Year 2025,
Volume: 7 Issue: 2, 173 - 188
Archana Chaudhary
,
Raksha Sharma
,
Devraj Rajbanshi
,
Binod Bohara
,
Priyanka Rasali
References
-
Acevedo, E., Silva, P., & Silva, H. (2002). Wheat growth and physiology. Bread Wheat, Improvement and Production, 30, 39–70.
-
Ahmed, T., Noman, M., Qi, Y., Shahid, M., Hussain, S., Masood, H. A., Xu, L., Ali, H. M., Negm, S., El-Kott, A. F., Yao, Y., Qi, X., & Li, B. (2023). Fertilization of microbial composts: A technology for improving stress resilience in plants. Plants, 12(20), 1–31. https://doi.org/10.3390/plants12203550
-
AITC. (2023). Agriculture and livestock diary 2080. Ministry of Agriculture and Livestock Development, Agriculture Information and Training Center (AITC). Hariharbhawan, Lalitpur, Nepal. https://aitc.gov.np/uploads/documents/agriculture-diary-2080-for-web1682660655pdf-7985-170-1694581514.pdf
-
AITC. (2025). Agriculture and livestock diary 2081. Ministry of Agriculture and Livestock Development, Agriculture Information and Training Center (AITC). Hariharbhawan, Lalitpur, Nepal. https://aitc.gov.np/uploads/documents/agriculture-diary-2082-file-2081-03-2pdf-6568-329-1719146649.pdf
-
Al-Naqeeb, M., Al-Hilfy, I., Hamza, J., Al-Zubade, A., & Al-Abodi, H. (2018). Biofertilizer (EM-1) effect on growth and yield of three bread wheat cultivars. Journal of Central European Agriculture, 19(3), 530–543. https://doi.org/10.5513/JCEA01/19.3.2070
-
Aredehey, G., & Berhe, D. (2016). The effect of compost use with effective micro-organisms (EM) on grain and biomass yield of wheat cultivated in Tigray, Ethiopia. Journal of Agricultural Science and Food Technology, 2(8), 133–138.
-
Asfaw, M. D. (2022). Effects of animal manures on growth and yield of maize (Zea mays L.). Journal of Plant Science and Phytopathology, 6, 33–39. https://doi.org/10.29328/journal.jpsp.1001071
-
Asghar, W., & Kataoka, R. (2021). Effect of co-application of Trichoderma spp. with organic composts on plant growth enhancement, soil enzymes and fungal community in soil. Archives of Microbiology, 203(7), 4281–4291. https://doi.org/10.1007/s00203-021-02413-4
-
Bam, R., Mishra, S. R., Khanal, S., Ghimire, P., & Bhattarai, S. (2022). Effect of biofertilizers and nutrient sources on the performance of mungbean at Rupandehi, Nepal. Journal of Agriculture and Food Research, 10, 100404. https://doi.org/10.1016/j.jafr.2022.100404
-
Bhatt, P., Bist, P., & Ojha, L. N. (2020a). Farmers’ preferences of improved wheat varieties in wheat subsector Kailali, Nepal. International Journal of Applied Sciences and Biotechnology, 8(4), 432–436. https://doi.org/10.3126/ijasbt.v8i4.33671
-
Bhatta, R. D., Amgain, L. P., Subedi, R., & Kandel, B. P. (2020b). Assessment of productivity and profitability of wheat using Nutrient Expert®-Wheat model in Jhapa district of Nepal. Heliyon, 6(6), e04144. https://doi.org/10.1016/j.heliyon.2020.e04144
-
Chaube, K. S., & Pandey, S. (2022). Trichoderma: A valuable multipurpose fungus for sustainable agriculture. Malaysian Journal of Sustainable Agriculture, 6(2), 97–100. https://doi.org/10.26480/mjsa.02.2022.97.100
-
Chen, J. H. (2006). The combined use of chemical and organic fertilizers and/or biofertilizer for crop growth and soil fertility. In International Workshop on Sustained Management of the Soil-Rhizosphere System for Efficient Crop Production and Fertilizer Use (Vol. 16, No. 20, pp. 1–11). Land Development Department, Bangkok, Thailand.
