Research Article
BibTex RIS Cite

An Application for Increasing the Efficiency in the Mapping of the Precipitation Values of Different Meteorological Stations

Year 2022, Volume: 4 Issue: 1, 15 - 22, 11.06.2022
https://doi.org/10.56130/tucbis.943613

Abstract

It is expected that rainfall values obtained from different meteorological stations will represent the research area at the highest level in ecology-based and land planning studies. Depending on this, methods like Schreiber or various interpolation techniques based on GIS are applied. Each method chosen can have its own strengths and weaknesses. In this study, it is aimed to characterize with a higher accuracy the habitat conditions of different forest types spreading in a mountainous region due to rainfall. It has been ensured that the effectiveness of the distribution of rainfall provided from different stations across the area is increased. For this purpose, the effectiveness of the Schreiber method has been increased according to the distance of the stations to the area and their altitude. Two mappings were made for the same site, using the method performed in this study and the IDW method. There is an elevation difference of 1785 m between the lowest and highest points of the area. In the mapping made by both methods, it was seen that there is a significant difference between the minimum and maximum values. With the method developed, while there was a 76,5 mm difference between the minimum and maximum values in the distribution of the monthly precipitation, but, it was determined that this difference was 17 mm with the IDW method. It is predicted that the method carried out in this study will be more suitable for a local mountainous terrain with a difference in altitude.

References

  • Bostan P A & Heuvelink G B M & Akyurek S Z (2012). Comparison of regression and kriging techniques for mapping the average annual precipitation of Turkey, International Journal of Applied Earth Observation and Geoinformation, 19, 115-126.
  • Candel-Pérez D & Linares J C & Viñegla B & Lucas-Borja, M E (2012). Assessing climate–growth relationships under contrasting stands of co-occurring Iberian pines along an altitudinal gradient, Forest Ecology and Management, 274, 48–57.
  • Çiçek İ & Ataol M (2009). Türkiye’nin Su Potansiyelinin Belirlenmesinde Yeni Bir Yaklaşım, Coğrafi Bilimler Dergisi, 7 (1), 51-64.
  • Demircan M., Alan İ., Şensoy S. (2011) Coğrafi Bilgi Sistemleri kullanarak sıcaklık haritalarının çözünürlüğünün artırılması. TMMOB Harita ve Kadastro Mühendisleri Odası, 13. Türkiye Harita Bilimsel ve Teknik Kurultayı, 18¬-22 Nisan 2011, Ankara. https://www.hkmo.org.tr/resimler/ekler/bfa3a35a87198f7_ek.pdf, [Erişim Tarihi: 17.5.2021]
  • Dorman M & Svoray T & Perevolotsky A (2013). Homogenization in forest performance across an environmental gradient – The interplay between rainfall and topographic aspect, Forest Ecology and Management, 310, 256-266.
  • Farley A K & Kelly F E & Hofstede G M R (2004). Soil Organic Carbon and Water Retention after Conversion of Grasslands to Pine Plantations in the Ecuadorian Andes, Ecosystems, 7, 729–739.
  • Feng-Wen & Chen-Wuing L (2012). Estimation of the spatial rainfall distribution using inverse distance weighting (IDW) in the middle of Taiwan, Paddy and Water Environment, 10,209–222.
  • Giorgi F (2019). Thirty years of regional climate modeling: Where are we and where are we going next? Journal of Geophysical Research: Atmospheres, 124, 5696–5723.
  • Guler M & Cemek B & Gunal H (2007). Assesment of some spatial climatic layers though GIS and statistical analysis techniques in Samsun Turkey, Meteorological Applications, 14, 163–169.
  • Hartkamp A D & De Beurs K & Stein A & White J W (1999). Interpolation Techniques for Climate Variables. NRG- Geographic Information Systems Series 99-01. Mexico, D.F.: CIMMYT. https://repository.cimmyt.org/bitstream/handle/10883/988/67882.pdf?sequence=1&isAllowed=y: [Erişim Tarihi: 17.5.2021]
  • Işık F., Bahadır, M., Çağlak S. (2018) Artvin İlinde Yağışın Mekânsal Dağılışı Üzerine Bir Deneme, Schreiber Formülü. Uluslararası Artvin Sempozyumu, 18-20 Ekim 2018, Artvin. https://www.artvin.edu.tr/uploads/ias.artvin.edu.tr/userfiles/files/ias2018tammetin.pdf: [Erişim Tarihi: 14.05.2021].
  • İlker A & Terzi Ö & Şener E (2019). Yağışın Alansal Dağılımının Haritalandırılmasında Enterpolasyon Yöntemlerinin Karşılaştırılması: Akdeniz Bölgesi Örneği. Teknik Dergi,540, 9213-9219.
  • Kale M M (2018). Yeşilırmak Havzası Mekânsal Yağış Dağılımına ait Değişiminin Deterministik ve Stokastik Yöntemlerle Belirlenmesi. Yerbilimleri, 39(3), 263-276.
  • Keleş S (2019). An assessment of hydrological functions of forest ecosystems to support sustainable forest management, Journal of Sustainable Forestry, 38 (4), 305-326.
  • Kurtzman D & Navon S & Morin E (2009). Improving interpolation of daily precipitation for hydrologic modelling: spatial patterns of preferred interpolators, Hydrological Processes 23, 3281-3291.
  • Laborde J P (2007). Geographical Information and Climatology for Hydrology. P. Carega (ed.) Geographical Information and Climatology, ISTE Ltd., London, 195-232.
  • Lloyd C D (2011). Local models for spatial analysis, 2 th edition. CRC Press, Taylor Francis Group, Boca Raton.
  • Ly S, Charles C & Degré A (2013). Different methods for spatial interpolation of rainfall data for operational hydrology and hydrological modeling atwatershed scale. A review. Biotechnology, Agronomy, Society and Environment, 17(2), 392-406.
  • Mendez-Toribio M & Meave J A & Zermeno-Hernandez I & Ibarra-Manriquez G (2016). Effects of slope aspect and topographic position on environmental variables, disturbance regime and tree community attributes in a seasonal tropical dry forest, Journal of Vegetation Science, 27, 1094–1103.
  • Ninyerola M & Pons X & Roure J M (2007). Monthly precipitation mapping of the Iberian Peninsula using spatial interpolation tools implemented in a Geographic Information System, Theoretical and Applied Climatology, 89, 195–209.
  • Zhang X & Srinivasan R (2009). GIS-Based Spatial Precipitation Estimation: A Comparison of Geostatistical Approaches. Journal of the American Water Resources Association, 45 (4), 894-906.

