Research Article
BibTex RIS Cite

Süveyş Kanalı’nda Seyir Güvenliği: İnsan-Örgütsel Faktörler ve Çevresel Risklerin HFACS-PV Analizi ile Karşılaştırmalı İnceleme

Year 2025, Volume: 11 Issue: 3, 229 - 252, 01.09.2025
https://doi.org/10.52998/trjmms.1741624

Abstract

Dar su yolları, deniz trafiğinin en yoğun olduğu bölgeler arasında yer almakta olup, deniz kazalarının yüksek sıklıkla görüldüğü alanlar olarak bilinmektedir. Zorunlu kılavuzluk hizmetlerinin uygulanmasına rağmen yapay bir kanal olan Süveyş Kanalı, dar yapısı ve önemli uzunluğu nedeniyle deniz taşımacılığı açısından ciddi bir tehdit oluşturmaktadır. Kanalda meydana gelebilecek herhangi bir kaza, küresel ticarette günlerce sürebilecek aksamalara neden olabilmektedir. Bu çalışmanın temel amacı, Süveyş Kanalı’nda meydana gelen deniz kazalarına neden olan İnsan ve Örgütsel Faktörleri (HOFs) ile operasyonel koşulları (çevresel etkenler) belirlemektir. Bu kapsamda, 2000-2023 yılları arasında bildirilen toplam 47 deniz kazası, Yolcu Gemileri için İnsan Faktörleri Analizi ve Sınıflandırma Sistemi (HFACS-PV) modeli kullanılarak analiz edilmiştir. Ayrıca, bu kazaların mekânsal dağılımı Tableau yazılımı aracılığıyla görselleştirilmiş ve diğer önemli dar su yollarıyla karşılaştırmalar yapılmıştır. Analiz sonucunda, kazaların %89’unun insan ve örgütsel hatalardan, %11’inin ise operasyonel koşullardan kaynaklandığı belirlenmiştir. En yaygın nedenler, güvensiz davranışlar, bu davranışların ön koşulları özellikle ruh sağlığına ilişkin sorunlar ve yetersiz denetimdir. Kazalar, çoğunlukla kanalın kuzey & güney girişleri ile manevra kabiliyetinin sınırlı olduğu İsmailiye bölgesinde yoğunlaşmaktadır. Diğer stratejik su yollarıyla karşılaştırıldığında, Süveyş Kanalı’nda görece daha az kaza ve çarpışma yaşanmakta, ancak karaya oturma olayları en sık görülen kaza türü olarak öne çıkmaktadır. Kanalın yapısal özellikleri ve yoğun trafiği, özellikle konteyner gemileri için riski artırmaktadır. Türk Boğazları'nda daha çok yaşlı gemiler kazalara karışırken, Süveyş Kanalı’ndaki kazalarda modern gemilerin yer alması, insan hataları ve operasyonel yetersizliklerin belirleyici rolünü ortaya koymaktadır.