-
Cvijanović, V., Cvijanović, G., Rajičić, V., Marinković, J., Đukić, V., Bajagić, M., & Đurić, N. (2022). Influence of different methods of application of effective microorganisms in nutrition of wheat on weight by 1000 grains, yield, and content of crude wheat proteins (Triticum sp.). Cereal Research Communications, 50, 1259–1268. https://doi.org/10.1007/s42976-021-00226-1
-
Daiss, N., Lobo, G. M., Socorro, R. A., Bruckner, U., Heller, J., & Gonzalez, M. (2008). The effect of three organic pre-harvest treatments on Swiss chard (Beta vulgaris L. var. cycla L.) quality. European Food Research and Technology, 226, 345–353. https://doi.org/10.1007/s00217-006-0543-2
-
Devi, S., & Manimaran, S. (2012). Study of effective microorganisms (EM) on different organic wastes and their effect on growth and yield of rice. International Journal of Pharmacy & Life Sciences, 3(6), 1773
-
Doni, F., Isahak, A., Che Mohd Zain, C. R., & Wan Yusoff, W. M. (2014). Physiological and growth response of rice plants (Oryza sativa L.) to Trichoderma spp. inoculants. AMB Express, 4, 1–7. https://doi.org/10.1186/s13568-014-0045-8
-
El-Kouny, H. M. (2007). Effect of organic manure and biofertilizers on wheat grown in lacustrine soil as compared with mineral fertilizers. Egyptian Journal of Soil Science, 47(3), 263–280.
-
Gomez, K. A., & Gomez, A. A. (1984). Statistical procedures for agricultural research. John Wiley & Sons.
-
Hadwan, H. A., Janno, F. A., Majed, R. E., & Hamza, M. M. (2019). Effect of biofertilizers on yield and yield components of wheat (Triticum aestivum L.) under Iraqi conditions. International Journal of Applied Agricultural Sciences, 5(2), 45–49. https://doi.org/10.11648/j.ijaas.20190502.13
-
Higa, T., & Wididana, G. N. (1991). Changes in the soil microflora induced by effective microorganisms. In Proceedings of the First International Conference on Kyusei Nature Farming (pp. 153–162). U.S. Department of Agriculture, Washington, DC.
-
Hönig, M., Plíhalová, L., Husičková, A., Doležal, K., & Nisler, J. (2018). Role of cytokinins in senescence, antioxidant defence and photosynthesis. International Journal of Molecular Sciences, 19(12), 4045. https://doi.org/10.3390/ijms19124045
-
Hu, C., & Qi, Y. (2013a). Effective microorganisms and compost favor nematodes in wheat crops. Agronomy for Sustainable Development, 33(3), 573–579. https://doi.org/10.1007/s13593-012-0130-9
-
Hu, C., & Qi, Y. (2013b). Long-term effective microorganisms application promotes growth and increases yields and nutrition of wheat in China. European Journal of Agronomy, 46, 63–67. https://doi.org/10.1016/j.eja.2012.12.003
-
Ibrahim, M., Hassan, U. A., Iqbal, G. M., & Valeem, E. E. (2008). Response of wheat growth and yield to various levels of compost and organic manure. Pakistan Journal of Botany, 40(5), 2135–2141.
-
Illescas, M., Pedrero-Méndez, A., Pitorini-Bovolini, M., Hermosa, R., & Monte, E. (2021). Phytohormone production profiles in Trichoderma species and their relationship to wheat plant responses to water stress. International Journal of Molecular Sciences, 22(15), 8234. https://doi.org/10.3390/ijms22158234
-
Iqbal, M. J., Shams, N., & Fatima, K. (2022). Nutritional quality of wheat. In M. R. Ansari (Ed.), Wheat – Recent Advances. IntechOpen. https://doi.org/10.5772/intechopen.104659
-
Iriti, M., Scarafoni, A., Pierce, S., Castorina, G., & Vitalini, S. (2019). Soil application of effective microorganisms (EM) maintains leaf photosynthetic efficiency, increases seed yield and quality traits of bean (Phaseolus vulgaris L.) plants grown on different substrates. International Journal of Molecular Sciences, 20(9), 2327. https://doi.org/10.3390/ijms20092327
-
Joshi, H., Duttand, S., Choudhary, P., & Mundra, S. L. (2019). Role of effective microorganisms (EM) in sustainable agriculture. International Journal of Current Microbiology and Applied Sciences, 8(3), 172–181. https://doi.org/10.20546/ijcmas.2019.803.024
-
Khiniab, T. A. (2023). Effect of biofertilizers on the growth and yield of wheat grown under water stress. International Journal of Aquatic Science, 14(1), 341–348.
