Review Article
BibTex RIS Cite

Advanced physical techniques to prevent microorganisms in food

Year 2025, Volume: 7 Issue: 2, 138 - 160
https://doi.org/10.53663/turjfas.1735346

Abstract

In the food industry the quality and safety of products are vital concerns, necessitating the development and implementation of effective microbial mitigation strategies. Traditional methods, such as thermal processing, are effective but, often compromise the nutritional value and sensory attributes of food. This review focuses on advanced physical techniques that offer alternative or complementary approaches to conventional methods. Non-thermal technologies, including high-pressure processing (HPP), pulsed electric fields (PEF), cold plasma, and ultraviolet (UV) light, have emerged as promising tools in enhancing food safety without significantly altering food quality. These methods are explored in terms of their mode of action and efficacy against various pathogens. The review also addresses the challenges and limitations related with the industrial adoption of these technologies, alongside future perspectives for their optimization and integration into food processing chains. By advancing the understanding of these innovative techniques, the review aims to support the production of safer and higher-quality food products.

Ethical Statement

Not applicable.

Supporting Institution

Not applicable.

Thanks

Not applicable.

References

  • Ade-Omowaye, B. I. O., Angersbach, A., Taiwo, K. A., & Knorr, D. (2001). Use of pulsed electric field pre-treatment to improve dehydration characteristics of plant based foods. Trends in Food Science & Technology, 12(8), 285-295. https://doi.org/10.1016/S0924-2244(01)00095-4
  • Afraz, M. T., Xu, X., Zeng, X. A., Zhao, W., Lin, S., Woo, M., & Han, Z. (2024). The science behind physical field technologies for improved extraction of juices with enhanced quality attributes. Food Physics, 1, 100008. https://doi.org/10.1016/j.foodp.2024.100008
  • Akata, I., Torlak, E., & Erci, F. (2015). Efficacy of gaseous ozone for reducing microflora and foodborne pathogens on button mushroom. Postharvest Biology and Technology, 109, 40-44. https://doi.org/10.1016/j.postharvbio.2015.06.008
  • Akdemir Evrendilek, G. (2022). Pulsed electric field processing of red wine: effect on wine quality and microbial inactivation. Beverages, 8(4), 78. https://doi.org/10.3390/beverages8040078
  • Al-Haddad, K. S., Al-Qassemi, R. A., & Robinson, R. K. (2005). The use of gaseous ozone and gas packaging to control populations of Salmonella infantis and Pseudomonas aeruginosa on the skin of chicken portions. Food control, 16(5), 405-410. https://doi.org/10.1016/j.foodcont.2004.04.009
  • Alexa, E. A., Papadochristopoulos, A., O’Brien, T., & Burgess, C. M. (2024). Microbial contamination of food. In Food Packaging and Preservation (pp. 3-19). Academic Press. https://doi.org/10.1016/B978-0-323-90044-7.00001-X
  • Allison, A., Daniels, E., Chowdhury, S., & Fouladkhah, A. (2018). Effects of elevated hydrostatic pressure against mesophilic background microflora and habituated Salmonella serovars in orange juice. Microorganisms, 6(1), 23. https://doi.org/10.3390/microorganisms6010023
  • Álvarez, I., Raso, J., Palop, A., & Sala, F. J. (2000). Influence of different factors on the inactivation of Salmonella senftenberg by pulsed electric fields. International Journal of Food Microbiology, 55(1-3), 143-146. https://doi.org/10.1016/S0168-1605(00)00173-2
  • Alves, H., Alencar, E. R. D., Ferreira, W. F. D. S., Silva, C. R. D., & Ribeiro, J. L. (2019). Aspectos microbiológicos e físico-químicos de morango exposto ao gás ozônio em diferentes concentrações durante o armazenamento. Brazilian Journal of Food Technology, 22, e2018002. https://doi.org/10.1590/1981-6723.00218
  • Andrés, V., Villanueva, M.-J., & Tenorio, M.-D. (2016). Influence of high pressure processing on microbial shelf life, sensory profile, soluble sugars, organic acids, and mineral content of milk- and soy-smoothies. LWT - Food Science and Technology, 65, 98-105. https://doi.org/https://doi.org/10.1016/j.lwt.2015.07.066
  • Ansari, J. A., Ismail, M., & Farid, M. (2019). Investigate the efficacy of UV pretreatment on thermal inactivation of Bacillus subtilis spores in different types of milk. Innovative Food Science & Emerging Technologies, 52, 387-393. https://doi.org/https://doi.org/10.1016/j.ifset.2019.02.002
