Research Article
BibTex RIS Cite

SALT TOLERANCE AND PHB PRODUCTION OF Rhizobium FRANK ISOLATES OF ROOT NODULES OF WILD Vicia aintabensis BOISS. & HAUSSKN. EX BOISS

Year 2017, Volume: 18 Issue: 1, 25 - 32, 06.04.2017
https://doi.org/10.23902/trkjnat.304384

Abstract

This
study was performed in order to determine the tolerance of Rhizobium Frank isolates obtained from root nodules of wild Vicia aintabensis Boiss.
& Hausskn. ex Boiss to different NaCl concentrations
(0, 100, 150, 200, 250, 300, 350, 400 and 450mM) and to determine the effects
of these different salt concentrations on poly-β-hydroxybutyric acid (PHB)
production of the isolates. The results showed that the isolates showed
different salt tolerance responses. V4.6 isolate was found to be the most
affected isolate by salt concentrations. The PHB yield of the isolates (in
terms of cell dry weight) was between 0,62-27%. Increasing salt concentrations
inhibited isolate growths but stimulated PHB accumulation. PHB production by
root nodule isolates under salt–stress conditions was discussed

References

  • 1. Abdelmoumen, H., Filali-Maltouf, A., Belabed, A. & Missbah El-Idrissi, M., 1999. Effect of high salts concentrations on the growth of rhizobia and responses to added osmotica. Journal of Applied Microbiology, 86: 889–898.
  • 2. Abdel-Wahab, H.H. & Zahran, H.H. 1979. Salt tolerance of Rhizobium species in broth culture. Zeitschrift für allgemeine Mikrobiologie, 19: 681-685.
  • 3. Aldal, H.K.H. 2016. Effect of different salt concentrations and pH on the growth of Rhizobium isolated from groundnuts (Arachis hypogaea). International Journal of Advanced Research, 4: 444-448.
  • 4. Ali, A., Shaban, K.A. & Tantawy, E.A. 2014. Effect of poly-β-hydroxybutyrate (PHB) and glycogen producing endophytic bacteria on yield, growth and nutrient contents in rice cultivated in saline soil. Applied Science Reports, 8: 134-142.
  • 5. Anderson, A.J. & Dawes, E.A. 1990. Occurence, metabolism, metabolic role and industrial uses of bacterial polyhydroxyalkanoates. Microbiological Reviews, 54: 450-472.
  • 6. Arora, N.K., Singhal, J. & Maheshwari, D.K. 2006. Salinity induced accumulation of poly-β-hydroxybutyrate in rhizobia indicating its role in cell protection. World Journal of Microbiology and Biotechnology, 22: 603-606.
  • 7. Bonartseva, G.A. & Myshkina, V.L. 1985. Fluorescance intensity of strains of nodule bacteria (Rhizobium meliloti, R.phaseoli different in activity, grown in the presence of the lipopohilic vital strain phosphine R. Translation of Microbiologiya, 54(4): 535-541.
  • 8. Charles, T.C., Cai, G.Q. & Aneja, P. 1997. Megaplasmid and chromosomal loci for the PHB degradation pathway in Rhizobium (Sinorhizobium) meliloti. Genetics, 146:1211-1220.
  • 9. Cordovilla, M.P., Ligero, F. & Lluch, C. 1994. The effect of salinity on N2 fixation and assimilation in Vicia faba. Journal of Experimental Botany, 45:1483-1488.
  • 10. Çullu, M.A. 2011. Toprak tuzlulaşması. T.C. Kalkınma Bakanlığı Güneydoğu Anadolu Projesi Bölge Kalkınma İdaresi Başkanlığı, Şanlıurfa 96 sayfa.
  • 11. El-Mokadem, E.A.E., Helemis, F.A., Abdel-Wahab, S.M. & Abou-El-Nour, M.M. 1991. Salt response of clover and alfalfa inoculated with salt tolerant strains of Rhizobium. Ain Shams Science Bulletin, 28: 441-468.
  • 12. El-Sheikh, E.A.E. & Wood, M. 1990. Salt effects on survival and multiplication of chickpea and soybean rhizobia. Soil Biology & Biochemistry, 22: 343-347.
  • 13. El-Sheikh, E.A.E. & Wood, M. 1995. Nodulation and N2 fixation by soybean inoculated with salt tolerant rhizobia or salt-sensitive bradyrhizobia in saline soil. Soil Biology & Biochemistry, 27: 657-661.
  • 14. Faituri, M.Y., El-Mahi, Y.E. & El-Hassan, G.A. 2001. Effects of some salts and sodicity on the growth of a Rhizobium leguminosarum bv. viciae strain isolated from a salt affected soil. Canadian Journal of Microbiology, 47: 807-812.
  • 15. Gorji, T., Tanık, A. & Sertel, E. 2015. Soil salinity prediction, monitoring and mappling using modern Technologies. Procedia Earth and Planetary Science, 15:507-512.