-
Kumawat, H., Singh, D. P., Jat, G., Choudhary, R., Singh, P. B., Dhayal, S., & Khardia, N. (2021). Effect of fertility levels and liquid biofertilizers on growth and yield of wheat (Triticum aestivum L.). The Pharma Innovation Journal, 10(9), 1365–1369.
-
Lyu, R. T., & Huang, C. H. (2022). Supplementation of manure compost with Trichoderma asperellum improves the nutrient uptake and yield of edible amaranth under field conditions. Sustainability, 14(9), 5389. https://doi.org/10.3390/su14095389
-
Mahato, S., Bhuju, S., & Shrestha, J. (2018). Effect of Trichoderma viride as biofertilizer on growth and yield of wheat. Malaysian Journal of Sustainable Agriculture, 2(2), 1–5. https://doi.org/10.26480/mjsa.02.2018.01.05
-
Martinez, M. A., Roldan, A., Albacete, A., & Pascual, J. A. (2011). The interaction with arbuscular mycorrhizal fungi or Trichoderma harzianum alters the shoot hormonal profile in melon plants. Phytochemistry, 72(2–3), 223–229. https://doi.org/10.1016/j.phytochem.2010.11.008
-
Mathivanan, N., Prabavathy, V. R., & Vijayanandraj, V. R. (2005). Application of talc formulations of Pseudomonas fluorescens Migula and Trichoderma viride Pers. ex S. F. Gray decrease the sheath blight disease and enhance plant growth and yield in rice. Journal of Phytopathology, 153(12), 697–701. https://doi.org/10.1111/j.1439-0434.2005.01042.x
-
Mayer, J., Scheid, S., Widmer, F., Fließbach, A., & Oberholzer, H. R. (2010). How effective are ‘Effective Microorganisms (EM)’? Results from a field study in a temperate climate. Applied Soil Ecology, 46(2), 230–239. https://doi.org/10.1016/j.apsoil.2010.08.007
-
Ministry of Agriculture and Livestock Development (MoALD). (2025). Statistical information on Nepalese agriculture 2080/81 (2023/24). Planning and Development Cooperation Coordination Division, Statistics and Analysis Section, Singhadurbar, Kathmandu, Nepal. https://moald.gov.np/wp-content/uploads/2025/08/Statistical-Information-on-Nepalese-Agriculture-2078-79-2021-22.pdf
-
Mulvaney, M. J., & Devkota, P. J. (2020). Adjusting crop yield to a standard moisture content: SS-AGR-443/AG442, 05/2020. EDIS, 2020(3). https://doi.org/10.32473/edis-ag442-2020
-
Naik, K., Mishra, S., Srichandan, H., Singh, P. K., & Choudhary, A. (2020). Microbial formulation and growth of cereals, pulses, oilseeds, and vegetable crops. Sustainable Environment Research, 30(1), 10. https://doi.org/10.1186/s42834-020-00051-x
-
Ncube, L. (2024). Effective microorganisms (EM): A potential pathway for enhancing soil quality and agricultural sustainability in Africa. In Strategic tillage and soil management – New perspectives. IntechOpen. https://doi.org/10.5772/intechopen.114089
-
Olle, M., & Williams, I. H. (2013). Effective microorganisms and their influence on vegetable production – A review. Journal of Horticultural Science and Biotechnology, 88(4), 380–386.
-
Rai, S. K., & Khadka, Y. G. (2009). Wheat production under long-term application of inorganic and organic fertilizers in rice–wheat system under rainfed conditions. Nepal Agriculture Research Journal, 9, 123–131.
-
Rajbanshi, D., Sharma, R., Bohara, B., Magar, S. G., & Sharma, G. (2024). Performance of wheat genotypes under irrigated conditions in Far Western Terai of Nepal. KMC Journal, 6(2), 298–316.
