Research Article
BibTex RIS Cite

BORON INCREASES THE VIABILITY OF HUMAN CANCER AND MURINE FIBROBLAST CELLS AFTER LONG TIME OF CRYOPRESERVATION

Year 2020, Volume: 21 Issue: 2, 115 - 122, 15.10.2020
https://doi.org/10.23902/trkjnat.758920

Abstract

Through the process of cryopreservation, cells are stored at very low temperature for a long time to decrease the biological and chemical reactions in viable cells. In this process, the administration of cryoprotective agents is crucial since cryopreservation is regarded as a leading process in various research fields such as biotechnology, clinical medicine and maintenance of both animal and plant cells. Even after a long time of storage in very low temperatures, a recovery is achieved by cryo-preservative agents that act on cellular metabolism and biophysiology of cells. In the current study, the effect of boron on cryopreservation of human lung cancer cell line, A549, and murine fibroblast cell line, L929, was investigated with the help of cell viability assay, colony forming unit assay and RT-PCR analysis. 15 µg/ml boron supplemented freezing medium was found to indicate a positive effect on cell viability. Moreover, gene expression profiles of A549 and L929 cell lines have been altered. The levels of apoptosis related genes decreased while proliferation related gene levels increased significantly after repeated freeze-thaw cycles or long period of freezing. As indicated through our results, sodium pentaborate pentahydrate, as a boron source, might be a crucial cryoprotective agent for cryo-protection and bio-banking of cancer and healthy cells while keeping their viability and functionality.

Thanks

The current study was supported by Yeditepe University. The authors are thankful for the comments and suggestions of Fikrettin Şahin (Yeditepe University, Department of Genetics and Bioengineering) and Ayşegül Doğan (Yeditepe University, Department of Genetics and Bioengineering) on the study. The authors claim that no conflict of interest exists.