  • 16. Hua, S.T., Tsai, V.Y., Lichens, G.M. & Noma, A.T. 1982. Accumulation of aminoacids in Rhizobium sp. strain WR1001 in response to sodium chloride salinity. Applied and Environmental Microbiology, 44: 135-140.
  • 17. Jordan, D.C. 1984. Genus I. Rhizobium Frank 1889. In: Krieg, NR, Holt JG (Eds.), Bergeys Manual of Systemic Bacteriology, Vol.1 Williams & Wilkins, Baltimore, pp 136-139.
  • 18. Junior, P.I.F., de Oliveira, P.J., Rumjanek, N.G. & Xavier, G.R. 2011. Poly-β-hydroxybutyrate and exopolysaccharide biosynthesis by bacterial isolates from pigeonpea (Cajanus cajan (L.) Mill sp.) root nodules. Applied Biochemistry Biotechnology, 163: 473-484.
  • 19. Kassem, M., Cappelano, A. & Gounot, A.M. 1985. Effet du chlorure de sodium sur la croissance in vitro, l’infectivité et l’efficience de Rhizobium meliloti. Mircen Journal, 1: 63 75.
  • 20. Kim, J., Shin, T.K., Choi, H.J., Jhon, M.S.1999. Miscibility of biodegradable synthetic aliphatic polyester and poly(epichlorohydrin) blends. Polymer, 40: 6873–6876.
  • 21. Küçük, Ç., Cevheri, C. & Çetin, E. 2011. Şanlıurfa’daki doğal baklagillerin Rhizobium potansiyellerinin belirlenmesi. Sayfa 445-452. I. Ali Numan Kıraç Tarım Kongresi ve Fuarı Bildiriler Kitabı 27-30 Nisan 2011, Eskişehir.
  • 22. Lakshmi, R.S., Hema, T.A., Divya, T.R. & Starin, S.T. 2012. Production and optimization of polyhydroxybutyrate from Rhizobium sp. present in root nodules. Journal of Pharmacy and Biological Sciences, 3: 21-25.
  • 23. Ltaief, B., Sifi, B., Zaman-Allah, M., Drevon, J., Lachaal, M. 2007 Effect of salinity on root–nodule conductance to the oxygen diffusion in the Cicer arietinum–Mesorhizobium ciceri symbiosis. Journal Plant Physiology, 164:1028–1036.
  • 24. Mashhady, A.S., Salem, S.H., Barakh, F.N. & Heggo, A.M. 1998. Effect of salinity on survival and symbiotic performance between Rhizobium meliloti and Medigaco sativa in Arabian soils. Arid Soil Research Rehabilition, 12: 3-14.
  • 25. Obruca, S., Marova, I., Svoboda, Z. & Mikulikova, R. 2010. Use of controlled exogenous stress for improvement of poly(3-hydroxybutyrate) production in Cupriavidus necator. Folia Microbiology, 55: 17-22.
  • 26. Passanha P., Kedia, g., Dinsdale, R.M., Guwy, A.J. & Esteves, S.R. 2014. The use of NaCl addition for the improvement of polyhydroxyalkanoate production by Cupriavidus necator. Bioresource Technology, 163: 287–294.
  • 27. Rodriguez-Contreras, A., Koller, M., Braunegg, G., & Marquez-Calvo, M.S. 2016. Poly[(R)-3-hydroxybutyrate] production under different salinity conditions by a novel Bacillus megaterium strain. New Biotechnology, 33: 73-77.
  • 28. Sauvage, D., Hamelin, J. & Larher, F. 1983 Glycine betaine and other structurally related compounds improve the salt tolerance of Rhizobium meliloti. Plant Science Letters, 31: 291 302.
  • 29. Singleton, P.W., Singleton, S.A., El-swaifi, B.B. & Bohlool, B. 1982. Effect of salinity on Rhizobium growth and survival. Applied Environvironmental Microbiology, 44: 884–890.
  • 30. Stam, H., van Verseveld, H.W., de Vires, W. & Stouthamer, A.H. 1986. Utilisation of poly-β-hydroxybutyrate in free living cultures of Rhizobium ORS571. FEMS Microbiology Letters, 35: 215-220.
  • 31. Tate, R.L. 1995. Soil Microbiology (Symbiotic Nitrogen Fixation), p. 307-333. John Wiley & Sons, Inc., New York, N.Y.
  • 32. Tombolini, R. & Nuti, M.P. 1989. Poly-(β-hyroxyalkanote) biosynthesis and accumulation by different Rhizobium species. FEMS Microbiology Letters, 60: 299-304.
  • 33. Ventorino, V., Caputo, R., De Pascale, S., Fagnano, M., Pepe, O. & Moschetti, G. 2012. Response to salinity stress of Rhizobium leguminosarum bv. viciae strains in the presence of different legume host plants. Annals of Microbiology, 62: 811-823.
  • 34. Yurtsever, N. 1984. Deneysel istatistik metodları. Tarım Orman ve Köy Hizmetleri Genel Müdürlüğü Yayın No: 121, 623 sayfa, Ankara.
  • 35. Zahran, H.H. 1991. Conditions for successful Rhizobium-legume symbiosis in saline environments. Biology Fertility Soils, 12:73-80.
  • 36. Zahran, H.H. & Sprent, J.I. 1986. Effects of sodium chloride and polyethylene glycol on root hair infection and nodulation of Vicia faba L. plants by Rhizobium leguminosarum. Planta 167: 303-309.

