Research Article
BibTex RIS Cite
Year 2022, , 313 - 319, 15.10.2022
https://doi.org/10.31127/tuje.1004043

Abstract

Supporting Institution

Eskişehir Osmangazi Üniversitesi

Project Number

FYL-2021-1569

Thanks

Bu çalışma, Eskişehir Osmangazi Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından FYL-2021-1569 numaralı proje kapsamında maddi olarak desteklenmiştir. Desteklerinden dolayı teşekkür ederiz.

References

  • ASTM D 2166-00 (2000). Standard Test Method for Unconfined Compressive Strength of Cohesive Soil, American Society for Testing and Materials, West Conshohocken, Pennsylvania, USA.
  • ASTM D 3080, D3080M-11 (2011). Standard Test Method for Direct Shear Test of Soils Under Consolidated Drained Conditions, American Society for Testing and Materials, West Conshohocken, Pennsylvania, USA.
  • Akgün H, Türkmenoğlu A G, Kelam A A, Yousefi-Bavil K, Öner G & Koçkar M K (2017). Assessment of the efect of mineralogy on the geotechnical parameters of clayey soils: A case study for The Orta County, Çankırı, Turkey. Applied Clay Science, 164, 44-53.
  • Bayın A (2011). Konsolidasyonlu-drenajli üç eksenli basinç deney yöntemi ile kalıcı kayma direncinin belirlenmesi. Yüksek lisans tezi, İTÜ Merkez Kütüphanesi.
  • Calik U & Sadoglu E (2014). Engineering properties of expansive clayey soil stabilized with lime and perlite. Geomechanics and Engineering, 6(4), 403-418.
  • Cokça E, Erol O & Armangil F (2004). Effects of compaction moisture content on the shear strength of an unsaturated clay. Geotechnical and Geological Engineering, 22, 285–297.
  • Gençdal H B, Berilgen S A & Kiliç H (2018). Sıkıştırılmış kil dolgu zeminlerin kayma mukavemeti parametrelerinin belirlenmesi. Zemin Mekaniği ve Geoteknik Mühendisliği 17. Ulusal Konferansı. 26-28 Eylül, İstanbul.
  • Ghosh R (2012). Effect of soil moisture in the analysis of undrained shear strength of compacted clayey soil. Department of Construction Engineering, Jadavpur University, Kolkata, India, 10 December.
  • Gurtug Y & Sridharan A (2002). Prediction of compaction characteristics of fine-grained soil. Geotechnique, 52(10), 761-763.
  • Kong L W & Tan L R (2000). Study on shear strength and swelling-shrinkage characteristic of compacted expansive soil. Unsaturated Soils for Asia, Rahardjo, Toll and Leong (eds.), Balkema, Rotterdam, 515-519.
  • Mesri G & Shahien M (2003). Residual shear strength mobilized in first time slope failures. Journal of Geotechnical and Geoenvironmental Engineering, 129 (1), 12-31.
  • Mitchell J K (1993). Fundamentals of Soil Behavior. John Wiley and Sons, Inc., New York
  • Ohtsubo M, Egashira K, Tanaka H & Mishima O (2002). Clay minerals and geotechnical index properties of marine clays in East Asia. Marine Georesources & Geotechnology, 20(4), 223-235.
  • Omar M, Shanableh A, Basma A & Barakat S (2003). Compaction characteristics of granular soils in United Arab Emirates. Geotechnical and Geological Engineering, 21, 283 295.
  • Satı Y (2016). Sıkıştırılmış ince daneli zeminlerin kayma mukavemetinin drenajlı koşullarda incelenmesi. Yüksek lisans tezi, İTÜ Merkez Kütüphanesi.
  • Sivrikaya O, Togrol E & Kayadelen C (2008). Estimating compaction behavior of fine-grained soils based on compaction energy. Canadian Geotechnical Journal 45(6), 877-887.
  • Skempton AW (1964). Long-term stability of clay slopes. Geotechnique, 14 (2), 75-101.
  • TSE (2006). İnşaat Mühendisliğinde Zemin Lâboratuvar Deneyleri - Bölüm 2: Mekanik Özelliklerin Tayini Ankara, Türk Standardları Enstitüsü.
  • VandenBerge D R, Brandon T L & Duncan J M (2014). Triaxial Tests on Compacted Clays for Consolidated Undrained Conditions. Geotechnical Testing Journal, 37(4).
  • Vondráčková T, Kmec J, Čejka J, Bartuška L & Stopka O (2016). Evaluation of the parameters affecting the cohesion of fine grained soil. World Multidisciplinary Earth Sciences Symposium (WMESS 2016). IOP Conf. Series: Earth and Environmental Science 44.
  • Yaghoubi E, Disfani M M, Arulrajah A & Kodikara J (2018). Impact of compaction method on mechanical characteristics of unbound granular recycled materials. Road Materials and Pavement Design, 19(4), 912-934.
  • Wheeler S J & Sivakumar V (1995). An elasto-plastic critical state framework for unsaturated soil. Geotechnique, 45(1), 35-53.

