Review
BibTex RIS Cite

Yapay zekânın multidisipliner alanlardaki uygulamaları

Year 2025, Volume: 6 Issue: 2, 165 - 186, 19.10.2025
https://doi.org/10.70562/tubid.1728656

Abstract

Yapay zekâ (YZ), öğrenme, akıl yürütme, problem çözme ve dil işleme gibi insan bilişsel yetilerini taklit eden sistemleri kapsayan disiplinler arası bir bilim ve teknoloji alanıdır. Alan Turing’in “makineler düşünebilir mi?” sorusuyla temellenen YZ, 1956’daki Dartmouth Konferansı ile akademik bir alan hâline gelmiş ve günümüzde derin öğrenme, doğal dil işleme ve bilgisayarla görme gibi alt alanlarla önemli bir dönüşüm yaşamıştır.
Bu çalışmada, YZ’nin kavramsal temelleri ve teknolojik bileşenleri açıklanmış; ardından sağlık, tarım, gıda, mühendislik, eğitim, hukuk, sosyal bilimler, ekonomi ve sanat gibi disiplinlerdeki uygulamaları güncel çalışmalarla desteklenerek kapsamlı biçimde incelenmiş ve literatürdeki yöntemsel yaklaşımlar tablolaştırılarak karşılaştırmalı bir çerçeve sunulmuştur. Ayrıca YZ'nin etik, hukuki ve toplumsal boyutları ele alınmış; veri gizliliği, algoritmik önyargı ve açıklanabilirlik gibi konular değerlendirilmiştir. Çalışma, YZ’nin teknik yetkinliklerinin yanı sıra disiplinler arası kullanım potansiyelini ve çok yönlü etkilerini ortaya koyarak, bu alandaki araştırmalara bütüncül bir bakış açısı sunmayı amaçlamıştır.