References

  • Akhtar, M.J., Utne, I.B. (2014). Human fatigue’s effect on the risk of maritime groundings–A Bayesian Network modeling approach. Safety Science, 62: 427-440.
  • Allianz, The Suez Canal Blockage Lessons to Be Learned (2021). Accessed Date: 01.07.2025, https://www.agcs.allianz.com/news-and-insights/expert-risk-articles/suez-canal-lessons-learned.html is retrieved.
  • Altinpinar, I., Basar, E. (2018). Comparison of the safety cultures of Turkish aviation and maritime transportation workers. International Journal of Occupational Safety and Ergonomics, 26(3): 459-468.
  • Arslan, O., Turan, O. (2009). Analytical investigation of marine casualties at the strait of Istanbul with SWOT–AHP method. Maritime Policy & Management, 36(2): 131-145.
  • Aydogdu, Y.V., Yurtoren, C., Park, J.S., Park, Y.S. (2012). A study on local traffic management to improve marine traffic safety in the Istanbul strait. The Journal of Navigation, 65(1): 99-112.
  • Aydogdu, Y.V. (2014). A comparison of maritime risk perception and accident statistics in the Istanbul straight. The Journal of Navigation, 67(1): 129-144.
  • Başar, E. (2010). Investigation into marine traffic and a risky area in the Turkish straits system: Canakkale strait. Transport, 25(1): 5-10.
  • Bateman, S., Ho, J., Mathai, M. (2007). Shipping patterns in the Malacca and Singapore straits: an assessment of the risks to different types of vessel. Contemporary Southeast Asia, 309-332.
  • Bayazit, O., Toz, A.C., Buber, M. (2020). Spatial distribution analysis of ship accidents in the Çanakkale Strait. Zeszyty Naukowe Akademii Morskiej w Szczecinie, 62(134): 9-17.
  • Celik, M., Cebi, S. (2009). Analytical HFACS for investigating human errors in shipping accidents. Accident Analysis & Prevention, 41(1): 66-75.
  • Chauvin, C., Lardjane, S., Morel, G., Clostermann, J.P., Langard, B. (2013). Human and organisational factors in maritime accidents: Analysis of collisions at sea using the HFACS. Accident Analysis & Prevention, 59: 26-37.
  • Ece, N.J., Tok, V., Temiz, İ. (2020). An Analysis of marine accidents in the strait of Çanakkale. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi, 12: 1-26.
  • Elsherbiny, K., Tezdogan, T., Kotb, M., Incecik, A., Day, S. (2019). Experimental analysis of the squat of ships advancing through the New Suez Canal. Ocean Engineering, 178: 331-344.
  • EMSA, Annual Overview of Marine Casualties and Incidents 2018 (2018). Accessed Date: 01.07.2025, https://www.emsa.europa.eu/newsroom/latest-news/item/3406-annual-overview-of-marine-casualties-and-incidents-2018.html is retrieved.
  • EMSA, Annual Overview of Marine Casualties and Incidents 2021 (2021). Accessed Date: 01.07.2025, https://www.emsa.europa.eu/newsroom/latest-news/item/4266-annual-overview-of-marine-casualties-and-incidents-2020.html is retrieved.
  • Graziano, A., Teixeira, A.P., Soares, C.G. (2016). Classification of human errors in grounding and collision accidents using the TRACEr taxonomy. Safety Science, 86: 245-257.
  • Huang, D.Z., Hu, H., Li, Y.Z. (2013). Spatial analysis of maritime accidents using the geographic information system. Transportation Research Record, 2326(1): 39-44.
  • Isle of Man Ship Registry (2015). Casualty Investigation report no. CA124.
  • Kaptan, M. (2022). Analysis of accidents during vehicle stowage on RO-RO vessels by using Fuzzy Bayesian networks. Ocean Engineering, 260: 111997.
  • Kilic, A., Akdamar, E. (2020). Investigation of resource distribution based on the relationship between accident regions and accident types. International Journal of Safety and Security Engineering, 10(6): 769-776.
  • Köse, E., Başar, E., Demirci, E., Güneroǧlu, A., Erkebay, Ş. (2003). Simulation of marine traffic in Istanbul strait. Simulation Modelling Practice and Theory, 11(7-8): 597-608.
  • Kuleyin, B., Aytekin, H. (2015). Analysis of marine accidents encountered at the Çanakkale strait in years between 2004-2014 and recommendations regarding the prevention of accidents. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi, 7(1): 21-38.
  • Loughney, S., Ngwoke, K., Wang, J., Yildiz, S., Uğurlu, Ö. (2022). Investigation and evaluation of marine accidents in terms of grounding and contacts/collisions in the English Channel utilizing the HFACS-PV approach. In 32nd European Safety and Reliability Conference (ESREL) (pp. 544-551), Research Publishing Services.
  • Macrae, C. (2009). Human factors at sea: common patterns of error in groundings and collisions. Maritime Policy & Management, 36(1): 21-38.
  • Maritime Affairs Republic of Liberia (2007). In the matter of the grounding of motor ship Front Symphony, O.N. 11957.
  • Martins, M.R., Maturana, M.C. (2010). Human error contribution in collision and grounding of oil tankers. Risk Analysis: An International Journal, 30(4): 674-698.
