systems for Electric
Vehicle Battery Charging with a Focus on
Inductive Coupling,” Electron., vol. 11, no. 9,
April 2022.
- Huang Xueliang, J. Qingjing, T. Linlin, W. Wei,
Z. Jiaming, and Z. Yalong, “Study on SeriesParallel Model of Wireless Power Transfer via
Magnetic Resonance Coupling,” Trans. CHINA
Electrotech. Soc. Vol.28, vol. 28, no. 3, pp. 171–
176, Mar 2013.
- F. Ahmad and M. Demirtas, “Fractional Order
PI Controller for Wireless Power Transfer with
High Efficiency,” in 3rd ICAENS, July 20-23,
2022, Konya, Turkey, 2022, pp. 1085–1089.
- K. Ding, “Active power factor correction using
sliding mode control with reaching law,” ICIEA
2007: 2007 Second IEEE Conference on
Industrial Electronics and Applications, May
23-25, 2007.
- Lloyd Dixon, “Average Current Mode Control
of Switching Power Supplies,” Proc. Intersec.
Energy Convers. Eng. Conf., vol. 1, pp. 218–223,
1991.
- P. R. Mohanty and A. K. Panda, “FixedFrequency Sliding-Mode Control Scheme Based
on Current Control Manifold for Improved
Dynamic Performance of Boost PFC
Converter,” IEEE J. Emerg. Sel. Top. Power
Electron., vol. 5, no. 1, pp. 576–586, March. 2017.
- Y. Yan, W. Shi, and X. Zhang, “Design of UAV
wireless power transmission system based on
coupling coil structure optimization,” Eurasip J.
Wirel. Commun. Netw., vol. 2020, no. 1, March.
2020.
- N. Ramsaroop and O. O. Olugbara, “Wireless
power transfer using harvested radio frequency
energy with magnetic resonance coupling to
charge mobile device batteries,” Appl. Sci., vol.
11, no. 16, Aug. 2021.
- Y. Liu, J. Fan, T. Zuo, Y. Zhang, L. Dong, and J.
Liu, “Simulation study on series model of
wireless power transfer via magnetic resonance
coupling,” Proc. 2017 IEEE 3rd Inf. Technol.
Mechatronics Eng. Conf. ITOEC 2017, vol. 2017,
pp. 191–195, Oct. 2017.
- H. S.-R. Silva-Ortigoza, Control Design
Techniques in Power Electronics Devices.
Springer; 2006 edition, pp. 20-30.
- E. Ilten and M. Demirtas, “Fractional order
super-twisting sliding mode observer for
sensorless control of induction motor,”
COMPEL - Int. J. Comput. Math. Electr.
Electron. Eng., vol. 38, no. 2, pp. 878–892, Jan.
2019.
- M. Çelebi and A. B. Aşçi, “Fractional order
control of a sinusoidal output inverter,”
Istanbul Univ. - J. Electr. Electron. Eng., vol. 16,
no. 2, pp. 3037–3042, May. 2016.
- R. El-Khazali, “Fractional-order PIλDµ
controller design,” Comput. Math. with Appl.,
vol. 66, no. 5, pp. 639–646, Sep. 2013.
- H. Calgan and M. Demirtas, “A robust LQRFOPIλDµ controller design for output voltage
regulation of stand-alone self-excited induction
generator,” Electr. Power Syst. Res., vol. 196,
no. March, p. 107175, March. 2021.
