BibTex RIS Cite

AMYCOLATOPSİS ORİENTALİS BESİ ORTAMİNDA KARBON KAYNAĞİ OLAN GLİKOZ VE GLİSEROLÜN KONSANTRASYONUNA BAĞİMLİ VANKOMİSİN ÜRETİMİNİN DEĞİŞİMİ

Year 2005, Volume: 6 Issue: 2, 105 - 112, 05.08.2016

Abstract

Değişen glikoz (5-20 g/L) ve gliserol (2.5-20 g/L) derişimlerde büyütülen A.orientalis in vankomisin üretim düzeyinin yanısıra ekstrasellüler glukoz, gliserol ve pH düzeyleri inkübasyon periyodu süresince incelenmiştir. A. orientalis büyüme hızı artan glikoz ve gliserol derişimleriyle artış gösterirken besi ortamının pH düzeylerinde anlamlı düzeyde azalışlar belirlenmiştir. Bununla birlikte, besi ortamındaki glikoz seviyeleri ile glikozun tüketim zamanı arasında pozitif korelasyon saptanmıştır. Benzer sonuç gliserol içeren ortamda da gözlenmiştir. Glikopeptid antibiyotiklerden biri olan vancomisinin A. orientalis de üretimi, besi ortamındaki glikozun 15 g/L ve gliserolün 10 g/L ye kadar artmasıyla anlamlı düzeyde artış göstermiştir. Karbon kaynağı olarak gliserolün yerine glikozun kullanılması, A. orientalis in vancomisin üretim düzeyinde anlamlı düzeyde artışa neden olmasına rağmen büyüme hızında etkili olmamıştır

References

  • 1. ARCAMONE F. (Ed.), Doxorrubicin: Anticancer Antibiotics, Academic Press, New York, 1981.
  • 2. BAUCHET J, PUSSARD E, GARAUD JJ. J.Chromatography, 417: 121-128. 1987.
  • 3. BACKES WD, ABOLENEEN HI, SIMPSON JA. Quantitation of vancomycin and its crystalline degredation product in human serum by high performance liquid chromatography, J. of Pharmaceutical and Biomedical Analysis, 16: 1281-1287, 1998.
  • 4. CHATER KF. Genetics of differentiation in Streptomyces, Annu. Rev. Microbiol. 47: 685–713, 1993.
  • 5. CHENG JR, FANG A, DEMAIN AL. Effect of amino acids on rapamycin biosynthesis in Streptomyces hygroscopicus. Appl. Microbiol. Biotechnol. 43: 1096–1098, 1995.
  • 6. COISNE S, BECHET M, BLONDEAU R. Actinorhodin production by Streptomyces coelicolor A3(2) in ironrestricted media. Lett. Appl. Microbiol. 28: 199–202, 1999.
  • 7. DOULL JL, VINING LC. Nutritional control of actinorhodin production of Streptomyces coelicolor A3(2); suppressive effect of nitrogen and phosphate. Appl. Microbiol. Biotechnol. 32: 449–454, 1990.
  • 8. DUNSTAN GH, AVIGNONE–ROSSA C, LANGLEY D, BUSHELL ME. The Vancomycin biosynthetic pathway is induced in oxygen-limited Amycolatopsis orientalis (ATCC 19795) cultures that do not produce antibiotic, Enzyme and Microbial Technology, 27:502-510, 2000.