-
Rehman, U. S., Dar, A. W., Ganie, A. S., Bhat, A. J., Mir, H. G., Lawrence, R., Narayan, S., & Singh, K. P. (2013). Comparative efficacy of Trichoderma viride and Trichoderma harzianum against Fusarium oxysporum f. sp. ciceris causing wilt of chickpea. African Journal of Microbiology Research, 7(50), 5731–5736. https://doi.org/10.5897/AJMR2013.6442
-
Shao, H. X., Min, T., Ping, J., & Weiling, C. (2008). Effect of EM Bokashi application on control of secondary soil salinization. Water Science and Engineering, 1(4), 99–106. https://doi.org/10.3882/j.issn.1674-2370.2008.04.011
-
Sharma, P., Patel, N. A., Saini, K. M., & Deep, S. (2012). Field demonstration of Trichoderma harzianum as a plant growth promoter in wheat (Triticum aestivum L.). Journal of Agricultural Science, 4(8), 65–72. https://doi.org/10.5539/jas.v4n8p65
-
Subedi, K. (2025). Exploring the role of biofertilizers in enhancing soil health and supporting sustainable agriculture: A comprehensive review. Agriculture Extension in Developing Countries, 3(1), 16–20. https://doi.org/10.26480/aedc.01.2025.16.20
-
Syamsiyah, J., Herdiansyah, G., & Hartati, S. (2023). Use of Trichoderma as an effort to increase growth and productivity of maize plants. International Conference on Climate Change, 1165(1), 012020. https://doi.org/10.1088/1755-1315/1165/1/012020
-
Talaat, N. B., & Abdel-Salam, S. A. M. (2024a). An innovative, sustainable, and environmentally friendly approach for wheat drought tolerance using vermicompost and effective microorganisms: Upregulating the antioxidant defense machinery, glyoxalase system, and osmotic regulatory substances. BMC Plant Biology, 24, 866. https://doi.org/10.1186/s12870-024-05550-2
-
Talaat, N. B., & Abdel-Salam, S. A. M. (2024b). A novel eco-friendly approach of combining vermicompost and effective microorganisms sustains wheat (Triticum aestivum L.) drought tolerance by modulating photosynthetic performance and nutrient acquisition. Acta Physiologiae Plantarum, 46, 76. https://doi.org/10.1007/s11738-024-03698-w
-
Thapa, S., Rai, N., Limbu, A. K., & Joshi, A. (2020). Impact of Trichoderma sp. in agriculture: A mini-review. Journal of Biology and Today’s World, 9(5), 227. https://doi.org/10.35248/2322-3308.20.09.225
-
Vista, S. P., Shrestha, S., Rawal, N., Joshi, S., Rayamajhi, K., Devkota, S., Kandel, S., Amgain, R., Paneru, P., & Timilsina, S. (2022). Fertilizers in Nepal. National Soil Science Research Centre, Khumaltar, Lalitpur, Nepal.
-
Yang, D., Li, Y., Shi, Y., Cui, Z., Luo, Y., Zheng, M., Chen, J., Li, Y., Yin, Y., & Wang, Z. (2016). Exogenous cytokinins increase grain yield of winter wheat cultivars by improving stay-green characteristics under heat stress. PLoS ONE, 11(5), e0155437. https://doi.org/10.1371/journal.pone.0155437
-
Xiaohou, S., Min, T., Ping, J., & Weiling, C. (2008). Effect of EM Bokashi application on control of secondary soil salinization. Water Science and Engineering, 1(4), 99–106. https://doi.org/10.3882/j.issn.1674-2370.2008.04.011
Impact of compost and bio-fertilizers on performance of spring wheat at Kailali district of Nepal
Year 2025,
Volume: 7 Issue: 2, 173 - 188
Archana Chaudhary
,
Raksha Sharma
,
Devraj Rajbanshi
,
Binod Bohara
,
Priyanka Rasali
Abstract
The imbalanced application of chemicals has degraded the environment, reduced soil fertility and declined crop productivity. To promote sustainable agriculture through integrated nutrient management, a study was conducted to evaluate the combined effects of inorganic fertilizers, compost and bio-fertilizers on performance of wheat. The research was carried out from December 8, 2023 to April 21, 2024 in factorial randomized complete block design having 3 replications and 8 treatments at Agronomy farm, Faculty of Agriculture, Tikapur, Kailali, Nepal. The treatments consisted control group and combinations of compost manure treated with effective micro-organisms (EM-1) and Trichoderma viride, applied to wheat varieties; Aaditya and Gautam. Results indicated combination of all fertilizers in both the varieties (i.e, in T3: Gautam+Compost manure+EM-1+Trichoderma and T7: Aaditya+Compost manure+EM-1+Trichoderma) outperformed all other treatments, showing significant plant height, effective tillers, spike length, grains per spike and yield. Aaditya recorded with significant increase in peduncle length (23.55 cm) and 1000-grain weight (49.25 g) whereas Gautam showed the highest plant height (106.67 cm), spike length (13.23 cm) and straw yield (6.44 t ha-1). However, Aaditya and Gautam exhibited non-significant increase in grain yield i.e. 4.35 t ha-1 and 4.22 t ha-1. The combined application of fertilizers showed 19.69% increase in grain yield (4.68 t ha-1) ensuring good performance over control in all parameters.