Farklı Meteorolojik İstasyonlara Ait Yağış Değerlerinin Haritalanmasında Etkenliğin Arttırılmasına Dair Bir Uygulama

Year 2022, Volume: 4 Issue: 1, 15 - 22, 11.06.2022
https://doi.org/10.56130/tucbis.943613

Abstract

Ekoloji ve arazi planlamalarına dayalı araştırmalarda farklı meteorolojik istasyonlardan alınan yağış değerlerinin araştırma sahasını en yüksek derecede temsil etmesi beklenmektedir. Bu amaçla Schreiber veya CBS tabanlı enterpolasyon teknikleri uygulanmaktadır. Seçilen her bir yöntemin zayıf ve güçlü yönleri bulunabilmektedir. Bu çalışmada 1785 m yükselti farkı bulunan dağlık bir alanda yayılış yapan orman tiplerinin yağışa bağlı yetişme ortamı şartlarının daha yüksek bir doğrulukla karakterize edilebilmesi için, farklı istasyonlara ait yağış miktarlarının sahaya dağılımında etkenliklerinin arttırılması hedeflenmiştir. Bu amaçla Schreiber yönteminin etkenliğinin istasyonların sahaya olan mesafesi ve bulundukları rakıma göre arttırılması sağlanmıştır. Bu çalışmada Schreiber ve IDW yöntemine ait yağış haritaları aynı saha için üretilmiştir. Coğrafik orta merkez uygulaması yaklaşımının geliştirilmesiyle uygulanan Schreiber yöntemine göre saha içerisindeki minimum ve maksimum yağış değerleri arasında 76,5 mm fark bulunurken, IDW yöntemiyle bu farkın 17 mm olduğu tespit edilmiştir. Bu çalışmada gerçekleştirilen yöntemin yükselti farkı bulunan yerel dağlık bir arazi için daha uygun olacağı öngörülmüştür.