References

  • 1. Asfar, P., Calzia, E. & Radermacher, P. 2014. Is pharmacological, H(2)S-induced 'suspended animation' feasible in the ICU? Critical Care, 18(2): 215. doi: 10.1186/cc13782
  • 2. Blech, M.F., Martin, C., Borrelly, J. & Hartemann, P. 1990. Treatment of deep wounds with loss of tissue. Value of a 3 percent boric acid solution. Presse Medicale, 19(22): 1050-1052.
  • 3. Braun, F., de Carne Trecesson, S., Bertin-Ciftci, J. & Juin, P. 2013. Protect and serve: Bcl-2 proteins as guardians and rulers of cancer cell survival. Cell Cycle, 12(18): 2937-2947. doi: 10.4161/cc.25972
  • 4. Caliskan, M., Pritchard, J.K., Ober, C. & Gilad, Y. 2014. The effect of freeze-thaw cycles on gene expression levels in lymphoblastoid cell lines. PLoS One, 9(9): e107166. doi: 10.1371/journal.pone.0107166
  • 5. Cardona, M., Lopez, J.A., Serafin, A., Rongvaux, A., Inserte, J., Garcia-Dorado, D., Flavell, R., Llovera, M., Canas, X., Vazquez, J. & Sanchis, D. 2015. Executioner caspase-3 and 7 deficiency reduces myocyte number in the developing mouse heart. PLoS One, 10(6): e0131411. doi: 10.1371/journal.pone.0131411
  • 6. Clarke, W.B., Webber, C.E., Koekebakker, M. & Barr, R.D. 1987. Lithium and boron in human blood. Journal of Laboratory and Clinical Medicine, 109(2): 155-158.
  • 7. Dang, C.V. 1999. c-Myc target genes involved in cell growth, apoptosis, and metabolism. Molecular and Cellular Biology, 19(1): 1-11. doi: 10.1128/mcb.19.1.1
  • 8. Demirci, S., Dogan, A., Aydin, S., Dulger, E.C. & Sahin, F. 2016. Boron promotes streptozotocin-induced diabetic wound healing: roles in cell proliferation and migration, growth factor expression, and inflammation. Molecular and Cellular Biochemistry, 417(1-2): 119-133. doi: 10.1007/s11010-016-2719-9
  • 9. Demirci, S., Dogan, A., Karakus, E., Halici, Z., Topcu, A., Demirci, E. & Sahin, F. 2015. Boron and Poloxamer (F68 and F127) Containing hydrogel formulation for burn wound healing. Biological Trace Element Research, 168(1): 169-180. doi: 10.1007/s12011-015-0338-z
  • 10. Demirci, S., Dogan, A., Sisli, B. & Sahin, F. 2014. Boron increases the cell viability of mesenchymal stem cells after long-term cryopreservation. Cryobiology, 68(1): 139-146. doi: 10.1016/j.cryobiol.2014.01.010
  • 11. Digirolamo, C.M., Stokes, D., Colter, D., Phinney, D.G., Class, R. & Prockop, D.J. 1999. Propagation and senescence of human marrow stromal cells in culture: a simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate. British Journal of Haematology, 107(2): 275-281. doi: 10.1046/j.1365-2141.1999.01715.x
  • 12. Dogan, A., Demirci, S., Caglayan, A.B., Kilic, E., Gunal, M.Y., Uslu, U., Cumbul, A. & Sahin, F. 2014. Sodium pentaborate pentahydrate and pluronic containing hydrogel increases cutaneous wound healing in vitro and in vivo. Biological Trace Element Research, 162(1-3): 72-79. doi: 10.1007/s12011-014-0104-7
  • 13. Dordas, C. & Brown, P.H. 2005. Boron deficiency affects cell viability, phenolic leakage and oxidative burst in rose cell cultures. Plant and soil, 268(1): 293-301.
  • 14. Elliott, G.D., Wang, S. & Fuller, B.J. 2017. Cryoprotectants: A review of the actions and applications of cryoprotective solutes that modulate cell recovery from ultra-low temperatures. Cryobiology, 76: 74-91. doi: 10.1016/j.cryobiol.2017.04.004