Determination of shear strength parameters of compacted high plasticity clay soils based on different laboratory tests

Year 2022, , 313 - 319, 15.10.2022
https://doi.org/10.31127/tuje.1004043

Abstract

In civil engineering projects, soils are compacted to improve their engineering behavior and properties. Compacted soils are widely used in dams, embankments and road infrastructure. Compacted fine-grained soils, especially clay-containing soils, are frequently used as barriers to water and pollutant movement in landfills. Shear strength parameters of compacted high plasticity clay soils depend on many variables such as consistency limits, dry density, and degree of saturation. In this study, 20 high plasticity clay soil samples were used and geotechnical identification tests were performed on each of them. Direct shear box and unconfined compression tests were carried out to determine the shear strength parameters of the samples prepared by compression in their compaction characteristics. As a result of this study, the relationships between the geotechnical properties of soil samples and both the effective shear strength parameters and total shear stress parameters were evaluated.

Project Number

FYL-2021-1569

References

  • ASTM D 2166-00 (2000). Standard Test Method for Unconfined Compressive Strength of Cohesive Soil, American Society for Testing and Materials, West Conshohocken, Pennsylvania, USA.
  • ASTM D 3080, D3080M-11 (2011). Standard Test Method for Direct Shear Test of Soils Under Consolidated Drained Conditions, American Society for Testing and Materials, West Conshohocken, Pennsylvania, USA.
  • Akgün H, Türkmenoğlu A G, Kelam A A, Yousefi-Bavil K, Öner G & Koçkar M K (2017). Assessment of the efect of mineralogy on the geotechnical parameters of clayey soils: A case study for The Orta County, Çankırı, Turkey. Applied Clay Science, 164, 44-53.
  • Bayın A (2011). Konsolidasyonlu-drenajli üç eksenli basinç deney yöntemi ile kalıcı kayma direncinin belirlenmesi. Yüksek lisans tezi, İTÜ Merkez Kütüphanesi.
  • Calik U & Sadoglu E (2014). Engineering properties of expansive clayey soil stabilized with lime and perlite. Geomechanics and Engineering, 6(4), 403-418.
  • Cokça E, Erol O & Armangil F (2004). Effects of compaction moisture content on the shear strength of an unsaturated clay. Geotechnical and Geological Engineering, 22, 285–297.
  • Gençdal H B, Berilgen S A & Kiliç H (2018). Sıkıştırılmış kil dolgu zeminlerin kayma mukavemeti parametrelerinin belirlenmesi. Zemin Mekaniği ve Geoteknik Mühendisliği 17. Ulusal Konferansı. 26-28 Eylül, İstanbul.
  • Ghosh R (2012). Effect of soil moisture in the analysis of undrained shear strength of compacted clayey soil. Department of Construction Engineering, Jadavpur University, Kolkata, India, 10 December.
  • Gurtug Y & Sridharan A (2002). Prediction of compaction characteristics of fine-grained soil. Geotechnique, 52(10), 761-763.
  • Kong L W & Tan L R (2000). Study on shear strength and swelling-shrinkage characteristic of compacted expansive soil. Unsaturated Soils for Asia, Rahardjo, Toll and Leong (eds.), Balkema, Rotterdam, 515-519.
  • Mesri G & Shahien M (2003). Residual shear strength mobilized in first time slope failures. Journal of Geotechnical and Geoenvironmental Engineering, 129 (1), 12-31.
  • Mitchell J K (1993). Fundamentals of Soil Behavior. John Wiley and Sons, Inc., New York
  • Ohtsubo M, Egashira K, Tanaka H & Mishima O (2002). Clay minerals and geotechnical index properties of marine clays in East Asia. Marine Georesources & Geotechnology, 20(4), 223-235.
  • Omar M, Shanableh A, Basma A & Barakat S (2003). Compaction characteristics of granular soils in United Arab Emirates. Geotechnical and Geological Engineering, 21, 283 295.
  • Satı Y (2016). Sıkıştırılmış ince daneli zeminlerin kayma mukavemetinin drenajlı koşullarda incelenmesi. Yüksek lisans tezi, İTÜ Merkez Kütüphanesi.
  • Sivrikaya O, Togrol E & Kayadelen C (2008). Estimating compaction behavior of fine-grained soils based on compaction energy. Canadian Geotechnical Journal 45(6), 877-887.
  • Skempton AW (1964). Long-term stability of clay slopes. Geotechnique, 14 (2), 75-101.
  • TSE (2006). İnşaat Mühendisliğinde Zemin Lâboratuvar Deneyleri - Bölüm 2: Mekanik Özelliklerin Tayini Ankara, Türk Standardları Enstitüsü.
  • VandenBerge D R, Brandon T L & Duncan J M (2014). Triaxial Tests on Compacted Clays for Consolidated Undrained Conditions. Geotechnical Testing Journal, 37(4).
  • Vondráčková T, Kmec J, Čejka J, Bartuška L & Stopka O (2016). Evaluation of the parameters affecting the cohesion of fine grained soil. World Multidisciplinary Earth Sciences Symposium (WMESS 2016). IOP Conf. Series: Earth and Environmental Science 44.
  • Yaghoubi E, Disfani M M, Arulrajah A & Kodikara J (2018). Impact of compaction method on mechanical characteristics of unbound granular recycled materials. Road Materials and Pavement Design, 19(4), 912-934.
  • Wheeler S J & Sivakumar V (1995). An elasto-plastic critical state framework for unsaturated soil. Geotechnique, 45(1), 35-53.
There are 22 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Burak Yılmaz 0000-0002-3708-766X