YABANİ Vicia aintabensis BOISS. & HAUSSKN. EX BOISS KÖK NODÜLLERİNDEN IZOLE EDİLEN Rhizobium FRANK İZOLATLARININ TUZ TOLERANSI VE PHB ÜRETİMİ

Year 2017, Volume: 18 Issue: 1, 25 - 32, 06.04.2017
https://doi.org/10.23902/trkjnat.304384

Abstract

Bu çalışmada, yabani Vicia aintabensis Boiss.
& Hausskn. ex Boiss kök nodüllerinden izole edilen Rhizobium Frank izolatlarının farklı tuz konsantrasyonlarına (0, 100, 150, 200,
250, 300, 350, 400 ve 450mM) toleranslarının ve bu tuz konsantrasyonlarının
izolatların poli-β-hidroksibütirik asit (PHB) üretimlerine olan etkilerinin belirlenmesi
amaçlanmıştır. Elde edilen sonuçlar, izolatların farklı tuz toleransına sahip
olduklarını ortaya koymuştur. Tuz konsantrasyonlarından en fazla etkilenen V4.6
izolatı olmuştur. İzolatların PHB verimi (kuru hücre ağırlığına göre) %0,62-27
arasındadır. Artan tuz konsantrasyonları izolat gelişimini inhibe ederken, PHB
depolanmasını teşvik etmiştir. Kök nodül izolatları tarafından tuz stres
koşullarında PHB üretimi tartışılmıştır.