  • 9. JONSBU E, MCINTYRE M, NIELSEN J. The influence of carbon sources and morphology on nystatin production by S.noursei, Journal of Biotechnology, 95: 133-144. 2002.
  • 10. LEBRIHI A, LAMSAIF D, LEFEBVRE G, GERMAIN P. Effect of ammonium salts ions on spiramycin biosynthesis in Streptomyces ambofaciens. Appl. Microbiol. Biotechnol. 37: 382– 387, 1992.
  • 11. LECHEVALIER MP, PRAUSER H, LABEDA DP, RUAN JS. Two new genera of nocardioform actinomycetes; Amycolata gen. nov. and Amycolatopsis gen. nov., Int. J. Syst. Bacteriol., 36, 29-37, 1986.
  • 12. LEE MC, KOJIMA J, DEMAIN AL. Effect of nitrogen source on biosynthesis of rapamycin by Streptomyces hygroscopicus. J. Ind. Microbiol. Biotechnol.19: 83–86, 1997.
  • 13. LIN H, BENNETT GN, AND SAN KY. Metabolic engineering of aerobic succinate production systems in Escherichia coli to improve process productivity and achieve the maximum theoretical succinate yield, Metabolic Engineering, 7: 116-127. 2005.
  • 14. MAHARJAN RP, YU PL, SEETO S, FERENCI T. The role of isocitrate lyase and the glyoxylate cycle in E.coli growing under glucose limitation, Research in Microbiology, 156: 178-183, 2005.
  • 15. MELZOCH K, TEIXEIRA DE, MATTOS MJ & NEIJSSEL OM. Production of actinorhodin by Streptomyces coelicolor A3(2) grown in chemostat culture. Biotechnol. Bioeng. 54: 577–582, 1997.
  • 16. PAREKH S, VINCI VA, STROBEL KJ. Improvement of microbial strains and fermentation processes. Appl.Microbiol. Biotechnol. 54: 287–301, 2000.
  • 17. PROSSER JI & TOUGH AJ Growth mechanisms and growth kinetics of filamentous microorganisms. Crit. Rev. Biotechnol. 10:253–274, 1991.
  • 18. SANCHEZ S, DEMAIN AL. Metabolic regulation of fermentation processes. Enz. Microb. Technol. 31:895–906, 2002.
  • 19. SPIZEK J, TICHY P, Some Aspects of Overproduction of Secondary Metabolites, Folia Microbiologica, 40: 1-128, 1995.
  • 20. OMURA S, TANAKA J. Biosynthesis of tylosin and its regulation by ammonium and phosphate. In: Kleinkauf, H., von Do¨hren, H., Dormaner, H., Nesmann, G. (Eds.), Regulation of Secondary Metabolites. VCH Publishers Inc., Berlin, pp: 306–332, 1986.
  • 21. ZAMBONI N, MAAHEIMO H, SZYPERSKI T, HOHMANN HP, AND SAUER U. The phosphoenolpyruvate carboxykinase also catalyzes C3 carboxylation at the interface of glycolysis and the TCA cycle of Bacillus subtilis , Metabolic Engineering, 6:277-284, 2004.