References

  • 1. Pasham SD. The Birth and Evolution of Artificial Intelligence: From Dartmouth to Modern Systems. International Journal of Modern Computing. 2024;7(1):43–56.
  • 2. Papajorgji P, Moskowitz H. Introduction to Artificial Intelligence. In: The Mind of Everyday: Combining Individual and Artificial Intelligence. Springer; 2024. p. 67–89.
  • 3. TUBİTAK. Ulusal Yapay Zeka Stratejisi (USYZ) 2021-2025. Ankara; 2021.
  • 4. Nafea AA, Alameri SA, Majeed RR, Khalaf MA, AL-Ani MM. A short review on supervised machine learning and deep learning techniques in computer vision. Babylonian Journal of Machine Learning. 2024;2024:48–55.
  • 5. Shetty SH, Shetty S, Singh C, Rao A. Supervised machine learning: algorithms and applications. Fundamentals and methods of machine and deep learning: algorithms, tools and applications. 2022;1–16.
  • 6. Montesinos López OA, Montesinos López A, Crossa J. Fundamentals of artificial neural networks and deep learning. In: Multivariate statistical machine learning methods for genomic prediction. Springer; 2022. p. 379–425.
  • 7. Ongsulee P. Artificial intelligence, machine learning and deep learning. In: 2017 15th international conference on ICT and knowledge engineering (ICT&KE). IEEE; 2017. p. 1–6.
  • 8. Jim JR, Talukder MAR, Malakar P, Kabir MM, Nur K, Mridha MF. Recent advancements and challenges of NLP-based sentiment analysis: A state-of-the-art review. Natural Language Processing Journal. 2024;100059.
  • 9. Kına E, Biçek E. Machine learning approach for emotion identification and classification in Bitcoin sentiment analysis. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2024;29(3):913–926. https://doi.org/10.53433/yyufbed.1532649
  • 10. Babu MVS, Banana K. A study on narrow artificial intelligence—An overview. Int J Eng Sci Adv Technol. 2024;24:210–219.
  • 11. Secinaro S, Calandra D, Secinaro A, Muthurangu V, Biancone P. The role of artificial intelligence in healthcare: a structured literature review. BMC Med Inform Decis Mak. 2021;21:1–23.
  • 12. Dave M, Patel N. Artificial intelligence in healthcare and education. Br Dent J. 2023;234(10):761–4.
  • 13. Illimoottil M, Ginat D. Recent advances in deep learning and medical imaging for head and neck cancer treatment: MRI, CT, and PET scans. Cancers (Basel). 2023;15(13):3267.
  • 14. Kina E. TLEABLCNN: Brain and Alzheimer’s disease detection using attention based explainable deep learning and SMOTE using imbalanced brain MRI. IEEE Access. 2025;13:27670–27683. https://doi.org/10.1109/ACCESS.2025.3539550
  • 15. Nagarajan R, Wang C, Walton D, Walton N. Artificial intelligence applications in genomics. advances in molecular pathology. 2024;7(1):145–154.
  • 16. Yadav S, Singh A, Singhal R, Yadav JP. Revolutionizing drug discovery: the impact of artificial intelligence on advancements in pharmacology and the pharmaceutical industry. Intell Pharm. 2024;3(2):367–380.
  • 17. Singh S, Kumar R, Payra S, Singh SK. Artificial intelligence and machine learning in pharmacological research: bridging the gap between data and drug discovery. Cureus. 2023;15(8).
  • 18. Ahmed A, Aziz S, Abd-Alrazaq A, Farooq F, Househ M, Sheikh J. The effectiveness of wearable devices using artificial intelligence for blood glucose level forecasting or prediction: Systematic review. J Med Internet Res. 2023;25:e40259.
  • 19. Sharma SK, Al‐Wanain MI, Alowaidi M, Alsaghier H. Mobile healthcare (m‐Health) based on artificial intelligence in healthcare 4.0. Expert Syst. 2024;41(6):e13025.
  • 20. Krośniak M, Szklarzewicz J, Gryboś R, Tatar B, Yildirim M, Sahin B, et al. The influence of chronic supply of vanadium compounds on organ weights and body mass in animal diabetes model (NZO). 2019;4:63–73.
  • 21. Baskın D, Cetinkaya Y, Balci M. Synthesis of dipyrrolo-diazepine derivatives via intramolecular alkyne cyclization. Tetrahedron. 2018;74(30):4062–70.
  • 22. Baskin D. Preconcentration and determination of copper (II) in water and tea infusion samples using hierarchical MnSb₂O₆@Fe₃O₄ nanoparticles and magnetic solid phase extraction–FAAS. ACS Omega. 2025;10(9):9537–9546.
  • 23. Baskın D, Yılmaz Ö, Islam MN, Tülü M, Koyuncu İ, Eren T. Metal adsorption properties of multi‐functional PAMAM dendrimer based gels. Journal of Polymer Science. 2021;59(14):1540–55.
  • 24. Srivastava AK, Dev A, Karmakar S. Nanosensors and nanobiosensors in food and agriculture. Environ Chem Lett. 2018;16:161–182.
  • 25. Abioye EA, Hensel O, Esau TJ, Elijah O, Abidin MSZ, Ayobami AS, et al. Precision irrigation management using machine learning and digital farming solutions. AgriEngineering. 2022;4(1):70–103.
  • 26. Adetunji CO, Olaniyan OT, Anani OA, Inobeme A, Osemwegie OO, Hefft D, et al. Artificial intelligence and automation for precision pest management. In: Sensing and Artificial Intelligence Solutions for Food Manufacturing. CRC Press; 2023. p. 49–70.
  • 27. Ye K, Hu G, Tong Z, Xu Y, Zheng J. Key intelligent pesticide prescription spraying technologies for the control of pests, diseases, and weeds: a review. Agriculture. 2025;15(1):81.
  • 28. Üstündağ M. Innovations in sustainable agriculture and aquatic sciences. In: Yücel B, Tolon MT, editors. Applications of blue biotechnology in human health. Ankara: Akademisyen Kitapevi; 2024. p. 59–71.
  • 29. Neethirajan S. Affective state recognition in livestock—Artificial intelligence approaches. Animals. 2022;12(6):759.
  • 30. Mao A, Huang E, Wang X, Liu K. Deep learning-based animal activity recognition with wearable sensors: Overview, challenges, and future directions. Comput Electron Agric. 2023;211:108043.
  • 31. Rad F, Baris M, Bozaoglu SA, Temel GO, Üstündag M. Preliminary investigation on morphometric and biometric characteristics of female silver and yellow, Anguilla anguilla, from Eastern Mediterranean (Goksu Delta/Turkey). Journal of FisheriesSciences com. 2013;7(3):253.
  • 32. Üstündağ M. Ziraat, orman ve su ürünleri alanında akademik çalışmalar III. In: Eren A, Şentürk Demirel F, editors. Balıklarda bağışıklık sistemi ve bakteriyofajların bağışıklık sistemine etkileri. Ankara: İksad; 2024. p. 113–122.
  • 33. Üstündağ M. Isolation of Vibrio anguillarum phage. In: 5th Bilsel International Truva Scientific Researches and Innovation Congress; 2024; Çanakkale.
  • 34. Üstündağ M, Rad F. Effect of different tank colors on growth performance of rainbow trout juvenile (Oncorhynchus mykiss Walbaum, 1792). J Agric Sci. 2015;21:144–51.
  • 35. Akinay Y, Karatas E, Ruzgar D, Akbari A, Baskin D, Cetin T, et al. Cytotoxicity and antibacterial activity of polyhedral oligomeric silsesquioxane modified Ti3C2Tx MXene films. Sci Rep. 2025;15(1):8463.
  • 36. Meral R, Kına E, Ceylan Z. Low-calorie cookies enhanced with fish oil-based nano-ingredients for health-conscious consumers. ACS Omega. 2024;9(37):39159–39169. https://doi.org/10.1021/acsomega.4c06050
  • 37. Alav A, Kutlu N, Kına E, Meral R. A novel green tea extract-loaded nanofiber coating for kiwi fruit: Improved microbial stability and nutritional quality. Food Bioscience. 2024;62:105043. https://doi.org/10.1016/j.fbio.2024.105043
  • 38. Meral R, Ekin MM, Ceylan Z, Alav A, Kına E. A novel solution to enhance the oxidative and physical properties of cookies using maltodextrin-based nano-sized oils as a fat substitute. ACS Omega. 2025;10(22):23111–23120. https://doi.org/10.1021/acsomega.5c01200