  • 15. Fridman, J.S. & Lowe, S.W. 2003. Control of apoptosis by p53. Oncogene, 22(56): 9030-9040. doi: 10.1038/sj.onc.1207116
  • 16. Henderson, K., Stella, S.L., Kobylewski, S. & Eckhert, C.D. 2009. Receptor activated Ca(2+) release is inhibited by boric acid in prostate cancer cells. PLoS One, 4(6): e6009. doi: 10.1371/journal.pone.0006009
  • 17. Hu, Q., Li, S., Qiao, E., Tang, Z., Jin, E., Jin, G. & Gu, Y. 2014. Effects of boron on structure and antioxidative activities of spleen in rats. Biological Trace Element Research, 158(1): 73-80. doi: 10.1007/s12011-014-9899-5
  • 18. Jang, T.H., Park, S.C., Yang, J.H., Kim, J.Y., Seok, J.H., Park, U.S., Choi, C.W., Lee, S.R. & Han, J. 2017. Cryopreservation and its clinical applications. Integrative Medicine Research, 6(1): 12-18. doi: 10.1016/j.imr.2016.12.001
  • 19. Karlsson, J.O. & Toner, M. 1996. Long-term storage of tissues by cryopreservation: critical issues. Biomaterials, 17(3): 243-256. doi: 10.1016/0142-9612(96)85562-1
  • 20. Mazur, P. 1970. Cryobiology: the freezing of biological systems. Science, 168(3934): 939-949. doi: 10.1126/science.168.3934.939
  • 21. Navarro, E., Serrano-Heras, G., Castano, M.J. & Solera, J. 2015. Real-time PCR detection chemistry. Clinica Chimica Acta, 439: 231-250. doi: 10.1016/j.cca.2014.10.017
  • 22. Pamphilon, D., Selogie, E., McKenna, D., Cancelas-Peres, J.A., Szczepiorkowski, Z.M., Sacher, R., McMannis, J., Eichler, H., Garritsen, H., Takanashi, M., van de Watering, L., Stroncek, D. & Reems, J.A. 2013. Current practices and prospects for standardization of the hematopoietic colony-forming unit assay: a report by the cellular therapy team of the Biomedical Excellence for Safer Transfusion (BEST) Collaborative. Cytotherapy, 15(3): 255-262. doi: 10.1016/j.jcyt.2012.11.013
  • 23. Park, M., Li, Q., Shcheynikov, N., Muallem, S. & Zeng, W. 2005. Borate transport and cell growth and proliferation. Not only in plants. Cell Cycle, 4(1): 24-26. doi: 10.4161/cc.4.1.1394
  • 24. Park, M., Li, Q., Shcheynikov, N., Zeng, W. & Muallem, S. 2004. NaBC1 is a ubiquitous electrogenic Na+ -coupled borate transporter essential for cellular boron homeostasis and cell growth and proliferation. Molecular Cell, 16(3): 331-341. doi: 10.1016/j.molcel.2004.09.030
  • 25. Pegg, D.E. 2007. Principles of cryopreservation, 39-57 Cryopreservation and Freeze-Drying Protocols, Springer, 39-57 pp.
  • 26. Sambu, S. 2015. A Bayesian approach to optimizing cryopreservation protocols. PeerJ, 3: e1039. doi: 10.7717/peerj.1039
  • 27. Tanaka, M. & Fujiwara, T. 2008. Physiological roles and transport mechanisms of boron: perspectives from plants. Pflügers Archiv-European Journal of Physiology, 456(4): 671-677.
  • 28. Warington, K. 1923. The effect of boric acid and borax on the broad bean and certain other plants. Annals of Botany, 37(148): 629-672.
  • 29. Yavin, S. & Arav, A. 2007. Measurement of essential physical properties of vitrification solutions. Theriogenology, 67(1): 81-89. doi: 10.1016/j.theriogenology.2006.09.029
  • 30. Yeni, D., Avdatek, F. & Gundogan, M. 2018. The effect of boron addition on spermatological parameters, oxidative stress and DNA damage after frozen-thawed process in ramlic ram semen. Kocatepe Veterinary Journal, 32(1): 53-57.
Year 2020, Volume: 21 Issue: 2, 115 - 122, 15.10.2020
https://doi.org/10.23902/trkjnat.758920