VARIATIONS OF VANCOMYCIN PRODUCTION BY AMYCOLATOPSIS ORIENTALIS DEPENDING ON THE GLUCOSE AND GLYCEROL CONCENTRATIONS AS CARBON SOURCES

Year 2005, Volume: 6 Issue: 2, 105 - 112, 05.08.2016

Abstract

Vancomycin production as well as extracellular glucose and glycerol level and pH level of A.orientalis growth in different glucose (5-20 g/L) and glycerol (2.5-20 g/L) concentrations of the medium was investigated during the incubation period. A. orientalis growth rate increased with the increases in glucose and glycerol concentration while pH levels of the growth medium decreased significantly. In addition, a positive correlation was determined between consumption time of extracellular glucose levels and glucose concentration in the culture medium. Similar results were also determined in glycerol supplemented medium. As a glycopeptid antibiotic, vancomycin production of A. orientalis increased with the increases in glucose and glycerol concentrations up to 15 and 10 g/L, respectively. In addition, substitution of glycerol with glucose significantly affected vancomycin antibiotic productions whereas the growth rate was close to that of the each other

References

  • 1. ARCAMONE F. (Ed.), Doxorrubicin: Anticancer Antibiotics, Academic Press, New York, 1981.
  • 2. BAUCHET J, PUSSARD E, GARAUD JJ. J.Chromatography, 417: 121-128. 1987.
  • 3. BACKES WD, ABOLENEEN HI, SIMPSON JA. Quantitation of vancomycin and its crystalline degredation product in human serum by high performance liquid chromatography, J. of Pharmaceutical and Biomedical Analysis, 16: 1281-1287, 1998.
  • 4. CHATER KF. Genetics of differentiation in Streptomyces, Annu. Rev. Microbiol. 47: 685–713, 1993.
  • 5. CHENG JR, FANG A, DEMAIN AL. Effect of amino acids on rapamycin biosynthesis in Streptomyces hygroscopicus. Appl. Microbiol. Biotechnol. 43: 1096–1098, 1995.
  • 6. COISNE S, BECHET M, BLONDEAU R. Actinorhodin production by Streptomyces coelicolor A3(2) in ironrestricted media. Lett. Appl. Microbiol. 28: 199–202, 1999.
  • 7. DOULL JL, VINING LC. Nutritional control of actinorhodin production of Streptomyces coelicolor A3(2); suppressive effect of nitrogen and phosphate. Appl. Microbiol. Biotechnol. 32: 449–454, 1990.
  • 8. DUNSTAN GH, AVIGNONE–ROSSA C, LANGLEY D, BUSHELL ME. The Vancomycin biosynthetic pathway is induced in oxygen-limited Amycolatopsis orientalis (ATCC 19795) cultures that do not produce antibiotic, Enzyme and Microbial Technology, 27:502-510, 2000.
  • 9. JONSBU E, MCINTYRE M, NIELSEN J. The influence of carbon sources and morphology on nystatin production by S.noursei, Journal of Biotechnology, 95: 133-144. 2002.
  • 10. LEBRIHI A, LAMSAIF D, LEFEBVRE G, GERMAIN P. Effect of ammonium salts ions on spiramycin biosynthesis in Streptomyces ambofaciens. Appl. Microbiol. Biotechnol. 37: 382– 387, 1992.
  • 11. LECHEVALIER MP, PRAUSER H, LABEDA DP, RUAN JS. Two new genera of nocardioform actinomycetes; Amycolata gen. nov. and Amycolatopsis gen. nov., Int. J. Syst. Bacteriol., 36, 29-37, 1986.
  • 12. LEE MC, KOJIMA J, DEMAIN AL. Effect of nitrogen source on biosynthesis of rapamycin by Streptomyces hygroscopicus. J. Ind. Microbiol. Biotechnol.19: 83–86, 1997.
  • 13. LIN H, BENNETT GN, AND SAN KY. Metabolic engineering of aerobic succinate production systems in Escherichia coli to improve process productivity and achieve the maximum theoretical succinate yield, Metabolic Engineering, 7: 116-127. 2005.
  • 14. MAHARJAN RP, YU PL, SEETO S, FERENCI T. The role of isocitrate lyase and the glyoxylate cycle in E.coli growing under glucose limitation, Research in Microbiology, 156: 178-183, 2005.
  • 15. MELZOCH K, TEIXEIRA DE, MATTOS MJ & NEIJSSEL OM. Production of actinorhodin by Streptomyces coelicolor A3(2) grown in chemostat culture. Biotechnol. Bioeng. 54: 577–582, 1997.
  • 16. PAREKH S, VINCI VA, STROBEL KJ. Improvement of microbial strains and fermentation processes. Appl.Microbiol. Biotechnol. 54: 287–301, 2000.
  • 17. PROSSER JI & TOUGH AJ Growth mechanisms and growth kinetics of filamentous microorganisms. Crit. Rev. Biotechnol. 10:253–274, 1991.
  • 18. SANCHEZ S, DEMAIN AL. Metabolic regulation of fermentation processes. Enz. Microb. Technol. 31:895–906, 2002.
  • 19. SPIZEK J, TICHY P, Some Aspects of Overproduction of Secondary Metabolites, Folia Microbiologica, 40: 1-128, 1995.
  • 20. OMURA S, TANAKA J. Biosynthesis of tylosin and its regulation by ammonium and phosphate. In: Kleinkauf, H., von Do¨hren, H., Dormaner, H., Nesmann, G. (Eds.), Regulation of Secondary Metabolites. VCH Publishers Inc., Berlin, pp: 306–332, 1986.
  • 21. ZAMBONI N, MAAHEIMO H, SZYPERSKI T, HOHMANN HP, AND SAUER U. The phosphoenolpyruvate carboxykinase also catalyzes C3 carboxylation at the interface of glycolysis and the TCA cycle of Bacillus subtilis , Metabolic Engineering, 6:277-284, 2004.
There are 21 citations in total.

