Research Article
BibTex RIS Cite

CRISPR Uyumlu Bir Vektör Kullanılarak Marul Genotipi ve Agrobacterium Suşunun Transformasyon Verimliliği Açısından Değerlendirilmesi

Year 2025, Volume: 6 Issue: 2, 101 - 110, 19.10.2025
https://doi.org/10.70562/tubid.1737836

Abstract

Marul (Lactuca sativa L.), dünya genelinde yetiştirilen ekonomik ve besin değeri yüksek bir sebze türüdür. Ancak, çeşitli biyotik ve abiyotik stres etmenlerine karşı duyarlılığı, biyoteknolojik araçlarla genetik iyileştirmeyi gerekli kılmaktadır. Agrobacterium tumefaciens aracılı transformasyon, bitki biyoteknolojisinde temel bir yöntem olup, marulda genetik modifikasyon çalışmalarında önemli bir rol oynamaktadır. Bu çalışmanın amacı, farklı marul çeşitleri ve Agrobacterium suşları arasında transformasyon verimliliğini karşılaştırmaktır. Dokuz farklı marul çeşidine (Caipira, Emocion, Festival, Funtime, Garone, Maritima, Rüzgar, Sürpriz ve Vaidosa) ait kotiledon eksplantları, iki Agrobacterium suşu (LBA4404 ve EHA105) kullanılarak transformasyona tabi tutulmuştur. Her iki suş da seçici bir belirteç (marker) ve CRISPR ile ilişkili elemanlar içeren bir ikili vektör taşımaktadır. Bu vektör, gen düzenleme amacıyla değil, büyük boyutlu bir plazmidin aktarım verimliliğini değerlendirmek amacıyla kullanılmıştır. Transformasyonun ardından eksplantlar, fosfinotrisin (PPT) içeren seçici MS besiyerine aktarılmıştır. En yüksek sürgün rejenerasyonu Emocion ve Caipira çeşitlerinde gözlemlenmiştir. PCR analizleri, rejenerasyon gösteren bitkilerde transgenin başarıyla entegre olduğunu doğrulamıştır. İstatistiksel analizler, EHA105 suşunun LBA4404’e kıyasla anlamlı derecede daha yüksek transformasyon verimliliği sağladığını göstermiştir (p < 0.05). Test edilen genotipler arasında, Caipira en fazla transgenik sürgünü üretmiş ve en yüksek yanıtı vermiştir. Ayrıca, kotiledon üzerindeki sap (petiyol) bölgesine yakın kısmın sürgün oluşumu için daha elverişli olduğu belirlenmiştir. Bu çalışma, marulda transformasyon verimliliğini artırmaya yönelik protokol optimizasyonuna katkı sağlamakta ve genotip ile Agrobacterium suşu seçiminin önemini ortaya koymaktadır.