  • Özdemir, Ü., Altinpinar, İ., Demirel, F. B. (2018). A MCDM approach with fuzzy AHP method for occupational accidents on board. TransNav, International Journal on Marine Navigation and Safety od Sea Transportation, 12(1): 93-98.
  • Panama Maritime Authority (2011). Report: M/V “Eleftheria K” R-009-2012-Diam.
  • Reason, J. (1990). Human error, Cambridge University Press.
  • Schröder-Hinrichs, J.U., Hollnagel, E., Baldauf, M. (2012). From Titanic to Costa Concordia a century of lessons not learned. WMU Journal of Maritime Affairs, 11: 151-167.
  • Shibasaki, R., Azuma, T., Yoshida, T., Teranishi, H., Abe, M. (2017). Global route choice and its modelling of dry bulk carriers based on vessel movement database: Focusing on the Suez Canal. Research in Transportation Business & Management, 25: 51-65.
  • Squire, D. (2003). The hazards of navigating the Dover Strait (Pas-de-Calais) traffic separation scheme. The Journal of Navigation, 56(2): 195-210.
  • SCA, Suez Canal Traffic Statistics Annual Report 2023 (2023). Accessed Date: 01.07.2025, https://www.suezcanal.gov.eg/English/Downloads/DownloadsDocLibrary/Navigation%20Reports/Annual%20Reports%E2%80%8B%E2%80%8B%E2%80%8B/2023.pdf is retrieved.
  • SCA, Suez Canal Authority, Navigation Statistics (2025a). Accessed Date: 01.07.2025, https://www.suezcanal.gov.eg/English/Navigation/Pages/NavigationStatistics.aspx is retrieved.
  • SCA, Suez Canal Authority, About (2025b). Accessed Date: 01.07.2025, https://www.suezcanal.gov.eg/English/About/Pages/default.aspx is retrieved.
  • SCA, Suez Canal Authority, Rules of Navigation (2025c). Date: 01.07.2025, https://www.suezcanal.gov.eg/English/Navigation/Pages/RulesOfNavigation.aspx is retrieved.
  • Shappell, S.A., Wiegmann, D.A. (1996). US naval aviation mishaps, 1977-92: differences between single-and dual-piloted aircraft. Aviation, Space, and Environmental Medicine, 67(1): 65-69.
  • Tableau, Tableau Software. Salesforce (2025). Accessed Date: 01.07.2025, https://www.tableau.com/ is retrieved.
  • Tonoğlu, F., Atalar, F., Başkan, İ.B., Yildiz, S., Uğurlu, Ö., Wang, J. (2022). A new hybrid approach for determining sector-specific risk factors in Turkish Straits: Fuzzy AHP-PRAT technique. Ocean Engineering, 253: 111280.
  • Uğurlu, O., Yildirim, U., Yuksekyildiz, E. (2013). Marine accident analysis with GIS. Journal of Shipping and Ocean Engineering, 3(1-2): 21.
  • Uğurlu, Ö., Köse, E., Yıldırım, U., Yüksekyıldız, E. (2015). Marine accident analysis for collision and grounding in oil tanker using FTA method. Maritime Policy & Management, 42(2): 163-185.
  • Uğurlu, Ö., Erol, S., Başar, E. (2016). The analysis of life safety and economic loss in marine accidents occurring in the Turkish Straits. Maritime Policy & Management, 43(3): 356-370.
  • Uğurlu, Ö., Yıldız, S., Loughney, S., Wang, J. (2018). Modified human factor analysis and classification system for passenger vessel accidents (HFACS-PV). Ocean Engineering, 161: 47-61.
  • Uğurlu, Ö., Yıldız, S., Loughney, S., Wang, J., Kuntchulia, S., Sharabidze, I. (2020). Analyzing collision, grounding, and sinking accidents occurring in the Black Sea utilizing HFACS and Bayesian networks. Risk Analysis, 40(12): 2610-2638.
  • UKHO, (2020). Sailing Directions Publication 172 Red Sea and the Persian Gulf. United States Government National Geospatial-Intelligence Agency, Publication No: 22, Virginia.
  • Ulusçu, Ö.S., Özbaş, B., Altıok, T., Or, İ. (2009). Risk analysis of the vessel traffic in the strait of Istanbul. Risk Analysis: An International Journal, 29(10): 1454-1472.
  • Yildiz, S., Uğurlu, Ö., Wang, J., Loughney, S. (2021). Application of the HFACS-PV approach for identification of human and organizational factors (HOFs) influencing marine accidents. Reliability Engineering & System Safety, 208: 107395.
  • Yildiz, S., Uğurlu, Ö., Loughney, S., Wang, J., Tonoğlu, F. (2022a). Spatial and statistical analysis of operational conditions influencing accident formation in narrow waterways: A Case study of Istanbul strait and Dover strait. Ocean Engineering, 265: 112647.
  • Yildiz, S., Tonoğlu, F., Uğurlu, Ö., Loughney, S., Wang, J. (2022b). Spatial and statistical analysis of operational conditions contributing to marine accidents in the Singapore strait. Journal of Marine Science and Engineering, 10(12): 2001.
  • Yıldız, S., Uğurlu, Ö., Wang, X., Loughney, S., Wang, J. (2024). Dynamic accident network model for predicting marine accidents in narrow waterways under variable conditions: a case study of the Istanbul strait. Journal of Marine Science and Engineering, 12(12): 2305.
  • Zaccone, R., Martelli, M. (2020). A collision avoidance algorithm for ship guidance applications. Journal of Marine Engineering & Technology, 19(sup1): 62-75.