Ethical Statement
Not applicable
Supporting Institution
This study was conducted without financial support
Thanks
The authors would like to express deepest gratitude the School of Agriculture Science, Far Western University and to ICIMOD, GRAPE FA-2 project for providing an opportunity to work with them. We are indebted to Laxmi Awasthi for her countless support and help during the research work. We also appreciate the valuable contribution of lab boys, field staff and juniors during the experimental period
References
-
Acevedo, E., Silva, P., & Silva, H. (2002). Wheat growth and physiology. Bread Wheat, Improvement and Production, 30, 39–70.
-
Ahmed, T., Noman, M., Qi, Y., Shahid, M., Hussain, S., Masood, H. A., Xu, L., Ali, H. M., Negm, S., El-Kott, A. F., Yao, Y., Qi, X., & Li, B. (2023). Fertilization of microbial composts: A technology for improving stress resilience in plants. Plants, 12(20), 1–31. https://doi.org/10.3390/plants12203550
-
AITC. (2023). Agriculture and livestock diary 2080. Ministry of Agriculture and Livestock Development, Agriculture Information and Training Center (AITC). Hariharbhawan, Lalitpur, Nepal. https://aitc.gov.np/uploads/documents/agriculture-diary-2080-for-web1682660655pdf-7985-170-1694581514.pdf
-
AITC. (2025). Agriculture and livestock diary 2081. Ministry of Agriculture and Livestock Development, Agriculture Information and Training Center (AITC). Hariharbhawan, Lalitpur, Nepal. https://aitc.gov.np/uploads/documents/agriculture-diary-2082-file-2081-03-2pdf-6568-329-1719146649.pdf
-
Al-Naqeeb, M., Al-Hilfy, I., Hamza, J., Al-Zubade, A., & Al-Abodi, H. (2018). Biofertilizer (EM-1) effect on growth and yield of three bread wheat cultivars. Journal of Central European Agriculture, 19(3), 530–543. https://doi.org/10.5513/JCEA01/19.3.2070
-
Aredehey, G., & Berhe, D. (2016). The effect of compost use with effective micro-organisms (EM) on grain and biomass yield of wheat cultivated in Tigray, Ethiopia. Journal of Agricultural Science and Food Technology, 2(8), 133–138.
-
Asfaw, M. D. (2022). Effects of animal manures on growth and yield of maize (Zea mays L.). Journal of Plant Science and Phytopathology, 6, 33–39. https://doi.org/10.29328/journal.jpsp.1001071
-
Asghar, W., & Kataoka, R. (2021). Effect of co-application of Trichoderma spp. with organic composts on plant growth enhancement, soil enzymes and fungal community in soil. Archives of Microbiology, 203(7), 4281–4291. https://doi.org/10.1007/s00203-021-02413-4
-
Bam, R., Mishra, S. R., Khanal, S., Ghimire, P., & Bhattarai, S. (2022). Effect of biofertilizers and nutrient sources on the performance of mungbean at Rupandehi, Nepal. Journal of Agriculture and Food Research, 10, 100404. https://doi.org/10.1016/j.jafr.2022.100404
-
Bhatt, P., Bist, P., & Ojha, L. N. (2020a). Farmers’ preferences of improved wheat varieties in wheat subsector Kailali, Nepal. International Journal of Applied Sciences and Biotechnology, 8(4), 432–436. https://doi.org/10.3126/ijasbt.v8i4.33671
-
Bhatta, R. D., Amgain, L. P., Subedi, R., & Kandel, B. P. (2020b). Assessment of productivity and profitability of wheat using Nutrient Expert®-Wheat model in Jhapa district of Nepal. Heliyon, 6(6), e04144. https://doi.org/10.1016/j.heliyon.2020.e04144
-
Chaube, K. S., & Pandey, S. (2022). Trichoderma: A valuable multipurpose fungus for sustainable agriculture. Malaysian Journal of Sustainable Agriculture, 6(2), 97–100. https://doi.org/10.26480/mjsa.02.2022.97.100
-
Chen, J. H. (2006). The combined use of chemical and organic fertilizers and/or biofertilizer for crop growth and soil fertility. In International Workshop on Sustained Management of the Soil-Rhizosphere System for Efficient Crop Production and Fertilizer Use (Vol. 16, No. 20, pp. 1–11). Land Development Department, Bangkok, Thailand.