  • 39. Magdas DA, Hategan AR, David M, Berghian-Grosan C. The Journey of artificial ıntelligence in food authentication: from label attribute to fraud detection. Foods. 2025;14(10):1808.
  • 40. Vinothkanna A, Dar OI, Liu Z, Jia AQ. Advanced detection tools in food fraud: A systematic review for holistic and rational detection method based on research and patents. Food Chem. 2024;138893.
  • 41. Keleko AT, Kamsu-Foguem B, Ngouna RH, Tongne A. Artificial intelligence and real-time predictive maintenance in industry 4.0: a bibliometric analysis. AI and Ethics. 2022;2(4):553–577.
  • 42. Kına E, Biçek E, İnan M, Gümüş O, Alkan A. Üniversitelerde dijital araç yönetimi: Van Yüzüncü Yıl Üniversitesi örneğiyle web tabanlı araç takip ve izleme sistemi. Bartin University International Journal of Natural and Applied Sciences. 2024;7(2):98-111. https://doi.org/10.55930/jonas.1592290
  • 43. Abidi MH, Mohammed MK, Alkhalefah H. Predictive maintenance planning for industry 4.0 using machine learning for sustainable manufacturing. Sustainability. 2022;14(6):3387.
  • 44. Çınar ZM, Abdussalam Nuhu A, Zeeshan Q, Korhan O, Asmael M, Safaei B. Machine learning in predictive maintenance towards sustainable smart manufacturing in industry 4.0. Sustainability. 2020;12(19):8211.
  • 45. Siddique I. Advancements in ındustrial engineering: ıntegrating smart technologies for optimal production management. Eur J Adv Eng Technol. 2023;10(9):71–8.
  • 46. Koca M, Aydin MA, Sertbaş A, Zaim AH. A new distributed anomaly detection approach for log IDS management based ondeep learning. Turkish Journal of Electrical Engineering and Computer Sciences. 2021;29(5):2486–2501.
  • 47. Koca M, Avci I. A novel hybrid model detection of security vulnerabilities in industrial control systems and IoT using GCN+LSTM. IEEE Access. 2024;12:143343–143351.
  • 48. Avcı İ, Koca M. A novel security risk analysis using the AHP method in smart railway systems. Applied Sciences. 2024;14(10):4243.
  • 49. Groshev M, Guimaraes C, Martín-Pérez J, de la Oliva A. Toward intelligent cyber-physical systems: Digital twin meets artificial intelligence. IEEE Communications Magazine. 2021;59(8):14–20.
  • 50. Wang B, Zhou H, Yang G, Li X, Yang H. Human digital twin (HDT) driven human-cyber-physical systems: Key technologies and applications. Chinese Journal of Mechanical Engineering. 2022;35(1):11.
  • 51. Radanliev P, De Roure D, Nicolescu R, Huth M, Santos O. Digital twins: artificial intelligence and the IoT cyber-physical systems in Industry 4.0. Int J Intell Robot Appl. 2022;6(1):171–85.
  • 52. Sarıgöz O, Hacıcaferoğlu S, Dönger A, Cam F, Koca M. Çalışanların mobbinge uğrama düzeylerinin bazı değişkenler açısından incelenmesi. The Journal of Academic Social Sciences. 2015; 3(14):360–373.
  • 53. Wahyono T, Sembiring I. AI-driven competency recommendations based on attendance patterns and academic performance. Comput Educ Artif Intell. 2025;100423.
  • 54. Kına E. Algoritmik oyun kuramı. In: Biçek E, editor. 1st ed. Van: İksad Yayınevi; 2023.
  • 55. Alharbi A, Hai AA, Aljurbua R, Obradovic Z. AI-driven sentiment trend analysis: enhancing topic modeling interpretation with ChatGPT. In: IFIP International Conference on Artificial Intelligence Applications and Innovations. Cham: Springer; 2024. p. 3–17.
  • 56. Alam MS, Mrida MSH, Rahman MA. Sentiment analysis in social media: How data science impacts public opinion knowledge integrates natural language processing (NLP) with artificial intelligence (AI). American Journal of Scholarly Research and Innovation. 2025;4(01):63–100.
  • 57. Goldrat A, Fuchs A. Modeling social movement dynamics in social media through fluid reality theory: a synthesis of cultural foundations and mathematical modeling. Gaia. 2025;1(4):18–36.
  • 58. Eboigbe EO. AI in Legal Analytics: Balancing Efficiency, Accuracy, and Ethics in Contract and Predictive Analysis. Accuracy, and Ethics in Contract and Predictive Analysis (October 07, 2024). 2024;
  • 59. Fathima M, Dhinakaran DP, Thirumalaikumari T, Devi SR, MR B. Effectual contract management and analysis with AI-powered technology: Reducing errors and saving time in legal document. In: 2024 Ninth International Conference on Science Technology Engineering and Mathematics (ICONSTEM). IEEE; 2024. p. 1–6.
  • 60. Mensah GB. Artificial intelligence and ethics: a comprehensive review of bias mitigation, transparency, and accountability in AI systems. 2023.
  • 61. Boch A, Hohma E, Trauth R. Towards an accountability framework for AI: Ethical and legal considerations. Institute for Ethics in AI, Technical University of Munich: Munich, Germany. 2022;
  • 62. Olanrewaju AG. Artificial intelligence in financial markets: Optimizing risk management, portfolio allocation, and algorithmic trading. International Journal of Research Publication and Reviews. 2025;6:8855–70.
  • 63. Rahmani AM, Rezazadeh B, Haghparast M, Chang WC, Ting SG. Applications of artificial intelligence in the economy, including applications in stock trading, market analysis, and risk management. IEEE Access. 2023;11:80769–93.
  • 64. Faheem MA. AI-Driven risk assessment models: Revolutionizing credit scoring and default prediction. Iconic Research And Engineering Journals. 2021;5(3):177–86.
  • 65. Dwivedi D, Batra S, Pathak YK. Risk scorecards using alternative sources of data for credit risk applications. In: World Conference on Artificial Intelligence: Advances and Applications. Cham: Springer; 2024. p. 301–14.
  • 66. Potla RT. AI in fraud detection: Leveraging real-time machine learning for financial security. Journal of Artificial Intelligence Research and Applications. 2023;3(2):534–49.
  • 67. Onabowale O. The rise of AI and robo-advisors: redefining financial strategies in the digital age. Int J Res Publ Rev. 2024;6.
  • 68. Anantrasirichai N, Bull D. Artificial intelligence in the creative industries: a review. Artif Intell Rev. 2022;55(1):589–656.
  • 69. Patil D. ChatGPT and similar generative artificial intelligence in art, music, and literature industries: applications and ethical challenges. 2024 Nov 12.
  • 70. Buchan ML, Goel K, Schneider CK, Steullet V, Bratton S, Basch E. National implementation of an artificial intelligence–based virtual dietitian for patients with cancer. JCO Clin Cancer Inform. 2024;8:e2400085.
  • 71. Çelebi A, Küçük DB, Adaş GN, Küçük AÖ, Türkoğlu M, Atıl F. panoramik radyografilerde foramen mentalenin yapay zeka tabanlı sistemler ile tespiti. Journal of Health Institutes of Türkiye. 2025; 8(1):1-11.
  • 72. Daenen LHBA, van de Worp WRPH, Rezaeifar B, de Bruijn J, Qiu P, Webster JM, et al. Towards a fully automatic workflow for investigating the dynamics of lung cancer cachexia during radiotherapy using cone beam computed tomography. Phys Med Biol. 2024;69(20):205005.
  • 73. Hu C, Li F, Wang S, Gao Z, Pan S, Qing M. The role of artificial intelligence in enhancing personalized learning pathways and clinical training in dental education. Cogent Education. 2025;12(1):2490425.
  • 74. Mujahid M, Kına E, Rustam F, Villar MG, Alvarado ES, De La Torre Diez I, et al. Data oversampling and imbalanced datasets: An investigation of performance for machine learning and feature engineering. Journal of Big Data. 2024;11(1):87.