Navigational Safety in the Suez Canal: HFACS-PV Analysis of Human-Organizational Factors and Environmental Risks with Comparative Insights

Year 2025, Volume: 11 Issue: 3, 229 - 252, 01.09.2025
https://doi.org/10.52998/trjmms.1741624

Abstract

Narrow waterways are among the most congested maritime areas and are frequently associated with high incidences of marine accidents. Despite being an artificial canal with mandatory pilotage, the Suez Canal poses a significant threat to maritime trade due to its narrow width and considerable length. Any accident in the canal can disrupt global trade for days. This study aims to identify Human and Organizational Factors (HOFs) and operational conditions (environmental factors) contributing to accidents in the Suez Canal. A total of 47 reported maritime accidents between 2000 and 2023 were analyzed using the Human Factors Analysis and Classification System for Passenger Vessels (HFACS-PV) model. Additionally, the spatial distribution of these accidents was visualized via Tableau, and comparisons were made with other major narrow waterways. According to the analysis, 89% of accident causes were attributed to human and organizational errors, while 11% were due to operational conditions. The most common causes were unsafe acts, precondition for unsafe acts particularly mental health issues and unsafe supervision. Accidents were predominantly concentrated near the northern & southern entrances of canal and the Ismailia region, where vessels have limited maneuverability. Compared to other strategic waterways, the Suez Canal has relatively fewer accidents and collisions; however, groundings are the most common. Moreover, container ships were found to be at higher risk due to the canal’s structure and traffic density. Unlike the Turkish Straits, where older vessels are often involved, the involvement of modern ships in Suez Canal accidents underscores the critical role of human and operational failures.

Ethical Statement

No ethics committee permission is required for this study.