Abstract

Canlı hücrelerin uzun süre boyunca çok düşük sıcaklıklarda saklanması işlemi kriyo-korunma olarak adlandırılır. Kriyo-koruma işlemi biyoteknoloji, klinik çalışmalar ve hayvan veya bitki hücreleriyle ilgili birçok çalışmada çok önemli bir rol oynadığından dolayı, kriyo-korumada kullanılan ajanların araştırılması son derece mühimdir. Kriyo- koruma ajanları, hücresel metabolizma ve biyofizyoloji üzerindeki etkileri nedeniyle uzun süreli kriyo-korumanın ardından hücresel canlılığın korunmasını sağlarlar. Mevcut çalışmada; hücre canlılık testi, koloni oluşturma testi ve gerçek zamanlı polimeraz zincir reaksiyonu tekniklerinden yararlanılarak, borun kriyo-koruma üzerindeki etkisi, insan akciğer kanser hücre hattı, A549 ve fare fibroblast hücre hattı, L929 kullanılarak araştırılmıştır. Hücre dondurma ortamını 15 µg/ml bor ile desteklemenin hücre canlılığı üzerine olumlu etki ettiği gözlemlenmiştir. Ayrıca, tekrar eden dondurma - çözme döngüleri ve uzun süreli kriyo-koruma sonucunda, gen anlatım profilleri değişen A549 ve L929 hücre hatlarının, bor takviyesi sonrasında, programlı hücre ölümüyle alakalı genlerinin anlatımında azalma, hücre çoğalması ile ilgili genlerinde de artış gözlemlenmiştir. Sonuçlarımız göstermiştir ki bor kaynağı olarak sodium pentaborat pentahidrat, kanser veya sağlıklı hücrelerin canlılıklarını kaybetmeksizin dondurulmalarını ve hücrelerin uzun süreli saklanmaları için son derece önemli bir kriyo-koruyucu ajan olarak kullanılabilir.