References

  • 1. Abdelmoumen, H., Filali-Maltouf, A., Belabed, A. & Missbah El-Idrissi, M., 1999. Effect of high salts concentrations on the growth of rhizobia and responses to added osmotica. Journal of Applied Microbiology, 86: 889–898.
  • 2. Abdel-Wahab, H.H. & Zahran, H.H. 1979. Salt tolerance of Rhizobium species in broth culture. Zeitschrift für allgemeine Mikrobiologie, 19: 681-685.
  • 3. Aldal, H.K.H. 2016. Effect of different salt concentrations and pH on the growth of Rhizobium isolated from groundnuts (Arachis hypogaea). International Journal of Advanced Research, 4: 444-448.
  • 4. Ali, A., Shaban, K.A. & Tantawy, E.A. 2014. Effect of poly-β-hydroxybutyrate (PHB) and glycogen producing endophytic bacteria on yield, growth and nutrient contents in rice cultivated in saline soil. Applied Science Reports, 8: 134-142.
  • 5. Anderson, A.J. & Dawes, E.A. 1990. Occurence, metabolism, metabolic role and industrial uses of bacterial polyhydroxyalkanoates. Microbiological Reviews, 54: 450-472.
  • 6. Arora, N.K., Singhal, J. & Maheshwari, D.K. 2006. Salinity induced accumulation of poly-β-hydroxybutyrate in rhizobia indicating its role in cell protection. World Journal of Microbiology and Biotechnology, 22: 603-606.
  • 7. Bonartseva, G.A. & Myshkina, V.L. 1985. Fluorescance intensity of strains of nodule bacteria (Rhizobium meliloti, R.phaseoli different in activity, grown in the presence of the lipopohilic vital strain phosphine R. Translation of Microbiologiya, 54(4): 535-541.
  • 8. Charles, T.C., Cai, G.Q. & Aneja, P. 1997. Megaplasmid and chromosomal loci for the PHB degradation pathway in Rhizobium (Sinorhizobium) meliloti. Genetics, 146:1211-1220.
  • 9. Cordovilla, M.P., Ligero, F. & Lluch, C. 1994. The effect of salinity on N2 fixation and assimilation in Vicia faba. Journal of Experimental Botany, 45:1483-1488.
  • 10. Çullu, M.A. 2011. Toprak tuzlulaşması. T.C. Kalkınma Bakanlığı Güneydoğu Anadolu Projesi Bölge Kalkınma İdaresi Başkanlığı, Şanlıurfa 96 sayfa.
  • 11. El-Mokadem, E.A.E., Helemis, F.A., Abdel-Wahab, S.M. & Abou-El-Nour, M.M. 1991. Salt response of clover and alfalfa inoculated with salt tolerant strains of Rhizobium. Ain Shams Science Bulletin, 28: 441-468.
  • 12. El-Sheikh, E.A.E. & Wood, M. 1990. Salt effects on survival and multiplication of chickpea and soybean rhizobia. Soil Biology & Biochemistry, 22: 343-347.
  • 13. El-Sheikh, E.A.E. & Wood, M. 1995. Nodulation and N2 fixation by soybean inoculated with salt tolerant rhizobia or salt-sensitive bradyrhizobia in saline soil. Soil Biology & Biochemistry, 27: 657-661.
  • 14. Faituri, M.Y., El-Mahi, Y.E. & El-Hassan, G.A. 2001. Effects of some salts and sodicity on the growth of a Rhizobium leguminosarum bv. viciae strain isolated from a salt affected soil. Canadian Journal of Microbiology, 47: 807-812.
  • 15. Gorji, T., Tanık, A. & Sertel, E. 2015. Soil salinity prediction, monitoring and mappling using modern Technologies. Procedia Earth and Planetary Science, 15:507-512.
  • 16. Hua, S.T., Tsai, V.Y., Lichens, G.M. & Noma, A.T. 1982. Accumulation of aminoacids in Rhizobium sp. strain WR1001 in response to sodium chloride salinity. Applied and Environmental Microbiology, 44: 135-140.
  • 17. Jordan, D.C. 1984. Genus I. Rhizobium Frank 1889. In: Krieg, NR, Holt JG (Eds.), Bergeys Manual of Systemic Bacteriology, Vol.1 Williams & Wilkins, Baltimore, pp 136-139.
  • 18. Junior, P.I.F., de Oliveira, P.J., Rumjanek, N.G. & Xavier, G.R. 2011. Poly-β-hydroxybutyrate and exopolysaccharide biosynthesis by bacterial isolates from pigeonpea (Cajanus cajan (L.) Mill sp.) root nodules. Applied Biochemistry Biotechnology, 163: 473-484.