  • 75. Du L. New insights into raw milk adulterated with milk powder identification: ATR-FTIR spectroscopic fingerprints combined with machine learning and feature selection approaches. Journal of Food Composition and Analysis. 2024; 133.
  • 76. Rahman SMA, Nassef AM, Al-Dhaifallah M, Abdelkareem MA, Rezk H. The effect of a new coating on the drying performance of fruit and vegetables products: Experimental ınvestigation and artificial neural network modeling. Foods 2020; 9:308.
  • 77. Satorabi M, Salehi F, Rasouli M. The influence of xanthan and balangu seed gums coats on the kinetics of infrared drying of apricot slices: GA-ANN and ANFIS modeling. International Journal of Fruit Science. 2021;21(1):468–80.
  • 78. Tabassum N, Aftab RA, Yousuf O, Ahmad S, Zaidi S. Application of nanoemulsion based edible coating on fresh-cut papaya. J Food Eng. 2023;355:111579.
  • 79. Avcı İ, Koca M. Intelligent transportation system technologies, challenges and security. Applied Sciences. 2024;14(11):4646.
  • 80. Kına E, Biçek E. Metaverse–Yeni Dünyaya İlk Adım. İksad Yayınevi; 2023.
  • 81. Kına E, Biçek E. Duygu analizinde denetimli makine öğrenme algoritmalarının karşılaştırılmaları, (Kahramanmaraş depremi örneği). Batman Üniversitesi Yaşam Bilimleri Dergisi. 2023;13(1):21–31. https://doi.org/10.55024/buyasambid.1295878
  • 82. Kına E, Biçek E. Tweetlerin duygu analizi için hibrit bir yaklaşım. Doğu Fen Bilimleri Dergisi. 2023;6(1):57–68. https://doi.org/10.57244/dfbd.1314901
  • 83. Kına E, Özdağ R. Complexity matrices in twitter sentiment analysis of thoughts on mobile games using machine learning algorithms. Muş Alparslan Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi. 2021;2(2):91–100.
  • 84. Koca M, Avcı İ, Al-hayani MAS. Classification of malicious URLs using Naive Bayes and genetic algorithm. Sakarya University Journal of Computer and Information Sciences. 2023;6(2):80–90.
  • 85. Koca M, Avcı İ. Enhancing network security: A comprehensive analysis of intrusion detection systems. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2024;29(3):927–938.
  • 86. Koca M. Real-time security risk assessment from CCTV using hand gesture recognition. IEEE Access. 2024;12:84548–84555.
  • 87. Nti IK, Adekoya AF, Weyori BA, Nyarko-Boateng O. Applications of artificial intelligence in engineering and manufacturing: a systematic review. J Intell Manuf. 2022;33(6):1581–1601.
  • 88. Nuruzzaman M, Limon GQ, Chowdhury AR, Khan MM. Predictive maintenance in power transformers: a systematic review of AI and IoT applications. ASRC Proc Glob Perspect Sci Scholar. 2025;1(01):34–47.
  • 89. Okpala C, Chikwendu U, Onyeka NC. Artificial intelligence-driven total productive maintenance: The future of maintenance in smart factories. International Journal of Engineering Research and Development. 2025; 21(1):68–74.
  • 90. Alam A. Employing adaptive learning and intelligent tutoring robots for virtual classrooms and smart campuses: reforming education in the age of artificial intelligence. Lect Notes Electr Eng. 2022;914:395–406.
  • 91. Alonso RR, Carvajal KA, Acevedo NR. Role of artificial intelligence in the personalization of distance education: a systematic review. Rev Iberoam Educ Distancia. 2025;28(1):9–32.
  • 92. Deckker D, Sumanasekara S. The role of artificial intelligence in education: Transforming learning and teaching. EPRA International Journal of Research and Development (IJRD). 2025;10(3):5–15.
  • 93. Demartini CG, Sciascia L, Bosso A, Manuri F. Artificial intelligence bringing improvements to adaptive learning in education: a case study. Sustainability. 2024;16:1347.
  • 94. Dong J, Mohd Rum SN, Kasmiran KA, Mohd Aris TN, Mohamed R. Artificial intelligence in adaptive and intelligent educational system: A review. Future Internet 2022; 14:245.
  • 95. Kına E, Özdağ R. Multilingual sentiment analysis for mobile gaming: A comparative study of machine learning and hybrid deep learning approaches. In: SETSCI-Conference Proceedings. SETSCI-Conference Proceedings; 2024. p. 1–5.
  • 96. Alexopoulou S. Paradigm shift: Exploring the impact of digital technologies on the welfare state through a systematic literature review. Soc Policy Adm. 2024;59(1):135–57.
  • 97. Che Ghazali R, Abdul Hanid MF, Mohd Said MNH, Lee HY. The advancement of artificial intelligence in education: Insights from a 1976–2024 bibliometric analysis. Journal of Research on Technology in Education. J Res Technol Educ. 2025:1–17.
  • 98. Elewa YA, Munassar NMA, Abdullah MF. Optimizing intelligent marketing with AI-based DSS (Case Study: Sprout Social at University of Science and Technology, Aden, Yemen). Technol Appl Humanit Acad J Multidiscip. 2025;1(1).
  • 99. Heiberger RH. Applying machine learning in sociology: How to predict gender and reveal research preferences. KZfSS Kolner Z Soziol Sozpsychol. 2022;74(Suppl 1):383–406.
  • 100. Karjus A. Machine-assisted quantitizing designs: augmenting humanities and social sciences with artificial intelligence. arXiv preprint arXiv:2309.14379. 2023.
  • 101. Yuen KF, Wang X, Kyriazos T, Poga M. Application of machine learning models in social sciences: managing nonlinear relationships. Encyclopedia. 2024;4(4):1790–1805.
  • 102. Görentaş MB, Çiftçi H. Avrupa Birliği yapay zekâ yasası çerçevesinde yargılamada yapay zekâ kullanımının değerlendirilmesi. İzmir Barosu Dergisi. 2024;89(1):177–203.
  • 103. Herrera-Tapias BA, Guzmán DH, Zambam NJ, Turatti L, Rodríguez FA, Fröhlich S, et al. Algorithmic discrimination and explainable artificial intelligence in the judiciary: a case study of the Constitutional Court of Colombia. Procedia Comput Sci. 2025;257:1227–32.
  • 104. Morić Z, Dakić V, Urošev S. An AI-based decision support system utilizing Bayesian Networks for judicial decision-making. Systems. 2025;13(2):131.
  • 105. Wang J, Liu Y, Li P, Lin Z, Sindakis S, Aggarwal S. Overview of data quality: Examining the dimensions, antecedents, and impacts of data quality. Journal of the Knowledge Economy. 2024;15(1):1159–78.
  • 106. Knight Y, Eladhari MP. Artificial intelligence in an artistic practice: A journey through surrealism and generative arts. Media Practice and Education. 2025;1–18.
  • 107. Zhao Z, Zhang L. Design of artificial intelligence cultural creative industry based on machine learning. Soft comput. 2023;1–12.
  • 108. Adeniyi AO, Arowoogun JO, Okolo CA, Chidi R, Babawarun O. Ethical considerations in healthcare IT: A review of data privacy and patient consent issues. World Journal of Advanced Research and Reviews. 2024;21(2):1660–8.
  • 109. Andreotta AJ, Kirkham N, Rizzi M. AI, big data, and the future of consent. AI Soc. 2022;37(4):1715–28.
  • 110. Modi TB, Artificial intelligence ethics and fairness: A study to address bias and fairness issues in AI systems, and the ethical implications of AI applications. Rev Rev Index J Multidiscip. 2023;3(2):24–35.
  • 111. Kordzadeh N, Ghasemaghaei M. Algorithmic bias: Review, synthesis, and future research directions. Eur J Inf Syst. 2022;31(3):388–409.
  • 112. Şahin E, Arslan NN, Özdemir D. Unlocking the black box: An in-depth review on interpretability, explainability, and reliability in deep learning. Neural Comput Appl. 2025;37(2):859–965.
  • 113. Sarra C. Artificial Intelligence in Decision-making: A Test of Consistency between the “EU AI Act” and the “General Data Protection Regulation.” Athens Journal Of Law. 2025;11(1):45–62.