Kablosuz Enerji Transferinde Ortalama Akım Yöntemi ile Kesirli PI Kontrolör Kullanılarak Çıkış Gerilimin Kontrolü ve Güç Katsayısının Düzeltilmesi
Year 2023,
Volume: 2 Issue: 1, 1 - 8, 21.05.2023
Farhad Ahmad
Metin Demirtaş
Abstract
Güç Faktörü Düzeltme (PFC) devreli tek fazlı AC/DC dönüştürücüler yüksek standartlarda verim sağlamak ve güç
kalitesini iyileştirmek amacıyla birçok güç elektroniği devresinde tam dalga kontrollü doğrultucu olarak
kullanılmaktadır. Kullanılan devre topolojilerindeki değişikliklere paralel olarak kontrol yöntemlerinde de yeni
algoritmalar geliştirilmektedir. Son yıllarda kesirli türev ve integralin kullanıldığı yeni kontrol ve modelleme
yöntemleri geliştirilmektedir. Yapılan çalışmada kablosuz enerji transferinde yükseltici dönüştürücü kullanılarak
devrenin AC tarafında güç katsayısının düzeltilmesi ve çıkış geriliminin istenen değerde sabit tutulması
amaçlanmaktadır. Çıkış gerilimini kontrol için Kesirli PI kontrolör ve yükseltici dönüştürücünün referans akımını
üretmek için ise klasik PI kontrolör kullanmıştır. Kontrolör katsayılarının optimize edilmesi için Parçacık Sürü
Optimizasyon yöntemi kullanılmıştır. Benzetim çalışmaları sonucu güç katsayısı 0.99 değerinde tutulmuştur.
Project Number
BAP project 2022/012
References
- A. Bouafassa, L. Rahmani, and S. Mekhilef,
“Design and real time implementation of single
phase boost power factor correction converter,”
ISA Trans., vol. 55, pp. 267–274, Oct. 2014.
- A. Kessal and L. Rahmani, “Analysis and
design of sliding mode controller gains for
boost power factor corrector,” ISA Trans., vol.
52, no. 5, pp. 638–643, Jun. 2013.
- Z. Botao, W. Qi, and Z. Min, “Analytical
solution for output voltage ripple coefficient of
boost converter,” Electrical Engineering, Jan.
2022.
- IEEE Recommended Practice and
Requirements for Harmonic Control in Electric
Power Systems, IEEE Std. 519, 2014.
- C. H. K. Jensen, R. B. Lind, J. C. Hertel, A. M.
Ammar, A. Knott, and M. A. E. Andersen, “A
Time-Based Control Scheme for Power Factor
Correction Boost Converter,” 2019 IEEE Nord.
Circuits and System conference Proc., 2019.
- J. R. Ortiz-castrillón, G. E. Mejía-ruíz, N.
Muñoz-galeano, J. M. López-lezama, and S. D.
Saldarriaga-zuluaga, “PFC Single-Phase AC /
DC Boost Converters: Bridge, Semi-Bridgeless,
and Bridgeless Topologies,” Aug. 2021.
- I. Kocaarslan, S. Kart, N. Genc, and H. Uzmus,
“Design and application of PEM fuel cell-based
cascade boost converter,” Electr. Eng., vol. 101,
no. 4, pp. 1323–1332, Nov. 2019.
- H. Calik, G. Yalcin, and E. Sehirli, “Power
Factor Correction in Induction Heating System
Using PFC Boost Converter,” Eur. J. Tech., vol.
10, no. 2, pp. 464–475, Nov. 2020.
- O. Turksoy, U. Yilmaz, and A. Teke, “Efficient
AC-DC power factor corrected boost converter
design for battery charger in electric vehicles,”
Energy, vol. 221, p. 119765, Jan. 2021.
- M. A. Senol, “Fuzzy Logic Based Power Factor
Correction in Single Phase AC-DC System,”
Bitlis Eren Üniversitesi Fen Bilim. Derg., vol. 10,
no. 2, pp. 602–612, April. 2021.
- O. Maroufi, A. Choucha, and L. Chaib, “Hybrid
fractional fuzzy PID design for MPPT-pitch
control of wind turbine-based bat algorithm,”
Electr. Eng., vol. 102, no. 4, pp. 2149–2160, May.
2020.
- H. Arpaci, “Fractional Model Reference
Adaptive PIλDµ Control,” J. New Results Sci.,
vol. 5, no. 11, pp. 102–117, Dec. 2016.
- F. Ahmad and M. Demitas, “Fractional PI
Controller to Correct the Power Factor for
Variable Loads,” in 1st ICEANS 2022 Konya,
Turkey, 2022, pp. 1339–1342.
- T. W. Versloot, D. J. Barker, and X. O. One,
“Optimization of Near-Field Wireless Power
Transfer Using Evolutionary Strategies,”
Esa.Int, pp. 2436–2440.