References

  • 1. Asfar, P., Calzia, E. & Radermacher, P. 2014. Is pharmacological, H(2)S-induced 'suspended animation' feasible in the ICU? Critical Care, 18(2): 215. doi: 10.1186/cc13782
  • 2. Blech, M.F., Martin, C., Borrelly, J. & Hartemann, P. 1990. Treatment of deep wounds with loss of tissue. Value of a 3 percent boric acid solution. Presse Medicale, 19(22): 1050-1052.
  • 3. Braun, F., de Carne Trecesson, S., Bertin-Ciftci, J. & Juin, P. 2013. Protect and serve: Bcl-2 proteins as guardians and rulers of cancer cell survival. Cell Cycle, 12(18): 2937-2947. doi: 10.4161/cc.25972
  • 4. Caliskan, M., Pritchard, J.K., Ober, C. & Gilad, Y. 2014. The effect of freeze-thaw cycles on gene expression levels in lymphoblastoid cell lines. PLoS One, 9(9): e107166. doi: 10.1371/journal.pone.0107166
  • 5. Cardona, M., Lopez, J.A., Serafin, A., Rongvaux, A., Inserte, J., Garcia-Dorado, D., Flavell, R., Llovera, M., Canas, X., Vazquez, J. & Sanchis, D. 2015. Executioner caspase-3 and 7 deficiency reduces myocyte number in the developing mouse heart. PLoS One, 10(6): e0131411. doi: 10.1371/journal.pone.0131411
  • 6. Clarke, W.B., Webber, C.E., Koekebakker, M. & Barr, R.D. 1987. Lithium and boron in human blood. Journal of Laboratory and Clinical Medicine, 109(2): 155-158.
  • 7. Dang, C.V. 1999. c-Myc target genes involved in cell growth, apoptosis, and metabolism. Molecular and Cellular Biology, 19(1): 1-11. doi: 10.1128/mcb.19.1.1
  • 8. Demirci, S., Dogan, A., Aydin, S., Dulger, E.C. & Sahin, F. 2016. Boron promotes streptozotocin-induced diabetic wound healing: roles in cell proliferation and migration, growth factor expression, and inflammation. Molecular and Cellular Biochemistry, 417(1-2): 119-133. doi: 10.1007/s11010-016-2719-9
  • 9. Demirci, S., Dogan, A., Karakus, E., Halici, Z., Topcu, A., Demirci, E. & Sahin, F. 2015. Boron and Poloxamer (F68 and F127) Containing hydrogel formulation for burn wound healing. Biological Trace Element Research, 168(1): 169-180. doi: 10.1007/s12011-015-0338-z
  • 10. Demirci, S., Dogan, A., Sisli, B. & Sahin, F. 2014. Boron increases the cell viability of mesenchymal stem cells after long-term cryopreservation. Cryobiology, 68(1): 139-146. doi: 10.1016/j.cryobiol.2014.01.010
  • 11. Digirolamo, C.M., Stokes, D., Colter, D., Phinney, D.G., Class, R. & Prockop, D.J. 1999. Propagation and senescence of human marrow stromal cells in culture: a simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate. British Journal of Haematology, 107(2): 275-281. doi: 10.1046/j.1365-2141.1999.01715.x
  • 12. Dogan, A., Demirci, S., Caglayan, A.B., Kilic, E., Gunal, M.Y., Uslu, U., Cumbul, A. & Sahin, F. 2014. Sodium pentaborate pentahydrate and pluronic containing hydrogel increases cutaneous wound healing in vitro and in vivo. Biological Trace Element Research, 162(1-3): 72-79. doi: 10.1007/s12011-014-0104-7
  • 13. Dordas, C. & Brown, P.H. 2005. Boron deficiency affects cell viability, phenolic leakage and oxidative burst in rose cell cultures. Plant and soil, 268(1): 293-301.
  • 14. Elliott, G.D., Wang, S. & Fuller, B.J. 2017. Cryoprotectants: A review of the actions and applications of cryoprotective solutes that modulate cell recovery from ultra-low temperatures. Cryobiology, 76: 74-91. doi: 10.1016/j.cryobiol.2017.04.004
  • 15. Fridman, J.S. & Lowe, S.W. 2003. Control of apoptosis by p53. Oncogene, 22(56): 9030-9040. doi: 10.1038/sj.onc.1207116
  • 16. Henderson, K., Stella, S.L., Kobylewski, S. & Eckhert, C.D. 2009. Receptor activated Ca(2+) release is inhibited by boric acid in prostate cancer cells. PLoS One, 4(6): e6009. doi: 10.1371/journal.pone.0006009
  • 17. Hu, Q., Li, S., Qiao, E., Tang, Z., Jin, E., Jin, G. & Gu, Y. 2014. Effects of boron on structure and antioxidative activities of spleen in rats. Biological Trace Element Research, 158(1): 73-80. doi: 10.1007/s12011-014-9899-5
  • 18. Jang, T.H., Park, S.C., Yang, J.H., Kim, J.Y., Seok, J.H., Park, U.S., Choi, C.W., Lee, S.R. & Han, J. 2017. Cryopreservation and its clinical applications. Integrative Medicine Research, 6(1): 12-18. doi: 10.1016/j.imr.2016.12.001
  • 19. Karlsson, J.O. & Toner, M. 1996. Long-term storage of tissues by cryopreservation: critical issues. Biomaterials, 17(3): 243-256. doi: 10.1016/0142-9612(96)85562-1
  • 20. Mazur, P. 1970. Cryobiology: the freezing of biological systems. Science, 168(3934): 939-949. doi: 10.1126/science.168.3934.939
  • 21. Navarro, E., Serrano-Heras, G., Castano, M.J. & Solera, J. 2015. Real-time PCR detection chemistry. Clinica Chimica Acta, 439: 231-250. doi: 10.1016/j.cca.2014.10.017
  • 22. Pamphilon, D., Selogie, E., McKenna, D., Cancelas-Peres, J.A., Szczepiorkowski, Z.M., Sacher, R., McMannis, J., Eichler, H., Garritsen, H., Takanashi, M., van de Watering, L., Stroncek, D. & Reems, J.A. 2013. Current practices and prospects for standardization of the hematopoietic colony-forming unit assay: a report by the cellular therapy team of the Biomedical Excellence for Safer Transfusion (BEST) Collaborative. Cytotherapy, 15(3): 255-262. doi: 10.1016/j.jcyt.2012.11.013
  • 23. Park, M., Li, Q., Shcheynikov, N., Muallem, S. & Zeng, W. 2005. Borate transport and cell growth and proliferation. Not only in plants. Cell Cycle, 4(1): 24-26. doi: 10.4161/cc.4.1.1394
  • 24. Park, M., Li, Q., Shcheynikov, N., Zeng, W. & Muallem, S. 2004. NaBC1 is a ubiquitous electrogenic Na+ -coupled borate transporter essential for cellular boron homeostasis and cell growth and proliferation. Molecular Cell, 16(3): 331-341. doi: 10.1016/j.molcel.2004.09.030
  • 25. Pegg, D.E. 2007. Principles of cryopreservation, 39-57 Cryopreservation and Freeze-Drying Protocols, Springer, 39-57 pp.
  • 26. Sambu, S. 2015. A Bayesian approach to optimizing cryopreservation protocols. PeerJ, 3: e1039. doi: 10.7717/peerj.1039
  • 27. Tanaka, M. & Fujiwara, T. 2008. Physiological roles and transport mechanisms of boron: perspectives from plants. Pflügers Archiv-European Journal of Physiology, 456(4): 671-677.
  • 28. Warington, K. 1923. The effect of boric acid and borax on the broad bean and certain other plants. Annals of Botany, 37(148): 629-672.
  • 29. Yavin, S. & Arav, A. 2007. Measurement of essential physical properties of vitrification solutions. Theriogenology, 67(1): 81-89. doi: 10.1016/j.theriogenology.2006.09.029
  • 30. Yeni, D., Avdatek, F. & Gundogan, M. 2018. The effect of boron addition on spermatological parameters, oxidative stress and DNA damage after frozen-thawed process in ramlic ram semen. Kocatepe Veterinary Journal, 32(1): 53-57.
There are 30 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Research Article/Araştırma Makalesi
Authors