Applications of artificial intelligence in multidisciplinary fields

Year 2025, Volume: 6 Issue: 2, 165 - 186, 19.10.2025
https://doi.org/10.70562/tubid.1728656

Abstract

Artificial intelligence (AI) is an interdisciplinary field of science and technology that encompasses systems capable of mimicking human cognitive abilities such as learning, reasoning, problem-solving, and language processing. Rooted in Alan Turing’s question “Can machines think?”, AI was established as an academic discipline at the 1956 Dartmouth Conference and has since undergone a major transformation with the development of subfields such as deep learning, natural language processing, and computer vision.
This study presents the conceptual foundations and technological components of AI, followed by a comprehensive analysis of its applications in disciplines such as healthcare, agriculture, food science, engineering, education, law, social sciences, economics, and the arts, supported by recent literature. Methodological approaches from the literature have been tabulated to offer a comparative framework. In addition, the ethical, legal, and societal dimensions of AI—such as data privacy, algorithmic bias, and explainability—are discussed. The study aims to provide a holistic perspective on AI by highlighting not only its technical capabilities but also its interdisciplinary applicability and broad-ranging impacts.

References

  • 1. Pasham SD. The Birth and Evolution of Artificial Intelligence: From Dartmouth to Modern Systems. International Journal of Modern Computing. 2024;7(1):43–56.
  • 2. Papajorgji P, Moskowitz H. Introduction to Artificial Intelligence. In: The Mind of Everyday: Combining Individual and Artificial Intelligence. Springer; 2024. p. 67–89.
  • 3. TUBİTAK. Ulusal Yapay Zeka Stratejisi (USYZ) 2021-2025. Ankara; 2021.
  • 4. Nafea AA, Alameri SA, Majeed RR, Khalaf MA, AL-Ani MM. A short review on supervised machine learning and deep learning techniques in computer vision. Babylonian Journal of Machine Learning. 2024;2024:48–55.
  • 5. Shetty SH, Shetty S, Singh C, Rao A. Supervised machine learning: algorithms and applications. Fundamentals and methods of machine and deep learning: algorithms, tools and applications. 2022;1–16.
  • 6. Montesinos López OA, Montesinos López A, Crossa J. Fundamentals of artificial neural networks and deep learning. In: Multivariate statistical machine learning methods for genomic prediction. Springer; 2022. p. 379–425.
  • 7. Ongsulee P. Artificial intelligence, machine learning and deep learning. In: 2017 15th international conference on ICT and knowledge engineering (ICT&KE). IEEE; 2017. p. 1–6.
  • 8. Jim JR, Talukder MAR, Malakar P, Kabir MM, Nur K, Mridha MF. Recent advancements and challenges of NLP-based sentiment analysis: A state-of-the-art review. Natural Language Processing Journal. 2024;100059.
  • 9. Kına E, Biçek E. Machine learning approach for emotion identification and classification in Bitcoin sentiment analysis. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2024;29(3):913–926. https://doi.org/10.53433/yyufbed.1532649
  • 10. Babu MVS, Banana K. A study on narrow artificial intelligence—An overview. Int J Eng Sci Adv Technol. 2024;24:210–219.
  • 11. Secinaro S, Calandra D, Secinaro A, Muthurangu V, Biancone P. The role of artificial intelligence in healthcare: a structured literature review. BMC Med Inform Decis Mak. 2021;21:1–23.
  • 12. Dave M, Patel N. Artificial intelligence in healthcare and education. Br Dent J. 2023;234(10):761–4.
  • 13. Illimoottil M, Ginat D. Recent advances in deep learning and medical imaging for head and neck cancer treatment: MRI, CT, and PET scans. Cancers (Basel). 2023;15(13):3267.
  • 14. Kina E. TLEABLCNN: Brain and Alzheimer’s disease detection using attention based explainable deep learning and SMOTE using imbalanced brain MRI. IEEE Access. 2025;13:27670–27683. https://doi.org/10.1109/ACCESS.2025.3539550
  • 15. Nagarajan R, Wang C, Walton D, Walton N. Artificial intelligence applications in genomics. advances in molecular pathology. 2024;7(1):145–154.
  • 16. Yadav S, Singh A, Singhal R, Yadav JP. Revolutionizing drug discovery: the impact of artificial intelligence on advancements in pharmacology and the pharmaceutical industry. Intell Pharm. 2024;3(2):367–380.
  • 17. Singh S, Kumar R, Payra S, Singh SK. Artificial intelligence and machine learning in pharmacological research: bridging the gap between data and drug discovery. Cureus. 2023;15(8).
  • 18. Ahmed A, Aziz S, Abd-Alrazaq A, Farooq F, Househ M, Sheikh J. The effectiveness of wearable devices using artificial intelligence for blood glucose level forecasting or prediction: Systematic review. J Med Internet Res. 2023;25:e40259.
  • 19. Sharma SK, Al‐Wanain MI, Alowaidi M, Alsaghier H. Mobile healthcare (m‐Health) based on artificial intelligence in healthcare 4.0. Expert Syst. 2024;41(6):e13025.
  • 20. Krośniak M, Szklarzewicz J, Gryboś R, Tatar B, Yildirim M, Sahin B, et al. The influence of chronic supply of vanadium compounds on organ weights and body mass in animal diabetes model (NZO). 2019;4:63–73.
  • 21. Baskın D, Cetinkaya Y, Balci M. Synthesis of dipyrrolo-diazepine derivatives via intramolecular alkyne cyclization. Tetrahedron. 2018;74(30):4062–70.
  • 22. Baskin D. Preconcentration and determination of copper (II) in water and tea infusion samples using hierarchical MnSb₂O₆@Fe₃O₄ nanoparticles and magnetic solid phase extraction–FAAS. ACS Omega. 2025;10(9):9537–9546.
  • 23. Baskın D, Yılmaz Ö, Islam MN, Tülü M, Koyuncu İ, Eren T. Metal adsorption properties of multi‐functional PAMAM dendrimer based gels. Journal of Polymer Science. 2021;59(14):1540–55.
  • 24. Srivastava AK, Dev A, Karmakar S. Nanosensors and nanobiosensors in food and agriculture. Environ Chem Lett. 2018;16:161–182.
  • 25. Abioye EA, Hensel O, Esau TJ, Elijah O, Abidin MSZ, Ayobami AS, et al. Precision irrigation management using machine learning and digital farming solutions. AgriEngineering. 2022;4(1):70–103.