Details

Other ID JA55RU32HY
Journal Section Articles
Authors

Leman Tarhan This is me

Hülya AYAR Kayalı This is me

Publication Date August 5, 2016
Published in Issue Year 2005 Volume: 6 Issue: 2

Cite

APA Tarhan, L., & Kayalı, H. A. (2016). AMYCOLATOPSİS ORİENTALİS BESİ ORTAMİNDA KARBON KAYNAĞİ OLAN GLİKOZ VE GLİSEROLÜN KONSANTRASYONUNA BAĞİMLİ VANKOMİSİN ÜRETİMİNİN DEĞİŞİMİ. Trakya Üniversitesi Fen Bilimleri Dergisi, 6(2), 105-112.
AMA Tarhan L, Kayalı HA. AMYCOLATOPSİS ORİENTALİS BESİ ORTAMİNDA KARBON KAYNAĞİ OLAN GLİKOZ VE GLİSEROLÜN KONSANTRASYONUNA BAĞİMLİ VANKOMİSİN ÜRETİMİNİN DEĞİŞİMİ. Trakya Univ J Sci. August 2016;6(2):105-112.
Chicago Tarhan, Leman, and Hülya AYAR Kayalı. “AMYCOLATOPSİS ORİENTALİS BESİ ORTAMİNDA KARBON KAYNAĞİ OLAN GLİKOZ VE GLİSEROLÜN KONSANTRASYONUNA BAĞİMLİ VANKOMİSİN ÜRETİMİNİN DEĞİŞİMİ”. Trakya Üniversitesi Fen Bilimleri Dergisi 6, no. 2 (August 2016): 105-12.
EndNote Tarhan L, Kayalı HA (August 1, 2016) AMYCOLATOPSİS ORİENTALİS BESİ ORTAMİNDA KARBON KAYNAĞİ OLAN GLİKOZ VE GLİSEROLÜN KONSANTRASYONUNA BAĞİMLİ VANKOMİSİN ÜRETİMİNİN DEĞİŞİMİ. Trakya Üniversitesi Fen Bilimleri Dergisi 6 2 105–112.
IEEE L. Tarhan and H. A. Kayalı, “AMYCOLATOPSİS ORİENTALİS BESİ ORTAMİNDA KARBON KAYNAĞİ OLAN GLİKOZ VE GLİSEROLÜN KONSANTRASYONUNA BAĞİMLİ VANKOMİSİN ÜRETİMİNİN DEĞİŞİMİ”, Trakya Univ J Sci, vol. 6, no. 2, pp. 105–112, 2016.
ISNAD Tarhan, Leman - Kayalı, Hülya AYAR. “AMYCOLATOPSİS ORİENTALİS BESİ ORTAMİNDA KARBON KAYNAĞİ OLAN GLİKOZ VE GLİSEROLÜN KONSANTRASYONUNA BAĞİMLİ VANKOMİSİN ÜRETİMİNİN DEĞİŞİMİ”. Trakya Üniversitesi Fen Bilimleri Dergisi 6/2 (August 2016), 105-112.
JAMA Tarhan L, Kayalı HA. AMYCOLATOPSİS ORİENTALİS BESİ ORTAMİNDA KARBON KAYNAĞİ OLAN GLİKOZ VE GLİSEROLÜN KONSANTRASYONUNA BAĞİMLİ VANKOMİSİN ÜRETİMİNİN DEĞİŞİMİ. Trakya Univ J Sci. 2016;6:105–112.
MLA Tarhan, Leman and Hülya AYAR Kayalı. “AMYCOLATOPSİS ORİENTALİS BESİ ORTAMİNDA KARBON KAYNAĞİ OLAN GLİKOZ VE GLİSEROLÜN KONSANTRASYONUNA BAĞİMLİ VANKOMİSİN ÜRETİMİNİN DEĞİŞİMİ”. Trakya Üniversitesi Fen Bilimleri Dergisi, vol. 6, no. 2, 2016, pp. 105-12.
Vancouver Tarhan L, Kayalı HA. AMYCOLATOPSİS ORİENTALİS BESİ ORTAMİNDA KARBON KAYNAĞİ OLAN GLİKOZ VE GLİSEROLÜN KONSANTRASYONUNA BAĞİMLİ VANKOMİSİN ÜRETİMİNİN DEĞİŞİMİ. Trakya Univ J Sci. 2016;6(2):105-12.