-
Cvijanović, V., Cvijanović, G., Rajičić, V., Marinković, J., Đukić, V., Bajagić, M., & Đurić, N. (2022). Influence of different methods of application of effective microorganisms in nutrition of wheat on weight by 1000 grains, yield, and content of crude wheat proteins (Triticum sp.). Cereal Research Communications, 50, 1259–1268. https://doi.org/10.1007/s42976-021-00226-1
-
Daiss, N., Lobo, G. M., Socorro, R. A., Bruckner, U., Heller, J., & Gonzalez, M. (2008). The effect of three organic pre-harvest treatments on Swiss chard (Beta vulgaris L. var. cycla L.) quality. European Food Research and Technology, 226, 345–353. https://doi.org/10.1007/s00217-006-0543-2
-
Devi, S., & Manimaran, S. (2012). Study of effective microorganisms (EM) on different organic wastes and their effect on growth and yield of rice. International Journal of Pharmacy & Life Sciences, 3(6), 1773
-
Doni, F., Isahak, A., Che Mohd Zain, C. R., & Wan Yusoff, W. M. (2014). Physiological and growth response of rice plants (Oryza sativa L.) to Trichoderma spp. inoculants. AMB Express, 4, 1–7. https://doi.org/10.1186/s13568-014-0045-8
-
El-Kouny, H. M. (2007). Effect of organic manure and biofertilizers on wheat grown in lacustrine soil as compared with mineral fertilizers. Egyptian Journal of Soil Science, 47(3), 263–280.
-
Gomez, K. A., & Gomez, A. A. (1984). Statistical procedures for agricultural research. John Wiley & Sons.
-
Hadwan, H. A., Janno, F. A., Majed, R. E., & Hamza, M. M. (2019). Effect of biofertilizers on yield and yield components of wheat (Triticum aestivum L.) under Iraqi conditions. International Journal of Applied Agricultural Sciences, 5(2), 45–49. https://doi.org/10.11648/j.ijaas.20190502.13
-
Higa, T., & Wididana, G. N. (1991). Changes in the soil microflora induced by effective microorganisms. In Proceedings of the First International Conference on Kyusei Nature Farming (pp. 153–162). U.S. Department of Agriculture, Washington, DC.
-
Hönig, M., Plíhalová, L., Husičková, A., Doležal, K., & Nisler, J. (2018). Role of cytokinins in senescence, antioxidant defence and photosynthesis. International Journal of Molecular Sciences, 19(12), 4045. https://doi.org/10.3390/ijms19124045
-
Hu, C., & Qi, Y. (2013a). Effective microorganisms and compost favor nematodes in wheat crops. Agronomy for Sustainable Development, 33(3), 573–579. https://doi.org/10.1007/s13593-012-0130-9
-
Hu, C., & Qi, Y. (2013b). Long-term effective microorganisms application promotes growth and increases yields and nutrition of wheat in China. European Journal of Agronomy, 46, 63–67. https://doi.org/10.1016/j.eja.2012.12.003
-
Ibrahim, M., Hassan, U. A., Iqbal, G. M., & Valeem, E. E. (2008). Response of wheat growth and yield to various levels of compost and organic manure. Pakistan Journal of Botany, 40(5), 2135–2141.