- T. Thabet and D. John, “An Approach to
Calculate the Efficiency for an N-Receiver
Wireless Power Transfer System,” Int. J. Adv.
Comput. Sci. Appl., vol. 6, no. 9, pp. 91–98, Nov.
2015.
- J. Wang, S. L. Ho, W. N. Fu, and M. Sun,
“Analytical design study of a novel witricity
charger with lateral and angular misalignments
for efficient wireless energy transmission,”
IEEE Trans. Magn., vol. 47, no. 10, pp. 2616–
2619, Oct. 2011.
- I. Okasili, A. Elkhateb, and T. Littler, “A Review
of Wireless Power Transfer Systems for Electric
Vehicle Battery Charging with a Focus on
Inductive Coupling,” Electron., vol. 11, no. 9,
April 2022.
- Huang Xueliang, J. Qingjing, T. Linlin, W. Wei,
Z. Jiaming, and Z. Yalong, “Study on SeriesParallel Model of Wireless Power Transfer via
Magnetic Resonance Coupling,” Trans. CHINA
Electrotech. Soc. Vol.28, vol. 28, no. 3, pp. 171–
176, Mar 2013.
- F. Ahmad and M. Demirtas, “Fractional Order
PI Controller for Wireless Power Transfer with
High Efficiency,” in 3rd ICAENS, July 20-23,
2022, Konya, Turkey, 2022, pp. 1085–1089.
- K. Ding, “Active power factor correction using
sliding mode control with reaching law,” ICIEA
2007: 2007 Second IEEE Conference on
Industrial Electronics and Applications, May
23-25, 2007.
- Lloyd Dixon, “Average Current Mode Control
of Switching Power Supplies,” Proc. Intersec.
Energy Convers. Eng. Conf., vol. 1, pp. 218–223,
1991.
- P. R. Mohanty and A. K. Panda, “FixedFrequency Sliding-Mode Control Scheme Based
on Current Control Manifold for Improved
Dynamic Performance of Boost PFC
Converter,” IEEE J. Emerg. Sel. Top. Power
Electron., vol. 5, no. 1, pp. 576–586, March. 2017.
- Y. Yan, W. Shi, and X. Zhang, “Design of UAV
wireless power transmission system based on
coupling coil structure optimization,” Eurasip J.
Wirel. Commun. Netw., vol. 2020, no. 1, March.
2020.
- N. Ramsaroop and O. O. Olugbara, “Wireless
power transfer using harvested radio frequency
energy with magnetic resonance coupling to
charge mobile device batteries,” Appl. Sci., vol.
11, no. 16, Aug. 2021.
- Y. Liu, J. Fan, T. Zuo, Y. Zhang, L. Dong, and J.
Liu, “Simulation study on series model of
wireless power transfer via magnetic resonance
coupling,” Proc. 2017 IEEE 3rd Inf. Technol.
Mechatronics Eng. Conf. ITOEC 2017, vol. 2017,
pp. 191–195, Oct. 2017.
- H. S.-R. Silva-Ortigoza, Control Design
Techniques in Power Electronics Devices.
Springer; 2006 edition, pp. 20-30.
- E. Ilten and M. Demirtas, “Fractional order
super-twisting sliding mode observer for
sensorless control of induction motor,”
COMPEL - Int. J. Comput. Math. Electr.
Electron. Eng., vol. 38, no. 2, pp. 878–892, Jan.
2019.
- M. Çelebi and A. B. Aşçi, “Fractional order
control of a sinusoidal output inverter,”
Istanbul Univ. - J. Electr. Electron. Eng., vol. 16,
no. 2, pp. 3037–3042, May. 2016.
- R. El-Khazali, “Fractional-order PIλDµ
controller design,” Comput. Math. with Appl.,
vol. 66, no. 5, pp. 639–646, Sep. 2013.
- H. Calgan and M. Demirtas, “A robust LQRFOPIλDµ controller design for output voltage
regulation of stand-alone self-excited induction
generator,” Electr. Power Syst. Res., vol. 196,
no. March, p. 107175, March. 2021.