References

  • 1. Su W, Tao R, Liu W, Yu C, Yue Z, He S, et al. Characterization of four polymorphic genes controlling red leaf colour in lettuce that have undergone disruptive selection since domestication. Plant Biotechnology Journal. 2020;18(2):479-90.
  • 2. Assefa AD, Hur O-S, Hahn B-S, Kim B, Ro N-Y, Rhee J-H. Nutritional Metabolites of Red Pigmented Lettuce (Lactuca sativa) Germplasm and Correlations with Selected Phenotypic Characters. Foods. 2021;10(10):2504.
  • 3. Bertier LD, Ron M, Huo H, Bradford KJ, Britt AB, Michelmore RW. High-Resolution Analysis of the Efficiency, Heritability, and Editing Outcomes of CRISPR/Cas9-Induced Modifications of NCED4 in Lettuce (Lactuca sativa). G3 (Bethesda). 2018;8(5):1513-21.
  • 4. Zhang H, Si X, Ji X, Fan R, Liu J, Chen K, et al. Genome editing of upstream open reading frames enables translational control in plants. Nature Biotechnology. 2018;36(9):894-8.
  • 5. Luo C, Wang S, Ning K, Chen Z, Wang Y, Yang J, et al. LsAP2 regulates leaf morphology by inhibiting CIN-like TCP transcription factors and repressing LsKAN2 in lettuce. Horticulture Research. 2021;8(1):184.
  • 6. Beracochea V, Stritzler M, Radonic L, Bottero E, Jozefkowicz C, Darqui F, et al. CRISPR/Cas9-mediated knockout of SPL13 radically increases lettuce yield. Plant Cell Reports. 2022;42.
  • 7. Gao C. Genome engineering for crop improvement and future agriculture. Cell. 2021;184(6):1621-35.
  • 8. Gelvin SB. Agrobacterium-mediated plant transformation: the biology behind the "gene-jockeying" tool. Microbiology and Molecular Biology Reviews. 2003;67(1):16-37.
  • 9. Gelvin SB. Integration of Agrobacterium T-DNA into the Plant Genome. Annual Review of Genetics. 2017;51:195-217.
  • 10. Tzfira T, Citovsky V. Agrobacterium-mediated genetic transformation of plants: biology and biotechnology. Current Opinion in Biotechnology. 2006;17(2):147-54.
  • 11. Zhang Z, Coyne DP, Mitra A. Factors afecting Agrobacterium-mediated transformation of common bean. Journal of the American Society for Horticultural Science. 1997;122:300-5.
  • 12. Azizi-Dargahlou S, Pouresmaeil M. Agrobacterium tumefaciens-Mediated Plant Transformation: A Review. Molecular Biotechnology. 2024;66(7):1563-80.
  • 13. Hood EE, Helmer GL, Fraley RT, Chilton MD. The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA. Journal of Bacteriology. 1986;168(3):1291-301.
  • 14. Hood EE, Gelvin SB, Melchers LS, Hoekema A. NewAgrobacterium helper plasmids for gene transfer to plants. Transgenic Research. 1993;2(4):208-18.
  • 15. Ooms G, Hooykaas PJ, Van Veen RJ, Van Beelen P, Regensburg-Tuïnk TJ, Schilperoort RA. Octopine Ti-plasmid deletion mutants of agrobacterium tumefaciens with emphasis on the right side of the T-region. Plasmid. 1982;7(1):15-29.
  • 16. De Saeger J, Park J, Chung HS, Hernalsteens JP, Van Lijsebettens M, Inzé D, et al. Agrobacterium strains and strain improvement: Present and outlook. Biotechnology Advances. 2021;53:107677.
  • 17. Roche MC, Liu W, Hernández R. An Improved Method for Agrobacterium-Mediated Genetic Transformation of Three Types of Lettuce. Plants. 2025;14(4):620.
  • 18. Mohebodini M, Jalali Javaran M, Mahboudi F, Alizadeh H. Effects of genotype, explant age and growth regulators on callus induction and direct shoot regeneration of Lettuce (Lactuca sativa L.). Australian Journal of Crop Science. 2011;5.
  • 19. Bergkessel M, Guthrie C. Colony PCR. Methods Enzymol. 2013;529:299-309.
  • 20. Doyle JJ, Doyle JL. Isolation of Plant DNA from Fresh Tissue. Focus. 1990;12(1):13-5.
  • 21. Lipp M, Scherer G, Stöger E, Boehm H. Efficient transformation of lettuce (Lactuca sativa) using Agrobacterium tumefaciens. Plant Science. 2015(242):134-40.
  • 22. Curtis IS, Power JB, Blackhall NW, de Laat AMM, Davey MR. Genotype-independent transformation of lettuce using Agrobacterium tumefaciens. Journal of Experimental Botany. 1994;45(10):1441-9.
  • 23. McIntyre C, S. L. H. V. Kan, M. A. M. O'Brien, K. R. M. Hyslop, Mackay. SHDM. Comparative efficiency of Agrobacterium strains for plant transformation. Plant Molecular Biology. 2016;92(527-536).
  • 24. Komori T, Imayama T, Kato N, Ishida Y, Ueki J, Komari T. Current status of binary vectors and superbinary vectors. Plant Physiol. 2007;145(4):1155-60.
  • 25. Nonaka S, Someya T, Kadota Y, Nakamura K, Ezura H. Super-Agrobacterium ver. 4: Improving the Transformation Frequencies and Genetic Engineering Possibilities for Crop Plants. Frontiers in Plant Science. 2019;Volume 10 - 2019.
  • 26. Dinant S, Maisonneuve B, Albouy J, Chupeau Y, Chupeau M-C, Bellec Y, et al. Coat protein gene-mediated protection in Lactuca sativa against lettuce mosaic potyvirus strains. Molecular Breeding. 1997;3(1):75-86.
  • 27. Pitzschke A. Agrobacterium infection and plant defense-transformation success hangs by a thread. Front Plant Sci. 2013;4:519.
  • 28. Li C, Yong Q, Shuangxi F. Optimization of the Genetic Transformation System of Lettuce. Journal of Agricultural Science. 2023;15:1.