  • 26. Adetunji CO, Olaniyan OT, Anani OA, Inobeme A, Osemwegie OO, Hefft D, et al. Artificial intelligence and automation for precision pest management. In: Sensing and Artificial Intelligence Solutions for Food Manufacturing. CRC Press; 2023. p. 49–70.
  • 27. Ye K, Hu G, Tong Z, Xu Y, Zheng J. Key intelligent pesticide prescription spraying technologies for the control of pests, diseases, and weeds: a review. Agriculture. 2025;15(1):81.
  • 28. Üstündağ M. Innovations in sustainable agriculture and aquatic sciences. In: Yücel B, Tolon MT, editors. Applications of blue biotechnology in human health. Ankara: Akademisyen Kitapevi; 2024. p. 59–71.
  • 29. Neethirajan S. Affective state recognition in livestock—Artificial intelligence approaches. Animals. 2022;12(6):759.
  • 30. Mao A, Huang E, Wang X, Liu K. Deep learning-based animal activity recognition with wearable sensors: Overview, challenges, and future directions. Comput Electron Agric. 2023;211:108043.
  • 31. Rad F, Baris M, Bozaoglu SA, Temel GO, Üstündag M. Preliminary investigation on morphometric and biometric characteristics of female silver and yellow, Anguilla anguilla, from Eastern Mediterranean (Goksu Delta/Turkey). Journal of FisheriesSciences com. 2013;7(3):253.
  • 32. Üstündağ M. Ziraat, orman ve su ürünleri alanında akademik çalışmalar III. In: Eren A, Şentürk Demirel F, editors. Balıklarda bağışıklık sistemi ve bakteriyofajların bağışıklık sistemine etkileri. Ankara: İksad; 2024. p. 113–122.
  • 33. Üstündağ M. Isolation of Vibrio anguillarum phage. In: 5th Bilsel International Truva Scientific Researches and Innovation Congress; 2024; Çanakkale.
  • 34. Üstündağ M, Rad F. Effect of different tank colors on growth performance of rainbow trout juvenile (Oncorhynchus mykiss Walbaum, 1792). J Agric Sci. 2015;21:144–51.
  • 35. Akinay Y, Karatas E, Ruzgar D, Akbari A, Baskin D, Cetin T, et al. Cytotoxicity and antibacterial activity of polyhedral oligomeric silsesquioxane modified Ti3C2Tx MXene films. Sci Rep. 2025;15(1):8463.
  • 36. Meral R, Kına E, Ceylan Z. Low-calorie cookies enhanced with fish oil-based nano-ingredients for health-conscious consumers. ACS Omega. 2024;9(37):39159–39169. https://doi.org/10.1021/acsomega.4c06050
  • 37. Alav A, Kutlu N, Kına E, Meral R. A novel green tea extract-loaded nanofiber coating for kiwi fruit: Improved microbial stability and nutritional quality. Food Bioscience. 2024;62:105043. https://doi.org/10.1016/j.fbio.2024.105043
  • 38. Meral R, Ekin MM, Ceylan Z, Alav A, Kına E. A novel solution to enhance the oxidative and physical properties of cookies using maltodextrin-based nano-sized oils as a fat substitute. ACS Omega. 2025;10(22):23111–23120. https://doi.org/10.1021/acsomega.5c01200
  • 39. Magdas DA, Hategan AR, David M, Berghian-Grosan C. The Journey of artificial ıntelligence in food authentication: from label attribute to fraud detection. Foods. 2025;14(10):1808.
  • 40. Vinothkanna A, Dar OI, Liu Z, Jia AQ. Advanced detection tools in food fraud: A systematic review for holistic and rational detection method based on research and patents. Food Chem. 2024;138893.
  • 41. Keleko AT, Kamsu-Foguem B, Ngouna RH, Tongne A. Artificial intelligence and real-time predictive maintenance in industry 4.0: a bibliometric analysis. AI and Ethics. 2022;2(4):553–577.
  • 42. Kına E, Biçek E, İnan M, Gümüş O, Alkan A. Üniversitelerde dijital araç yönetimi: Van Yüzüncü Yıl Üniversitesi örneğiyle web tabanlı araç takip ve izleme sistemi. Bartin University International Journal of Natural and Applied Sciences. 2024;7(2):98-111. https://doi.org/10.55930/jonas.1592290
  • 43. Abidi MH, Mohammed MK, Alkhalefah H. Predictive maintenance planning for industry 4.0 using machine learning for sustainable manufacturing. Sustainability. 2022;14(6):3387.
  • 44. Çınar ZM, Abdussalam Nuhu A, Zeeshan Q, Korhan O, Asmael M, Safaei B. Machine learning in predictive maintenance towards sustainable smart manufacturing in industry 4.0. Sustainability. 2020;12(19):8211.
  • 45. Siddique I. Advancements in ındustrial engineering: ıntegrating smart technologies for optimal production management. Eur J Adv Eng Technol. 2023;10(9):71–8.
  • 46. Koca M, Aydin MA, Sertbaş A, Zaim AH. A new distributed anomaly detection approach for log IDS management based ondeep learning. Turkish Journal of Electrical Engineering and Computer Sciences. 2021;29(5):2486–2501.
  • 47. Koca M, Avci I. A novel hybrid model detection of security vulnerabilities in industrial control systems and IoT using GCN+LSTM. IEEE Access. 2024;12:143343–143351.
  • 48. Avcı İ, Koca M. A novel security risk analysis using the AHP method in smart railway systems. Applied Sciences. 2024;14(10):4243.
  • 49. Groshev M, Guimaraes C, Martín-Pérez J, de la Oliva A. Toward intelligent cyber-physical systems: Digital twin meets artificial intelligence. IEEE Communications Magazine. 2021;59(8):14–20.
  • 50. Wang B, Zhou H, Yang G, Li X, Yang H. Human digital twin (HDT) driven human-cyber-physical systems: Key technologies and applications. Chinese Journal of Mechanical Engineering. 2022;35(1):11.
  • 51. Radanliev P, De Roure D, Nicolescu R, Huth M, Santos O. Digital twins: artificial intelligence and the IoT cyber-physical systems in Industry 4.0. Int J Intell Robot Appl. 2022;6(1):171–85.
  • 52. Sarıgöz O, Hacıcaferoğlu S, Dönger A, Cam F, Koca M. Çalışanların mobbinge uğrama düzeylerinin bazı değişkenler açısından incelenmesi. The Journal of Academic Social Sciences. 2015; 3(14):360–373.
  • 53. Wahyono T, Sembiring I. AI-driven competency recommendations based on attendance patterns and academic performance. Comput Educ Artif Intell. 2025;100423.
  • 54. Kına E. Algoritmik oyun kuramı. In: Biçek E, editor. 1st ed. Van: İksad Yayınevi; 2023.