Taha Bartu Hayal 0000-0003-1369-2715

Publication Date October 15, 2020
Submission Date June 29, 2020
Acceptance Date August 26, 2020
Published in Issue Year 2020 Volume: 21 Issue: 2

Cite

APA Hayal, T. B. (2020). BORON INCREASES THE VIABILITY OF HUMAN CANCER AND MURINE FIBROBLAST CELLS AFTER LONG TIME OF CRYOPRESERVATION. Trakya University Journal of Natural Sciences, 21(2), 115-122. https://doi.org/10.23902/trkjnat.758920
AMA Hayal TB. BORON INCREASES THE VIABILITY OF HUMAN CANCER AND MURINE FIBROBLAST CELLS AFTER LONG TIME OF CRYOPRESERVATION. Trakya Univ J Nat Sci. October 2020;21(2):115-122. doi:10.23902/trkjnat.758920
Chicago Hayal, Taha Bartu. “BORON INCREASES THE VIABILITY OF HUMAN CANCER AND MURINE FIBROBLAST CELLS AFTER LONG TIME OF CRYOPRESERVATION”. Trakya University Journal of Natural Sciences 21, no. 2 (October 2020): 115-22. https://doi.org/10.23902/trkjnat.758920.
EndNote Hayal TB (October 1, 2020) BORON INCREASES THE VIABILITY OF HUMAN CANCER AND MURINE FIBROBLAST CELLS AFTER LONG TIME OF CRYOPRESERVATION. Trakya University Journal of Natural Sciences 21 2 115–122.
IEEE T. B. Hayal, “BORON INCREASES THE VIABILITY OF HUMAN CANCER AND MURINE FIBROBLAST CELLS AFTER LONG TIME OF CRYOPRESERVATION”, Trakya Univ J Nat Sci, vol. 21, no. 2, pp. 115–122, 2020, doi: 10.23902/trkjnat.758920.
ISNAD Hayal, Taha Bartu. “BORON INCREASES THE VIABILITY OF HUMAN CANCER AND MURINE FIBROBLAST CELLS AFTER LONG TIME OF CRYOPRESERVATION”. Trakya University Journal of Natural Sciences 21/2 (October 2020), 115-122. https://doi.org/10.23902/trkjnat.758920.
JAMA Hayal TB. BORON INCREASES THE VIABILITY OF HUMAN CANCER AND MURINE FIBROBLAST CELLS AFTER LONG TIME OF CRYOPRESERVATION. Trakya Univ J Nat Sci. 2020;21:115–122.
MLA Hayal, Taha Bartu. “BORON INCREASES THE VIABILITY OF HUMAN CANCER AND MURINE FIBROBLAST CELLS AFTER LONG TIME OF CRYOPRESERVATION”. Trakya University Journal of Natural Sciences, vol. 21, no. 2, 2020, pp. 115-22, doi:10.23902/trkjnat.758920.
Vancouver Hayal TB. BORON INCREASES THE VIABILITY OF HUMAN CANCER AND MURINE FIBROBLAST CELLS AFTER LONG TIME OF CRYOPRESERVATION. Trakya Univ J Nat Sci. 2020;21(2):115-22.

You can reach the journal's archive between the years of 2000-2011 via https://dergipark.org.tr/en/pub/trakyafbd/archive (Trakya University Journal of Natural Sciences (=Trakya University Journal of Science)


Creative Commons Lisansı

Trakya University Journal of Natural Sciences is licensed under Creative Commons Attribution 4.0 International License.