  • 19. Kassem, M., Cappelano, A. & Gounot, A.M. 1985. Effet du chlorure de sodium sur la croissance in vitro, l’infectivité et l’efficience de Rhizobium meliloti. Mircen Journal, 1: 63 75.
  • 20. Kim, J., Shin, T.K., Choi, H.J., Jhon, M.S.1999. Miscibility of biodegradable synthetic aliphatic polyester and poly(epichlorohydrin) blends. Polymer, 40: 6873–6876.
  • 21. Küçük, Ç., Cevheri, C. & Çetin, E. 2011. Şanlıurfa’daki doğal baklagillerin Rhizobium potansiyellerinin belirlenmesi. Sayfa 445-452. I. Ali Numan Kıraç Tarım Kongresi ve Fuarı Bildiriler Kitabı 27-30 Nisan 2011, Eskişehir.
  • 22. Lakshmi, R.S., Hema, T.A., Divya, T.R. & Starin, S.T. 2012. Production and optimization of polyhydroxybutyrate from Rhizobium sp. present in root nodules. Journal of Pharmacy and Biological Sciences, 3: 21-25.
  • 23. Ltaief, B., Sifi, B., Zaman-Allah, M., Drevon, J., Lachaal, M. 2007 Effect of salinity on root–nodule conductance to the oxygen diffusion in the Cicer arietinum–Mesorhizobium ciceri symbiosis. Journal Plant Physiology, 164:1028–1036.
  • 24. Mashhady, A.S., Salem, S.H., Barakh, F.N. & Heggo, A.M. 1998. Effect of salinity on survival and symbiotic performance between Rhizobium meliloti and Medigaco sativa in Arabian soils. Arid Soil Research Rehabilition, 12: 3-14.
  • 25. Obruca, S., Marova, I., Svoboda, Z. & Mikulikova, R. 2010. Use of controlled exogenous stress for improvement of poly(3-hydroxybutyrate) production in Cupriavidus necator. Folia Microbiology, 55: 17-22.
  • 26. Passanha P., Kedia, g., Dinsdale, R.M., Guwy, A.J. & Esteves, S.R. 2014. The use of NaCl addition for the improvement of polyhydroxyalkanoate production by Cupriavidus necator. Bioresource Technology, 163: 287–294.
  • 27. Rodriguez-Contreras, A., Koller, M., Braunegg, G., & Marquez-Calvo, M.S. 2016. Poly[(R)-3-hydroxybutyrate] production under different salinity conditions by a novel Bacillus megaterium strain. New Biotechnology, 33: 73-77.
  • 28. Sauvage, D., Hamelin, J. & Larher, F. 1983 Glycine betaine and other structurally related compounds improve the salt tolerance of Rhizobium meliloti. Plant Science Letters, 31: 291 302.
  • 29. Singleton, P.W., Singleton, S.A., El-swaifi, B.B. & Bohlool, B. 1982. Effect of salinity on Rhizobium growth and survival. Applied Environvironmental Microbiology, 44: 884–890.
  • 30. Stam, H., van Verseveld, H.W., de Vires, W. & Stouthamer, A.H. 1986. Utilisation of poly-β-hydroxybutyrate in free living cultures of Rhizobium ORS571. FEMS Microbiology Letters, 35: 215-220.
  • 31. Tate, R.L. 1995. Soil Microbiology (Symbiotic Nitrogen Fixation), p. 307-333. John Wiley & Sons, Inc., New York, N.Y.
  • 32. Tombolini, R. & Nuti, M.P. 1989. Poly-(β-hyroxyalkanote) biosynthesis and accumulation by different Rhizobium species. FEMS Microbiology Letters, 60: 299-304.
  • 33. Ventorino, V., Caputo, R., De Pascale, S., Fagnano, M., Pepe, O. & Moschetti, G. 2012. Response to salinity stress of Rhizobium leguminosarum bv. viciae strains in the presence of different legume host plants. Annals of Microbiology, 62: 811-823.
  • 34. Yurtsever, N. 1984. Deneysel istatistik metodları. Tarım Orman ve Köy Hizmetleri Genel Müdürlüğü Yayın No: 121, 623 sayfa, Ankara.
  • 35. Zahran, H.H. 1991. Conditions for successful Rhizobium-legume symbiosis in saline environments. Biology Fertility Soils, 12:73-80.
  • 36. Zahran, H.H. & Sprent, J.I. 1986. Effects of sodium chloride and polyethylene glycol on root hair infection and nodulation of Vicia faba L. plants by Rhizobium leguminosarum. Planta 167: 303-309.
There are 36 citations in total.