-
Illescas, M., Pedrero-Méndez, A., Pitorini-Bovolini, M., Hermosa, R., & Monte, E. (2021). Phytohormone production profiles in Trichoderma species and their relationship to wheat plant responses to water stress. International Journal of Molecular Sciences, 22(15), 8234. https://doi.org/10.3390/ijms22158234
-
Iqbal, M. J., Shams, N., & Fatima, K. (2022). Nutritional quality of wheat. In M. R. Ansari (Ed.), Wheat – Recent Advances. IntechOpen. https://doi.org/10.5772/intechopen.104659
-
Iriti, M., Scarafoni, A., Pierce, S., Castorina, G., & Vitalini, S. (2019). Soil application of effective microorganisms (EM) maintains leaf photosynthetic efficiency, increases seed yield and quality traits of bean (Phaseolus vulgaris L.) plants grown on different substrates. International Journal of Molecular Sciences, 20(9), 2327. https://doi.org/10.3390/ijms20092327
-
Joshi, H., Duttand, S., Choudhary, P., & Mundra, S. L. (2019). Role of effective microorganisms (EM) in sustainable agriculture. International Journal of Current Microbiology and Applied Sciences, 8(3), 172–181. https://doi.org/10.20546/ijcmas.2019.803.024
-
Khiniab, T. A. (2023). Effect of biofertilizers on the growth and yield of wheat grown under water stress. International Journal of Aquatic Science, 14(1), 341–348.
-
Kumawat, H., Singh, D. P., Jat, G., Choudhary, R., Singh, P. B., Dhayal, S., & Khardia, N. (2021). Effect of fertility levels and liquid biofertilizers on growth and yield of wheat (Triticum aestivum L.). The Pharma Innovation Journal, 10(9), 1365–1369.
-
Lyu, R. T., & Huang, C. H. (2022). Supplementation of manure compost with Trichoderma asperellum improves the nutrient uptake and yield of edible amaranth under field conditions. Sustainability, 14(9), 5389. https://doi.org/10.3390/su14095389
-
Mahato, S., Bhuju, S., & Shrestha, J. (2018). Effect of Trichoderma viride as biofertilizer on growth and yield of wheat. Malaysian Journal of Sustainable Agriculture, 2(2), 1–5. https://doi.org/10.26480/mjsa.02.2018.01.05
-
Martinez, M. A., Roldan, A., Albacete, A., & Pascual, J. A. (2011). The interaction with arbuscular mycorrhizal fungi or Trichoderma harzianum alters the shoot hormonal profile in melon plants. Phytochemistry, 72(2–3), 223–229. https://doi.org/10.1016/j.phytochem.2010.11.008
-
Mathivanan, N., Prabavathy, V. R., & Vijayanandraj, V. R. (2005). Application of talc formulations of Pseudomonas fluorescens Migula and Trichoderma viride Pers. ex S. F. Gray decrease the sheath blight disease and enhance plant growth and yield in rice. Journal of Phytopathology, 153(12), 697–701. https://doi.org/10.1111/j.1439-0434.2005.01042.x
-
Mayer, J., Scheid, S., Widmer, F., Fließbach, A., & Oberholzer, H. R. (2010). How effective are ‘Effective Microorganisms (EM)’? Results from a field study in a temperate climate. Applied Soil Ecology, 46(2), 230–239. https://doi.org/10.1016/j.apsoil.2010.08.007
-
Ministry of Agriculture and Livestock Development (MoALD). (2025). Statistical information on Nepalese agriculture 2080/81 (2023/24). Planning and Development Cooperation Coordination Division, Statistics and Analysis Section, Singhadurbar, Kathmandu, Nepal. https://moald.gov.np/wp-content/uploads/2025/08/Statistical-Information-on-Nepalese-Agriculture-2078-79-2021-22.pdf
-
Mulvaney, M. J., & Devkota, P. J. (2020). Adjusting crop yield to a standard moisture content: SS-AGR-443/AG442, 05/2020. EDIS, 2020(3). https://doi.org/10.32473/edis-ag442-2020
-
Naik, K., Mishra, S., Srichandan, H., Singh, P. K., & Choudhary, A. (2020). Microbial formulation and growth of cereals, pulses, oilseeds, and vegetable crops. Sustainable Environment Research, 30(1), 10. https://doi.org/10.1186/s42834-020-00051-x
-
Ncube, L. (2024). Effective microorganisms (EM): A potential pathway for enhancing soil quality and agricultural sustainability in Africa. In Strategic tillage and soil management – New perspectives. IntechOpen. https://doi.org/10.5772/intechopen.114089
-
Olle, M., & Williams, I. H. (2013). Effective microorganisms and their influence on vegetable production – A review. Journal of Horticultural Science and Biotechnology, 88(4), 380–386.