References

  • Bostan P A & Heuvelink G B M & Akyurek S Z (2012). Comparison of regression and kriging techniques for mapping the average annual precipitation of Turkey, International Journal of Applied Earth Observation and Geoinformation, 19, 115-126.
  • Candel-Pérez D & Linares J C & Viñegla B & Lucas-Borja, M E (2012). Assessing climate–growth relationships under contrasting stands of co-occurring Iberian pines along an altitudinal gradient, Forest Ecology and Management, 274, 48–57.
  • Çiçek İ & Ataol M (2009). Türkiye’nin Su Potansiyelinin Belirlenmesinde Yeni Bir Yaklaşım, Coğrafi Bilimler Dergisi, 7 (1), 51-64.
  • Demircan M., Alan İ., Şensoy S. (2011) Coğrafi Bilgi Sistemleri kullanarak sıcaklık haritalarının çözünürlüğünün artırılması. TMMOB Harita ve Kadastro Mühendisleri Odası, 13. Türkiye Harita Bilimsel ve Teknik Kurultayı, 18¬-22 Nisan 2011, Ankara. https://www.hkmo.org.tr/resimler/ekler/bfa3a35a87198f7_ek.pdf, [Erişim Tarihi: 17.5.2021]
  • Dorman M & Svoray T & Perevolotsky A (2013). Homogenization in forest performance across an environmental gradient – The interplay between rainfall and topographic aspect, Forest Ecology and Management, 310, 256-266.
  • Farley A K & Kelly F E & Hofstede G M R (2004). Soil Organic Carbon and Water Retention after Conversion of Grasslands to Pine Plantations in the Ecuadorian Andes, Ecosystems, 7, 729–739.
  • Feng-Wen & Chen-Wuing L (2012). Estimation of the spatial rainfall distribution using inverse distance weighting (IDW) in the middle of Taiwan, Paddy and Water Environment, 10,209–222.
  • Giorgi F (2019). Thirty years of regional climate modeling: Where are we and where are we going next? Journal of Geophysical Research: Atmospheres, 124, 5696–5723.
  • Guler M & Cemek B & Gunal H (2007). Assesment of some spatial climatic layers though GIS and statistical analysis techniques in Samsun Turkey, Meteorological Applications, 14, 163–169.
  • Hartkamp A D & De Beurs K & Stein A & White J W (1999). Interpolation Techniques for Climate Variables. NRG- Geographic Information Systems Series 99-01. Mexico, D.F.: CIMMYT. https://repository.cimmyt.org/bitstream/handle/10883/988/67882.pdf?sequence=1&isAllowed=y: [Erişim Tarihi: 17.5.2021]
  • Işık F., Bahadır, M., Çağlak S. (2018) Artvin İlinde Yağışın Mekânsal Dağılışı Üzerine Bir Deneme, Schreiber Formülü. Uluslararası Artvin Sempozyumu, 18-20 Ekim 2018, Artvin. https://www.artvin.edu.tr/uploads/ias.artvin.edu.tr/userfiles/files/ias2018tammetin.pdf: [Erişim Tarihi: 14.05.2021].
  • İlker A & Terzi Ö & Şener E (2019). Yağışın Alansal Dağılımının Haritalandırılmasında Enterpolasyon Yöntemlerinin Karşılaştırılması: Akdeniz Bölgesi Örneği. Teknik Dergi,540, 9213-9219.
  • Kale M M (2018). Yeşilırmak Havzası Mekânsal Yağış Dağılımına ait Değişiminin Deterministik ve Stokastik Yöntemlerle Belirlenmesi. Yerbilimleri, 39(3), 263-276.
  • Keleş S (2019). An assessment of hydrological functions of forest ecosystems to support sustainable forest management, Journal of Sustainable Forestry, 38 (4), 305-326.
  • Kurtzman D & Navon S & Morin E (2009). Improving interpolation of daily precipitation for hydrologic modelling: spatial patterns of preferred interpolators, Hydrological Processes 23, 3281-3291.
  • Laborde J P (2007). Geographical Information and Climatology for Hydrology. P. Carega (ed.) Geographical Information and Climatology, ISTE Ltd., London, 195-232.
  • Lloyd C D (2011). Local models for spatial analysis, 2 th edition. CRC Press, Taylor Francis Group, Boca Raton.
  • Ly S, Charles C & Degré A (2013). Different methods for spatial interpolation of rainfall data for operational hydrology and hydrological modeling atwatershed scale. A review. Biotechnology, Agronomy, Society and Environment, 17(2), 392-406.
  • Mendez-Toribio M & Meave J A & Zermeno-Hernandez I & Ibarra-Manriquez G (2016). Effects of slope aspect and topographic position on environmental variables, disturbance regime and tree community attributes in a seasonal tropical dry forest, Journal of Vegetation Science, 27, 1094–1103.
  • Ninyerola M & Pons X & Roure J M (2007). Monthly precipitation mapping of the Iberian Peninsula using spatial interpolation tools implemented in a Geographic Information System, Theoretical and Applied Climatology, 89, 195–209.
  • Zhang X & Srinivasan R (2009). GIS-Based Spatial Precipitation Estimation: A Comparison of Geostatistical Approaches. Journal of the American Water Resources Association, 45 (4), 894-906.
There are 21 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Articles
Authors

Büşra Doğru This is me 0000-0003-3819-0762

Cumhur Güngöroğlu 0000-0003-3932-3205

Publication Date June 11, 2022
Published in Issue Year 2022 Volume: 4 Issue: 1

Cite

APA Doğru, B., & Güngöroğlu, C. (2022). Farklı Meteorolojik İstasyonlara Ait Yağış Değerlerinin Haritalanmasında Etkenliğin Arttırılmasına Dair Bir Uygulama. Türkiye Coğrafi Bilgi Sistemleri Dergisi, 4(1), 15-22. https://doi.org/10.56130/tucbis.943613