Evaluation of Lettuce Genotype and Agrobacterium Strain for Transformation Efficiency Using a CRISPR-Compatible Vector

Year 2025, Volume: 6 Issue: 2, 101 - 110, 19.10.2025
https://doi.org/10.70562/tubid.1737836

Abstract

Lettuce (Lactuca sativa L.) is an economically and nutritionally important vegetable crop cultivated worldwide. However, its susceptibility to various biotic and abiotic stresses necessitates genetic improvement through biotechnological tools. Agrobacterium tumefaciens-mediated transformation is a key method in plant biotechnology and plays a vital role in genetic modification studies in lettuce. This study aimed to compare transformation efficiency among different lettuce varieties and Agrobacterium strains. Cotyledon explants from nine lettuce varieties (Caipira, Emocion, Festival, Funtime, Garone, Maritima, Ruzgar, Surpriz, and Vaidosa) were subjected to transformation using two Agrobacterium strains, LBA4404 and EHA105. Both strains carried a binary vector containing a selectable marker and CRISPR-related elements. This vector was not used for gene editing but to assess delivery efficiency of a large-sized plasmid. Following transformation, explants were cultured on phosphinothricin (PPT)-selective MS medium. The highest shoot regeneration was observed in Emocion and Caipira. PCR analysis confirmed successful transgene integration in regenerated plants. Statistical analysis indicated that EHA105 provided significantly higher transformation efficiency than LBA4404 (p < 0.05). Among the tested genotypes, Caipira produced the highest number of transgenic shoots and showed superior responsiveness. Additionally, the region near the petiole on the cotyledon was found to be more favorable for shoot induction. This study contributes to protocol optimization for enhancing transformation efficiency in lettuce based on genotype and Agrobacterium strain selection.