  • 55. Alharbi A, Hai AA, Aljurbua R, Obradovic Z. AI-driven sentiment trend analysis: enhancing topic modeling interpretation with ChatGPT. In: IFIP International Conference on Artificial Intelligence Applications and Innovations. Cham: Springer; 2024. p. 3–17.
  • 56. Alam MS, Mrida MSH, Rahman MA. Sentiment analysis in social media: How data science impacts public opinion knowledge integrates natural language processing (NLP) with artificial intelligence (AI). American Journal of Scholarly Research and Innovation. 2025;4(01):63–100.
  • 57. Goldrat A, Fuchs A. Modeling social movement dynamics in social media through fluid reality theory: a synthesis of cultural foundations and mathematical modeling. Gaia. 2025;1(4):18–36.
  • 58. Eboigbe EO. AI in Legal Analytics: Balancing Efficiency, Accuracy, and Ethics in Contract and Predictive Analysis. Accuracy, and Ethics in Contract and Predictive Analysis (October 07, 2024). 2024;
  • 59. Fathima M, Dhinakaran DP, Thirumalaikumari T, Devi SR, MR B. Effectual contract management and analysis with AI-powered technology: Reducing errors and saving time in legal document. In: 2024 Ninth International Conference on Science Technology Engineering and Mathematics (ICONSTEM). IEEE; 2024. p. 1–6.
  • 60. Mensah GB. Artificial intelligence and ethics: a comprehensive review of bias mitigation, transparency, and accountability in AI systems. 2023.
  • 61. Boch A, Hohma E, Trauth R. Towards an accountability framework for AI: Ethical and legal considerations. Institute for Ethics in AI, Technical University of Munich: Munich, Germany. 2022;
  • 62. Olanrewaju AG. Artificial intelligence in financial markets: Optimizing risk management, portfolio allocation, and algorithmic trading. International Journal of Research Publication and Reviews. 2025;6:8855–70.
  • 63. Rahmani AM, Rezazadeh B, Haghparast M, Chang WC, Ting SG. Applications of artificial intelligence in the economy, including applications in stock trading, market analysis, and risk management. IEEE Access. 2023;11:80769–93.
  • 64. Faheem MA. AI-Driven risk assessment models: Revolutionizing credit scoring and default prediction. Iconic Research And Engineering Journals. 2021;5(3):177–86.
  • 65. Dwivedi D, Batra S, Pathak YK. Risk scorecards using alternative sources of data for credit risk applications. In: World Conference on Artificial Intelligence: Advances and Applications. Cham: Springer; 2024. p. 301–14.
  • 66. Potla RT. AI in fraud detection: Leveraging real-time machine learning for financial security. Journal of Artificial Intelligence Research and Applications. 2023;3(2):534–49.
  • 67. Onabowale O. The rise of AI and robo-advisors: redefining financial strategies in the digital age. Int J Res Publ Rev. 2024;6.
  • 68. Anantrasirichai N, Bull D. Artificial intelligence in the creative industries: a review. Artif Intell Rev. 2022;55(1):589–656.
  • 69. Patil D. ChatGPT and similar generative artificial intelligence in art, music, and literature industries: applications and ethical challenges. 2024 Nov 12.
  • 70. Buchan ML, Goel K, Schneider CK, Steullet V, Bratton S, Basch E. National implementation of an artificial intelligence–based virtual dietitian for patients with cancer. JCO Clin Cancer Inform. 2024;8:e2400085.
  • 71. Çelebi A, Küçük DB, Adaş GN, Küçük AÖ, Türkoğlu M, Atıl F. panoramik radyografilerde foramen mentalenin yapay zeka tabanlı sistemler ile tespiti. Journal of Health Institutes of Türkiye. 2025; 8(1):1-11.
  • 72. Daenen LHBA, van de Worp WRPH, Rezaeifar B, de Bruijn J, Qiu P, Webster JM, et al. Towards a fully automatic workflow for investigating the dynamics of lung cancer cachexia during radiotherapy using cone beam computed tomography. Phys Med Biol. 2024;69(20):205005.
  • 73. Hu C, Li F, Wang S, Gao Z, Pan S, Qing M. The role of artificial intelligence in enhancing personalized learning pathways and clinical training in dental education. Cogent Education. 2025;12(1):2490425.
  • 74. Mujahid M, Kına E, Rustam F, Villar MG, Alvarado ES, De La Torre Diez I, et al. Data oversampling and imbalanced datasets: An investigation of performance for machine learning and feature engineering. Journal of Big Data. 2024;11(1):87.
  • 75. Du L. New insights into raw milk adulterated with milk powder identification: ATR-FTIR spectroscopic fingerprints combined with machine learning and feature selection approaches. Journal of Food Composition and Analysis. 2024; 133.
  • 76. Rahman SMA, Nassef AM, Al-Dhaifallah M, Abdelkareem MA, Rezk H. The effect of a new coating on the drying performance of fruit and vegetables products: Experimental ınvestigation and artificial neural network modeling. Foods 2020; 9:308.
  • 77. Satorabi M, Salehi F, Rasouli M. The influence of xanthan and balangu seed gums coats on the kinetics of infrared drying of apricot slices: GA-ANN and ANFIS modeling. International Journal of Fruit Science. 2021;21(1):468–80.
  • 78. Tabassum N, Aftab RA, Yousuf O, Ahmad S, Zaidi S. Application of nanoemulsion based edible coating on fresh-cut papaya. J Food Eng. 2023;355:111579.
  • 79. Avcı İ, Koca M. Intelligent transportation system technologies, challenges and security. Applied Sciences. 2024;14(11):4646.
  • 80. Kına E, Biçek E. Metaverse–Yeni Dünyaya İlk Adım. İksad Yayınevi; 2023.
  • 81. Kına E, Biçek E. Duygu analizinde denetimli makine öğrenme algoritmalarının karşılaştırılmaları, (Kahramanmaraş depremi örneği). Batman Üniversitesi Yaşam Bilimleri Dergisi. 2023;13(1):21–31. https://doi.org/10.55024/buyasambid.1295878
  • 82. Kına E, Biçek E. Tweetlerin duygu analizi için hibrit bir yaklaşım. Doğu Fen Bilimleri Dergisi. 2023;6(1):57–68. https://doi.org/10.57244/dfbd.1314901
  • 83. Kına E, Özdağ R. Complexity matrices in twitter sentiment analysis of thoughts on mobile games using machine learning algorithms. Muş Alparslan Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi. 2021;2(2):91–100.
  • 84. Koca M, Avcı İ, Al-hayani MAS. Classification of malicious URLs using Naive Bayes and genetic algorithm. Sakarya University Journal of Computer and Information Sciences. 2023;6(2):80–90.