References

  • Akhtar, M.J., Utne, I.B. (2014). Human fatigue’s effect on the risk of maritime groundings–A Bayesian Network modeling approach. Safety Science, 62: 427-440.
  • Allianz, The Suez Canal Blockage Lessons to Be Learned (2021). Accessed Date: 01.07.2025, https://www.agcs.allianz.com/news-and-insights/expert-risk-articles/suez-canal-lessons-learned.html is retrieved.
  • Altinpinar, I., Basar, E. (2018). Comparison of the safety cultures of Turkish aviation and maritime transportation workers. International Journal of Occupational Safety and Ergonomics, 26(3): 459-468.
  • Arslan, O., Turan, O. (2009). Analytical investigation of marine casualties at the strait of Istanbul with SWOT–AHP method. Maritime Policy & Management, 36(2): 131-145.
  • Aydogdu, Y.V., Yurtoren, C., Park, J.S., Park, Y.S. (2012). A study on local traffic management to improve marine traffic safety in the Istanbul strait. The Journal of Navigation, 65(1): 99-112.
  • Aydogdu, Y.V. (2014). A comparison of maritime risk perception and accident statistics in the Istanbul straight. The Journal of Navigation, 67(1): 129-144.
  • Başar, E. (2010). Investigation into marine traffic and a risky area in the Turkish straits system: Canakkale strait. Transport, 25(1): 5-10.
  • Bateman, S., Ho, J., Mathai, M. (2007). Shipping patterns in the Malacca and Singapore straits: an assessment of the risks to different types of vessel. Contemporary Southeast Asia, 309-332.
  • Bayazit, O., Toz, A.C., Buber, M. (2020). Spatial distribution analysis of ship accidents in the Çanakkale Strait. Zeszyty Naukowe Akademii Morskiej w Szczecinie, 62(134): 9-17.
  • Celik, M., Cebi, S. (2009). Analytical HFACS for investigating human errors in shipping accidents. Accident Analysis & Prevention, 41(1): 66-75.
  • Chauvin, C., Lardjane, S., Morel, G., Clostermann, J.P., Langard, B. (2013). Human and organisational factors in maritime accidents: Analysis of collisions at sea using the HFACS. Accident Analysis & Prevention, 59: 26-37.
  • Ece, N.J., Tok, V., Temiz, İ. (2020). An Analysis of marine accidents in the strait of Çanakkale. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi, 12: 1-26.
  • Elsherbiny, K., Tezdogan, T., Kotb, M., Incecik, A., Day, S. (2019). Experimental analysis of the squat of ships advancing through the New Suez Canal. Ocean Engineering, 178: 331-344.
  • EMSA, Annual Overview of Marine Casualties and Incidents 2018 (2018). Accessed Date: 01.07.2025, https://www.emsa.europa.eu/newsroom/latest-news/item/3406-annual-overview-of-marine-casualties-and-incidents-2018.html is retrieved.
  • EMSA, Annual Overview of Marine Casualties and Incidents 2021 (2021). Accessed Date: 01.07.2025, https://www.emsa.europa.eu/newsroom/latest-news/item/4266-annual-overview-of-marine-casualties-and-incidents-2020.html is retrieved.
  • Graziano, A., Teixeira, A.P., Soares, C.G. (2016). Classification of human errors in grounding and collision accidents using the TRACEr taxonomy. Safety Science, 86: 245-257.
  • Huang, D.Z., Hu, H., Li, Y.Z. (2013). Spatial analysis of maritime accidents using the geographic information system. Transportation Research Record, 2326(1): 39-44.
  • Isle of Man Ship Registry (2015). Casualty Investigation report no. CA124.
  • Kaptan, M. (2022). Analysis of accidents during vehicle stowage on RO-RO vessels by using Fuzzy Bayesian networks. Ocean Engineering, 260: 111997.