Murat Türköz 0000-0003-0241-113X

Project Number FYL-2021-1569
Publication Date October 15, 2022
Published in Issue Year 2022

Cite

APA Yılmaz, B., & Türköz, M. (2022). Determination of shear strength parameters of compacted high plasticity clay soils based on different laboratory tests. Turkish Journal of Engineering, 6(4), 313-319. https://doi.org/10.31127/tuje.1004043
AMA Yılmaz B, Türköz M. Determination of shear strength parameters of compacted high plasticity clay soils based on different laboratory tests. TUJE. October 2022;6(4):313-319. doi:10.31127/tuje.1004043
Chicago Yılmaz, Burak, and Murat Türköz. “Determination of Shear Strength Parameters of Compacted High Plasticity Clay Soils Based on Different Laboratory Tests”. Turkish Journal of Engineering 6, no. 4 (October 2022): 313-19. https://doi.org/10.31127/tuje.1004043.
EndNote Yılmaz B, Türköz M (October 1, 2022) Determination of shear strength parameters of compacted high plasticity clay soils based on different laboratory tests. Turkish Journal of Engineering 6 4 313–319.
IEEE B. Yılmaz and M. Türköz, “Determination of shear strength parameters of compacted high plasticity clay soils based on different laboratory tests”, TUJE, vol. 6, no. 4, pp. 313–319, 2022, doi: 10.31127/tuje.1004043.
ISNAD Yılmaz, Burak - Türköz, Murat. “Determination of Shear Strength Parameters of Compacted High Plasticity Clay Soils Based on Different Laboratory Tests”. Turkish Journal of Engineering 6/4 (October 2022), 313-319. https://doi.org/10.31127/tuje.1004043.
JAMA Yılmaz B, Türköz M. Determination of shear strength parameters of compacted high plasticity clay soils based on different laboratory tests. TUJE. 2022;6:313–319.
MLA Yılmaz, Burak and Murat Türköz. “Determination of Shear Strength Parameters of Compacted High Plasticity Clay Soils Based on Different Laboratory Tests”. Turkish Journal of Engineering, vol. 6, no. 4, 2022, pp. 313-9, doi:10.31127/tuje.1004043.
Vancouver Yılmaz B, Türköz M. Determination of shear strength parameters of compacted high plasticity clay soils based on different laboratory tests. TUJE. 2022;6(4):313-9.
Flag Counter