-
Rai, S. K., & Khadka, Y. G. (2009). Wheat production under long-term application of inorganic and organic fertilizers in rice–wheat system under rainfed conditions. Nepal Agriculture Research Journal, 9, 123–131.
-
Rajbanshi, D., Sharma, R., Bohara, B., Magar, S. G., & Sharma, G. (2024). Performance of wheat genotypes under irrigated conditions in Far Western Terai of Nepal. KMC Journal, 6(2), 298–316.
-
Rehman, U. S., Dar, A. W., Ganie, A. S., Bhat, A. J., Mir, H. G., Lawrence, R., Narayan, S., & Singh, K. P. (2013). Comparative efficacy of Trichoderma viride and Trichoderma harzianum against Fusarium oxysporum f. sp. ciceris causing wilt of chickpea. African Journal of Microbiology Research, 7(50), 5731–5736. https://doi.org/10.5897/AJMR2013.6442
-
Shao, H. X., Min, T., Ping, J., & Weiling, C. (2008). Effect of EM Bokashi application on control of secondary soil salinization. Water Science and Engineering, 1(4), 99–106. https://doi.org/10.3882/j.issn.1674-2370.2008.04.011
-
Sharma, P., Patel, N. A., Saini, K. M., & Deep, S. (2012). Field demonstration of Trichoderma harzianum as a plant growth promoter in wheat (Triticum aestivum L.). Journal of Agricultural Science, 4(8), 65–72. https://doi.org/10.5539/jas.v4n8p65
-
Subedi, K. (2025). Exploring the role of biofertilizers in enhancing soil health and supporting sustainable agriculture: A comprehensive review. Agriculture Extension in Developing Countries, 3(1), 16–20. https://doi.org/10.26480/aedc.01.2025.16.20
-
Syamsiyah, J., Herdiansyah, G., & Hartati, S. (2023). Use of Trichoderma as an effort to increase growth and productivity of maize plants. International Conference on Climate Change, 1165(1), 012020. https://doi.org/10.1088/1755-1315/1165/1/012020
-
Talaat, N. B., & Abdel-Salam, S. A. M. (2024a). An innovative, sustainable, and environmentally friendly approach for wheat drought tolerance using vermicompost and effective microorganisms: Upregulating the antioxidant defense machinery, glyoxalase system, and osmotic regulatory substances. BMC Plant Biology, 24, 866. https://doi.org/10.1186/s12870-024-05550-2
-
Talaat, N. B., & Abdel-Salam, S. A. M. (2024b). A novel eco-friendly approach of combining vermicompost and effective microorganisms sustains wheat (Triticum aestivum L.) drought tolerance by modulating photosynthetic performance and nutrient acquisition. Acta Physiologiae Plantarum, 46, 76. https://doi.org/10.1007/s11738-024-03698-w
-
Thapa, S., Rai, N., Limbu, A. K., & Joshi, A. (2020). Impact of Trichoderma sp. in agriculture: A mini-review. Journal of Biology and Today’s World, 9(5), 227. https://doi.org/10.35248/2322-3308.20.09.225
-
Vista, S. P., Shrestha, S., Rawal, N., Joshi, S., Rayamajhi, K., Devkota, S., Kandel, S., Amgain, R., Paneru, P., & Timilsina, S. (2022). Fertilizers in Nepal. National Soil Science Research Centre, Khumaltar, Lalitpur, Nepal.
-
Yang, D., Li, Y., Shi, Y., Cui, Z., Luo, Y., Zheng, M., Chen, J., Li, Y., Yin, Y., & Wang, Z. (2016). Exogenous cytokinins increase grain yield of winter wheat cultivars by improving stay-green characteristics under heat stress. PLoS ONE, 11(5), e0155437. https://doi.org/10.1371/journal.pone.0155437
-
Xiaohou, S., Min, T., Ping, J., & Weiling, C. (2008). Effect of EM Bokashi application on control of secondary soil salinization. Water Science and Engineering, 1(4), 99–106. https://doi.org/10.3882/j.issn.1674-2370.2008.04.011