  • Kilic, A., Akdamar, E. (2020). Investigation of resource distribution based on the relationship between accident regions and accident types. International Journal of Safety and Security Engineering, 10(6): 769-776.
  • Köse, E., Başar, E., Demirci, E., Güneroǧlu, A., Erkebay, Ş. (2003). Simulation of marine traffic in Istanbul strait. Simulation Modelling Practice and Theory, 11(7-8): 597-608.
  • Kuleyin, B., Aytekin, H. (2015). Analysis of marine accidents encountered at the Çanakkale strait in years between 2004-2014 and recommendations regarding the prevention of accidents. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi, 7(1): 21-38.
  • Loughney, S., Ngwoke, K., Wang, J., Yildiz, S., Uğurlu, Ö. (2022). Investigation and evaluation of marine accidents in terms of grounding and contacts/collisions in the English Channel utilizing the HFACS-PV approach. In 32nd European Safety and Reliability Conference (ESREL) (pp. 544-551), Research Publishing Services.
  • Macrae, C. (2009). Human factors at sea: common patterns of error in groundings and collisions. Maritime Policy & Management, 36(1): 21-38.
  • Maritime Affairs Republic of Liberia (2007). In the matter of the grounding of motor ship Front Symphony, O.N. 11957.
  • Martins, M.R., Maturana, M.C. (2010). Human error contribution in collision and grounding of oil tankers. Risk Analysis: An International Journal, 30(4): 674-698.
  • Özdemir, Ü., Altinpinar, İ., Demirel, F. B. (2018). A MCDM approach with fuzzy AHP method for occupational accidents on board. TransNav, International Journal on Marine Navigation and Safety od Sea Transportation, 12(1): 93-98.
  • Panama Maritime Authority (2011). Report: M/V “Eleftheria K” R-009-2012-Diam.
  • Reason, J. (1990). Human error, Cambridge University Press.
  • Schröder-Hinrichs, J.U., Hollnagel, E., Baldauf, M. (2012). From Titanic to Costa Concordia a century of lessons not learned. WMU Journal of Maritime Affairs, 11: 151-167.
  • Shibasaki, R., Azuma, T., Yoshida, T., Teranishi, H., Abe, M. (2017). Global route choice and its modelling of dry bulk carriers based on vessel movement database: Focusing on the Suez Canal. Research in Transportation Business & Management, 25: 51-65.
  • Squire, D. (2003). The hazards of navigating the Dover Strait (Pas-de-Calais) traffic separation scheme. The Journal of Navigation, 56(2): 195-210.
  • SCA, Suez Canal Traffic Statistics Annual Report 2023 (2023). Accessed Date: 01.07.2025, https://www.suezcanal.gov.eg/English/Downloads/DownloadsDocLibrary/Navigation%20Reports/Annual%20Reports%E2%80%8B%E2%80%8B%E2%80%8B/2023.pdf is retrieved.
  • SCA, Suez Canal Authority, Navigation Statistics (2025a). Accessed Date: 01.07.2025, https://www.suezcanal.gov.eg/English/Navigation/Pages/NavigationStatistics.aspx is retrieved.
  • SCA, Suez Canal Authority, About (2025b). Accessed Date: 01.07.2025, https://www.suezcanal.gov.eg/English/About/Pages/default.aspx is retrieved.
  • SCA, Suez Canal Authority, Rules of Navigation (2025c). Date: 01.07.2025, https://www.suezcanal.gov.eg/English/Navigation/Pages/RulesOfNavigation.aspx is retrieved.
  • Shappell, S.A., Wiegmann, D.A. (1996). US naval aviation mishaps, 1977-92: differences between single-and dual-piloted aircraft. Aviation, Space, and Environmental Medicine, 67(1): 65-69.
  • Tableau, Tableau Software. Salesforce (2025). Accessed Date: 01.07.2025, https://www.tableau.com/ is retrieved.
  • Tonoğlu, F., Atalar, F., Başkan, İ.B., Yildiz, S., Uğurlu, Ö., Wang, J. (2022). A new hybrid approach for determining sector-specific risk factors in Turkish Straits: Fuzzy AHP-PRAT technique. Ocean Engineering, 253: 111280.