  • Anupma, S. K., Sumanshu, S. (2024). Microbial spoilage of food: understanding the culprits and preservation strategies. In Futuristic Trends in Agriculture Engineering & Food Sciences, 3, 18-137. https://www.doi.org/10.58532/V3BCAG21P2CH7
  • Arshad, R. N., Abdul-Malek, Z., Jusoh, Y. M., Radicetti, E., Tedeschi, P., Mancinelli, R., ... & Aadil, R. M. (2022). Sustainable electroporator for continuous pasteurisation: Design and performance evaluation with orange juice. Sustainability, 14(3), 1896. https://doi.org/10.3390/su14031896
  • Ashrafudoulla, M., Ulrich, M. S., Toushik, S. H., Nahar, S., Roy, P. K., Mizan, F. R., ... & Ha, S. D. (2023). Challenges and opportunities of non-conventional technologies concerning food safety. World's Poultry Science Journal, 79(1), 3-26. https://doi.org/10.1080/00439339.2023.2163044
  • Asill, R. V., Azizi, M., Bahreini, M., & Arouiee, H. (2013). The investigation of decontamination effects of ozone gas on microbial load and essential oil of several medicinal plants. Notulae Scientia Biologicae, 5(1), 34-38. https://doi.org/10.15835/nsb518297
  • Baba, K., Kajiwara, T., Watanabe, S., Katsuki, S., Sasahara, R., & Inoue, K. (2018). Low‐temperature pasteurization of liquid whole egg using intense pulsed electric fields. Electronics and communications in Japan, 101(2), 87-94. https://doi.org/10.1002/ecj.12053
  • Bang, I. H., Kim, Y. E., Lee, S. Y., & Min, S. C. (2020). Microbial decontamination of black peppercorns by simultaneous treatment with cold plasma and ultraviolet C. Innovative Food Science & Emerging Technologies, 63, 102392. https://doi.org/10.1016/j.ifset.2020.102392
  • Banu, M. S., Sasikala, P., Dhanapal, A., Kavitha, V., Yazhini, G., & Rajamani, L. (2012). Cold plasma as a novel food processing technology. IJETED, 4(2), 803-818.
  • Barbosa-Cánovas, G. V., Pothakamury, U. R., Gongora-Nieto, M. M., & Swanson, B. G. (1999). Preservation of foods with pulsed electric fields. pp. 197, Elsevier.
  • Baumann, A. R., Martin, S. E., & Feng, H. A. O. (2009). Removal of Listeria monocytogenes biofilms from stainless steel by use of ultrasound and ozone. Journal of Food Protection, 72(6), 1306-1309. https://doi.org/10.4315/0362-028X-72.6.1306
  • Bialka, K. L., & Demirci, A. (2007). Decontamination of Escherichia coli O157: H7 and Salmonella enterica on blueberries using ozone and pulsed UV‐light. Journal of Food Science, 72(9), M391-M396. https://doi.org/10.1111/j.1750-3841.2007.00517.x
  • Bilbao-Sáinz, C., Younce, F. L., Rasco, B., & Clark, S. (2009). Protease stability in bovine milk under combined thermal-high hydrostatic pressure treatment. Innovative Food Science & Emerging Technologies, 10(3), 314-320. https://doi.org/https://doi.org/10.1016/j.ifset.2009.01.003
  • Birmpa, A., Sfika, V., & Vantarakis, A. (2013). Ultraviolet light and Ultrasound as non-thermal treatments for the inactivation of microorganisms in fresh ready-to-eat foods. International Journal of Food Microbiology, 167(1), 96-102. https://doi.org/https://doi.org/10.1016/j.ijfoodmicro.2013.06.005
  • Caminiti, I. M., Palgan, I., Muñoz, A., Noci, F., Whyte, P., Morgan, D. J., . . . Lyng, J. G. (2012). The Effect of ultraviolet light on microbial inactivation and quality attributes of apple juice. Food and Bioprocess Technology, 5(2), 680-686. https://doi.org/10.1007/s11947-010-0365-x
  • Cassar, J., Mills, E., Campbell, J., & Demirci, A. (2018). Pulsed UV Light as a microbial reduction intervention for boneless/skinless chicken thigh meat. Meat and Muscle Biology, 2, 142-142. https://doi.org/10.22175/rmc2018.126
  • Cavalcante, M. A., Leite Júnior, B. D. C., Tribst, A. A. L., & Cristianini, M. (2013). Improvement of the raw milk microbiological quality by ozone treatment. International Food Research Journal, 20(4), 2017-2021.
  • Chai, C., Lee, J., Lee, Y., Na, S., & Park, J. (2014). A combination of TiO2–UV photocatalysis and high hydrostatic pressure to inactivate Bacillus cereus in freshly squeezed Angelica keiskei juice. LWT-Food Science and Technology, 55(1), 104-109. https://doi.org/https://doi.org/10.1016/j.lwt.2013.08.015
  • Chen, J. H., Ren, Y., Seow, J., Liu, T., Bang, W. S., & Yuk, H. G. (2012). Intervention technologies for ensuring microbiological safety of meat: current and future trends. Comprehensive Reviews in Food Science and Food Safety, 11(2), 119-132. https://doi.org/10.1111/j.1541-4337.2011.00177.x