Details

Subjects Structural Biology
Journal Section Research Article/Araştırma Makalesi
Authors

Çiğdem Küçük

Publication Date April 6, 2017
Submission Date November 18, 2016
Acceptance Date December 2, 2016
Published in Issue Year 2017 Volume: 18 Issue: 1

Cite

APA Küçük, Ç. (2017). SALT TOLERANCE AND PHB PRODUCTION OF Rhizobium FRANK ISOLATES OF ROOT NODULES OF WILD Vicia aintabensis BOISS. & HAUSSKN. EX BOISS. Trakya University Journal of Natural Sciences, 18(1), 25-32. https://doi.org/10.23902/trkjnat.304384
AMA Küçük Ç. SALT TOLERANCE AND PHB PRODUCTION OF Rhizobium FRANK ISOLATES OF ROOT NODULES OF WILD Vicia aintabensis BOISS. & HAUSSKN. EX BOISS. Trakya Univ J Nat Sci. June 2017;18(1):25-32. doi:10.23902/trkjnat.304384
Chicago Küçük, Çiğdem. “SALT TOLERANCE AND PHB PRODUCTION OF Rhizobium FRANK ISOLATES OF ROOT NODULES OF WILD Vicia Aintabensis BOISS. & HAUSSKN. EX BOISS”. Trakya University Journal of Natural Sciences 18, no. 1 (June 2017): 25-32. https://doi.org/10.23902/trkjnat.304384.
EndNote Küçük Ç (June 1, 2017) SALT TOLERANCE AND PHB PRODUCTION OF Rhizobium FRANK ISOLATES OF ROOT NODULES OF WILD Vicia aintabensis BOISS. & HAUSSKN. EX BOISS. Trakya University Journal of Natural Sciences 18 1 25–32.
IEEE Ç. Küçük, “SALT TOLERANCE AND PHB PRODUCTION OF Rhizobium FRANK ISOLATES OF ROOT NODULES OF WILD Vicia aintabensis BOISS. & HAUSSKN. EX BOISS”, Trakya Univ J Nat Sci, vol. 18, no. 1, pp. 25–32, 2017, doi: 10.23902/trkjnat.304384.
ISNAD Küçük, Çiğdem. “SALT TOLERANCE AND PHB PRODUCTION OF Rhizobium FRANK ISOLATES OF ROOT NODULES OF WILD Vicia Aintabensis BOISS. & HAUSSKN. EX BOISS”. Trakya University Journal of Natural Sciences 18/1 (June 2017), 25-32. https://doi.org/10.23902/trkjnat.304384.
JAMA Küçük Ç. SALT TOLERANCE AND PHB PRODUCTION OF Rhizobium FRANK ISOLATES OF ROOT NODULES OF WILD Vicia aintabensis BOISS. & HAUSSKN. EX BOISS. Trakya Univ J Nat Sci. 2017;18:25–32.
MLA Küçük, Çiğdem. “SALT TOLERANCE AND PHB PRODUCTION OF Rhizobium FRANK ISOLATES OF ROOT NODULES OF WILD Vicia Aintabensis BOISS. & HAUSSKN. EX BOISS”. Trakya University Journal of Natural Sciences, vol. 18, no. 1, 2017, pp. 25-32, doi:10.23902/trkjnat.304384.
Vancouver Küçük Ç. SALT TOLERANCE AND PHB PRODUCTION OF Rhizobium FRANK ISOLATES OF ROOT NODULES OF WILD Vicia aintabensis BOISS. & HAUSSKN. EX BOISS. Trakya Univ J Nat Sci. 2017;18(1):25-32.

You can reach the journal's archive between the years of 2000-2011 via https://dergipark.org.tr/en/pub/trakyafbd/archive (Trakya University Journal of Natural Sciences (=Trakya University Journal of Science)


Creative Commons Lisansı

Trakya University Journal of Natural Sciences is licensed under Creative Commons Attribution 4.0 International License.