  • Uğurlu, O., Yildirim, U., Yuksekyildiz, E. (2013). Marine accident analysis with GIS. Journal of Shipping and Ocean Engineering, 3(1-2): 21.
  • Uğurlu, Ö., Köse, E., Yıldırım, U., Yüksekyıldız, E. (2015). Marine accident analysis for collision and grounding in oil tanker using FTA method. Maritime Policy & Management, 42(2): 163-185.
  • Uğurlu, Ö., Erol, S., Başar, E. (2016). The analysis of life safety and economic loss in marine accidents occurring in the Turkish Straits. Maritime Policy & Management, 43(3): 356-370.
  • Uğurlu, Ö., Yıldız, S., Loughney, S., Wang, J. (2018). Modified human factor analysis and classification system for passenger vessel accidents (HFACS-PV). Ocean Engineering, 161: 47-61.
  • Uğurlu, Ö., Yıldız, S., Loughney, S., Wang, J., Kuntchulia, S., Sharabidze, I. (2020). Analyzing collision, grounding, and sinking accidents occurring in the Black Sea utilizing HFACS and Bayesian networks. Risk Analysis, 40(12): 2610-2638.
  • UKHO, (2020). Sailing Directions Publication 172 Red Sea and the Persian Gulf. United States Government National Geospatial-Intelligence Agency, Publication No: 22, Virginia.
  • Ulusçu, Ö.S., Özbaş, B., Altıok, T., Or, İ. (2009). Risk analysis of the vessel traffic in the strait of Istanbul. Risk Analysis: An International Journal, 29(10): 1454-1472.
  • Yildiz, S., Uğurlu, Ö., Wang, J., Loughney, S. (2021). Application of the HFACS-PV approach for identification of human and organizational factors (HOFs) influencing marine accidents. Reliability Engineering & System Safety, 208: 107395.
  • Yildiz, S., Uğurlu, Ö., Loughney, S., Wang, J., Tonoğlu, F. (2022a). Spatial and statistical analysis of operational conditions influencing accident formation in narrow waterways: A Case study of Istanbul strait and Dover strait. Ocean Engineering, 265: 112647.
  • Yildiz, S., Tonoğlu, F., Uğurlu, Ö., Loughney, S., Wang, J. (2022b). Spatial and statistical analysis of operational conditions contributing to marine accidents in the Singapore strait. Journal of Marine Science and Engineering, 10(12): 2001.
  • Yıldız, S., Uğurlu, Ö., Wang, X., Loughney, S., Wang, J. (2024). Dynamic accident network model for predicting marine accidents in narrow waterways under variable conditions: a case study of the Istanbul strait. Journal of Marine Science and Engineering, 12(12): 2305.
  • Zaccone, R., Martelli, M. (2020). A collision avoidance algorithm for ship guidance applications. Journal of Marine Engineering & Technology, 19(sup1): 62-75.
There are 51 citations in total.

Details

Primary Language English
Subjects Maritime Transportation Engineering
Journal Section Research Article
Authors

İbrahim Burak Başkan 0000-0001-5215-8676

Fatih Sana 0000-0002-2222-4772

Özkan Uğurlu 0000-0002-3788-1759

Early Pub Date July 31, 2025
Publication Date September 1, 2025
Submission Date July 14, 2025
Acceptance Date July 26, 2025
Published in Issue Year 2025 Volume: 11 Issue: 3

Cite

APA Başkan, İ. B., Sana, F., & Uğurlu, Ö. (2025). Navigational Safety in the Suez Canal: HFACS-PV Analysis of Human-Organizational Factors and Environmental Risks with Comparative Insights. Turkish Journal of Maritime and Marine Sciences, 11(3), 229-252. https://doi.org/10.52998/trjmms.1741624

Creative Commons Lisansı

This Journal is licensed with Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (CC BY-NC-ND 4.0).