References

  • 1. Su W, Tao R, Liu W, Yu C, Yue Z, He S, et al. Characterization of four polymorphic genes controlling red leaf colour in lettuce that have undergone disruptive selection since domestication. Plant Biotechnology Journal. 2020;18(2):479-90.
  • 2. Assefa AD, Hur O-S, Hahn B-S, Kim B, Ro N-Y, Rhee J-H. Nutritional Metabolites of Red Pigmented Lettuce (Lactuca sativa) Germplasm and Correlations with Selected Phenotypic Characters. Foods. 2021;10(10):2504.
  • 3. Bertier LD, Ron M, Huo H, Bradford KJ, Britt AB, Michelmore RW. High-Resolution Analysis of the Efficiency, Heritability, and Editing Outcomes of CRISPR/Cas9-Induced Modifications of NCED4 in Lettuce (Lactuca sativa). G3 (Bethesda). 2018;8(5):1513-21.
  • 4. Zhang H, Si X, Ji X, Fan R, Liu J, Chen K, et al. Genome editing of upstream open reading frames enables translational control in plants. Nature Biotechnology. 2018;36(9):894-8.
  • 5. Luo C, Wang S, Ning K, Chen Z, Wang Y, Yang J, et al. LsAP2 regulates leaf morphology by inhibiting CIN-like TCP transcription factors and repressing LsKAN2 in lettuce. Horticulture Research. 2021;8(1):184.
  • 6. Beracochea V, Stritzler M, Radonic L, Bottero E, Jozefkowicz C, Darqui F, et al. CRISPR/Cas9-mediated knockout of SPL13 radically increases lettuce yield. Plant Cell Reports. 2022;42.
  • 7. Gao C. Genome engineering for crop improvement and future agriculture. Cell. 2021;184(6):1621-35.
  • 8. Gelvin SB. Agrobacterium-mediated plant transformation: the biology behind the "gene-jockeying" tool. Microbiology and Molecular Biology Reviews. 2003;67(1):16-37.
  • 9. Gelvin SB. Integration of Agrobacterium T-DNA into the Plant Genome. Annual Review of Genetics. 2017;51:195-217.
  • 10. Tzfira T, Citovsky V. Agrobacterium-mediated genetic transformation of plants: biology and biotechnology. Current Opinion in Biotechnology. 2006;17(2):147-54.
  • 11. Zhang Z, Coyne DP, Mitra A. Factors afecting Agrobacterium-mediated transformation of common bean. Journal of the American Society for Horticultural Science. 1997;122:300-5.
  • 12. Azizi-Dargahlou S, Pouresmaeil M. Agrobacterium tumefaciens-Mediated Plant Transformation: A Review. Molecular Biotechnology. 2024;66(7):1563-80.
  • 13. Hood EE, Helmer GL, Fraley RT, Chilton MD. The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA. Journal of Bacteriology. 1986;168(3):1291-301.
  • 14. Hood EE, Gelvin SB, Melchers LS, Hoekema A. NewAgrobacterium helper plasmids for gene transfer to plants. Transgenic Research. 1993;2(4):208-18.
  • 15. Ooms G, Hooykaas PJ, Van Veen RJ, Van Beelen P, Regensburg-Tuïnk TJ, Schilperoort RA. Octopine Ti-plasmid deletion mutants of agrobacterium tumefaciens with emphasis on the right side of the T-region. Plasmid. 1982;7(1):15-29.
  • 16. De Saeger J, Park J, Chung HS, Hernalsteens JP, Van Lijsebettens M, Inzé D, et al. Agrobacterium strains and strain improvement: Present and outlook. Biotechnology Advances. 2021;53:107677.
  • 17. Roche MC, Liu W, Hernández R. An Improved Method for Agrobacterium-Mediated Genetic Transformation of Three Types of Lettuce. Plants. 2025;14(4):620.
  • 18. Mohebodini M, Jalali Javaran M, Mahboudi F, Alizadeh H. Effects of genotype, explant age and growth regulators on callus induction and direct shoot regeneration of Lettuce (Lactuca sativa L.). Australian Journal of Crop Science. 2011;5.
  • 19. Bergkessel M, Guthrie C. Colony PCR. Methods Enzymol. 2013;529:299-309.
  • 20. Doyle JJ, Doyle JL. Isolation of Plant DNA from Fresh Tissue. Focus. 1990;12(1):13-5.
  • 21. Lipp M, Scherer G, Stöger E, Boehm H. Efficient transformation of lettuce (Lactuca sativa) using Agrobacterium tumefaciens. Plant Science. 2015(242):134-40.
  • 22. Curtis IS, Power JB, Blackhall NW, de Laat AMM, Davey MR. Genotype-independent transformation of lettuce using Agrobacterium tumefaciens. Journal of Experimental Botany. 1994;45(10):1441-9.
  • 23. McIntyre C, S. L. H. V. Kan, M. A. M. O'Brien, K. R. M. Hyslop, Mackay. SHDM. Comparative efficiency of Agrobacterium strains for plant transformation. Plant Molecular Biology. 2016;92(527-536).
  • 24. Komori T, Imayama T, Kato N, Ishida Y, Ueki J, Komari T. Current status of binary vectors and superbinary vectors. Plant Physiol. 2007;145(4):1155-60.
  • 25. Nonaka S, Someya T, Kadota Y, Nakamura K, Ezura H. Super-Agrobacterium ver. 4: Improving the Transformation Frequencies and Genetic Engineering Possibilities for Crop Plants. Frontiers in Plant Science. 2019;Volume 10 - 2019.
  • 26. Dinant S, Maisonneuve B, Albouy J, Chupeau Y, Chupeau M-C, Bellec Y, et al. Coat protein gene-mediated protection in Lactuca sativa against lettuce mosaic potyvirus strains. Molecular Breeding. 1997;3(1):75-86.
  • 27. Pitzschke A. Agrobacterium infection and plant defense-transformation success hangs by a thread. Front Plant Sci. 2013;4:519.
  • 28. Li C, Yong Q, Shuangxi F. Optimization of the Genetic Transformation System of Lettuce. Journal of Agricultural Science. 2023;15:1.
There are 28 citations in total.

Details

Primary Language English
Subjects Plant Biotechnology in Agriculture
Journal Section Research Article
Authors

Fatma Akçakale Kaba 0000-0003-0680-7406

Yüksel Bora Oral 0009-0001-4768-5639

Gülan Ata 0009-0006-0309-5385

Nedim Mutlu 0000-0001-7252-5883

Adem Kaba 0000-0003-3362-0997

Publication Date October 19, 2025
Submission Date July 8, 2025
Acceptance Date September 2, 2025
Published in Issue Year 2025 Volume: 6 Issue: 2

Cite

Vancouver Akçakale Kaba F, Oral YB, Ata G, Mutlu N, Kaba A. Evaluation of Lettuce Genotype and Agrobacterium Strain for Transformation Efficiency Using a CRISPR-Compatible Vector. TUBID. 2025;6(2):101-10.