  • 85. Koca M, Avcı İ. Enhancing network security: A comprehensive analysis of intrusion detection systems. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2024;29(3):927–938.
  • 86. Koca M. Real-time security risk assessment from CCTV using hand gesture recognition. IEEE Access. 2024;12:84548–84555.
  • 87. Nti IK, Adekoya AF, Weyori BA, Nyarko-Boateng O. Applications of artificial intelligence in engineering and manufacturing: a systematic review. J Intell Manuf. 2022;33(6):1581–1601.
  • 88. Nuruzzaman M, Limon GQ, Chowdhury AR, Khan MM. Predictive maintenance in power transformers: a systematic review of AI and IoT applications. ASRC Proc Glob Perspect Sci Scholar. 2025;1(01):34–47.
  • 89. Okpala C, Chikwendu U, Onyeka NC. Artificial intelligence-driven total productive maintenance: The future of maintenance in smart factories. International Journal of Engineering Research and Development. 2025; 21(1):68–74.
  • 90. Alam A. Employing adaptive learning and intelligent tutoring robots for virtual classrooms and smart campuses: reforming education in the age of artificial intelligence. Lect Notes Electr Eng. 2022;914:395–406.
  • 91. Alonso RR, Carvajal KA, Acevedo NR. Role of artificial intelligence in the personalization of distance education: a systematic review. Rev Iberoam Educ Distancia. 2025;28(1):9–32.
  • 92. Deckker D, Sumanasekara S. The role of artificial intelligence in education: Transforming learning and teaching. EPRA International Journal of Research and Development (IJRD). 2025;10(3):5–15.
  • 93. Demartini CG, Sciascia L, Bosso A, Manuri F. Artificial intelligence bringing improvements to adaptive learning in education: a case study. Sustainability. 2024;16:1347.
  • 94. Dong J, Mohd Rum SN, Kasmiran KA, Mohd Aris TN, Mohamed R. Artificial intelligence in adaptive and intelligent educational system: A review. Future Internet 2022; 14:245.
  • 95. Kına E, Özdağ R. Multilingual sentiment analysis for mobile gaming: A comparative study of machine learning and hybrid deep learning approaches. In: SETSCI-Conference Proceedings. SETSCI-Conference Proceedings; 2024. p. 1–5.
  • 96. Alexopoulou S. Paradigm shift: Exploring the impact of digital technologies on the welfare state through a systematic literature review. Soc Policy Adm. 2024;59(1):135–57.
  • 97. Che Ghazali R, Abdul Hanid MF, Mohd Said MNH, Lee HY. The advancement of artificial intelligence in education: Insights from a 1976–2024 bibliometric analysis. Journal of Research on Technology in Education. J Res Technol Educ. 2025:1–17.
  • 98. Elewa YA, Munassar NMA, Abdullah MF. Optimizing intelligent marketing with AI-based DSS (Case Study: Sprout Social at University of Science and Technology, Aden, Yemen). Technol Appl Humanit Acad J Multidiscip. 2025;1(1).
  • 99. Heiberger RH. Applying machine learning in sociology: How to predict gender and reveal research preferences. KZfSS Kolner Z Soziol Sozpsychol. 2022;74(Suppl 1):383–406.
  • 100. Karjus A. Machine-assisted quantitizing designs: augmenting humanities and social sciences with artificial intelligence. arXiv preprint arXiv:2309.14379. 2023.
  • 101. Yuen KF, Wang X, Kyriazos T, Poga M. Application of machine learning models in social sciences: managing nonlinear relationships. Encyclopedia. 2024;4(4):1790–1805.
  • 102. Görentaş MB, Çiftçi H. Avrupa Birliği yapay zekâ yasası çerçevesinde yargılamada yapay zekâ kullanımının değerlendirilmesi. İzmir Barosu Dergisi. 2024;89(1):177–203.
  • 103. Herrera-Tapias BA, Guzmán DH, Zambam NJ, Turatti L, Rodríguez FA, Fröhlich S, et al. Algorithmic discrimination and explainable artificial intelligence in the judiciary: a case study of the Constitutional Court of Colombia. Procedia Comput Sci. 2025;257:1227–32.
  • 104. Morić Z, Dakić V, Urošev S. An AI-based decision support system utilizing Bayesian Networks for judicial decision-making. Systems. 2025;13(2):131.
  • 105. Wang J, Liu Y, Li P, Lin Z, Sindakis S, Aggarwal S. Overview of data quality: Examining the dimensions, antecedents, and impacts of data quality. Journal of the Knowledge Economy. 2024;15(1):1159–78.
  • 106. Knight Y, Eladhari MP. Artificial intelligence in an artistic practice: A journey through surrealism and generative arts. Media Practice and Education. 2025;1–18.
  • 107. Zhao Z, Zhang L. Design of artificial intelligence cultural creative industry based on machine learning. Soft comput. 2023;1–12.
  • 108. Adeniyi AO, Arowoogun JO, Okolo CA, Chidi R, Babawarun O. Ethical considerations in healthcare IT: A review of data privacy and patient consent issues. World Journal of Advanced Research and Reviews. 2024;21(2):1660–8.
  • 109. Andreotta AJ, Kirkham N, Rizzi M. AI, big data, and the future of consent. AI Soc. 2022;37(4):1715–28.
  • 110. Modi TB, Artificial intelligence ethics and fairness: A study to address bias and fairness issues in AI systems, and the ethical implications of AI applications. Rev Rev Index J Multidiscip. 2023;3(2):24–35.
  • 111. Kordzadeh N, Ghasemaghaei M. Algorithmic bias: Review, synthesis, and future research directions. Eur J Inf Syst. 2022;31(3):388–409.
  • 112. Şahin E, Arslan NN, Özdemir D. Unlocking the black box: An in-depth review on interpretability, explainability, and reliability in deep learning. Neural Comput Appl. 2025;37(2):859–965.
  • 113. Sarra C. Artificial Intelligence in Decision-making: A Test of Consistency between the “EU AI Act” and the “General Data Protection Regulation.” Athens Journal Of Law. 2025;11(1):45–62.
There are 113 citations in total.

Details

Primary Language Turkish
Subjects Knowledge Representation and Reasoning
Journal Section Review Article
Authors

Erol Kına 0000-0002-7785-646X

Publication Date October 19, 2025
Submission Date June 30, 2025
Acceptance Date August 14, 2025
Published in Issue Year 2025 Volume: 6 Issue: 2

Cite

Vancouver Kına E. Yapay zekânın multidisipliner alanlardaki uygulamaları. TUBID. 2025;6(2):165-86.