  • Cho, Y., Choi, J. H., Hahn, T. W., & Lee, S. K. (2014). Effect of gaseous ozone exposure on the bacteria counts and oxidative properties of ground hanwoo beef at refrigeration temperature. Korean Journal For Food Science of Animal Resources, 34(4), 525. https://doi.org/10.5851/kosfa.2014.34.4.525
  • Choi, S., Puligundla, P., & Mok, C. (2016). Corona discharge plasma jet for inactivation of Escherichia coli O157: H7 and Listeria monocytogenes on inoculated pork and its impact on meat quality attributes. Annals of Microbiology, 66(2), 685-694. https://doi.org/10.1007/s13213-015-1147-5
  • Christen, L., Lai, C. T., Hartmann, B., Hartmann, P. E., & Geddes, D. T. (2013). Ultraviolet-C Irradiation: A novel pasteurization method for donor human milk. PLoS One, 8(6), e68120. https://doi.org/10.1371/journal.pone.0068120
  • Chuajedton, A., Uthaibutra, J., Pengphol, S., & Whangchai, K. (2017). Inactivation of Escherichia coli O157: H7 by treatment with different temperatures of micro-bubbles ozone containing water. International Food Research Journal, 24(3), 1006-1010
  • Crawford, Y. J., Murano, E. A., Olson, D. G., & Shenoy, K. (1996). Use of high hydrostatic pressure and irradiation to eliminate clostridium sporogenes spores in chicken breast. Journal of Food Protection, 59(7), 711-715. https://doi.org/https://doi.org/10.4315/0362-028X-59.7.711
  • Dangal, A., Timsina, P., Dahal, S., Rai, K., & Giuffre, A. M. (2024). Advances in non-thermal food processing methods-principle advantages and limitations for the establishment of minimal food quality as well as safety issues: a review. Current Nutrition & Food Science, 20(7), 836-849. https://doi.org/10.2174/0115734013250808230921105514
  • Dasan, B. G., Mutlu, M., & Boyaci, I. H. (2016). Decontamination of Aspergillus flavus and Aspergillus parasiticus spores on hazelnuts via atmospheric pressure fluidized bed plasma reactor. International Journal of Food Microbiology, 216, 50-59. https://doi.org/https://doi.org/10.1016/j.ijfoodmicro.2015.09.006
  • de Souza, P. M., Müller, A., Fernández, A., & Stahl, M. (2014). Microbiological efficacy in liquid egg products of a UV-C treatment in a coiled reactor. Innovative Food Science & Emerging Technologies, 21, 90-98. https://doi.org/https://doi.org/10.1016/j.ifset.2013.10.017
  • da Silva Campelo, M. C., Rebouças, L. D. O. S., de Oliveira Vitoriano, J., Junior, C. A., da Silva, J. B. A., & de Oliveira Lima, P. (2019). Use of cold atmospheric plasma to preserve the quality of white shrimp (Litopenaeus vannamei). Journal of Food Protection, 82(7), 1217-1223. https://doi.org/10.4315/0362-028X.JFP-18-369
  • Degala, H. L., Scott, J. R., Nakkiran, P., Mahapatra, A. K., & Kannan, G. (2016). Inactivation of E. coli O157: H7 on goat meat surface using ozonated water alone and in combination with electrolyzed oxidizing water. In 2016 ASABE Annual International Meeting (p. 1). American Society of Agricultural and Biological Engineers. https://doi.org/10.13031/aim.20162462209
  • Delso, C., Berzosa, A., Sanz, J., Álvarez, I., & Raso, J. (2023). Microbial decontamination of red wine by pulsed electric fields (PEF) after alcoholic and malolactic fermentation: Effect on Saccharomyces cerevisiae, Oenococcus oeni, and oenological parameters during storage. Foods, 12(2), 278. https://doi.org/10.3390/foods12020278
  • Devatkal, S., Somerville, J., Thammakulkrajang, R., & Balasubramaniam, V. M. (2015). Microbiological efficacy of pressure assisted thermal processing and natural extracts against Bacillus amyloliquefaciens spores suspended in deionized water and beef broth. Food and Bioproducts Processing, 95, 183-191. https://doi.org/10.1016/j.fbp.2015.05.007
  • Dobrynin, D., Fridman, G., Friedman, G., & Fridman, A. (2009). Physical and biological mechanisms of direct plasma interaction with living tissue. New Journal of Physics, 11(11), 115020. https://doi.org/10.1088/1367-2630/11/11/115020
  • Dunn, J. (2019). Pulsed electric field processing: an overview. Pulsed Electric Fields In Food Processing, 1-30.
  • Dziadek, K., Kopeć, A., Dróżdż, T., Kiełbasa, P., Ostafin, M., Bulski, K., & Oziembłowski, M. (2019). Effect of pulsed electric field treatment on shelf life and nutritional value of apple juice. Journal of Food Science and Technology, 56(3), 1184-1191. https://doi.org/10.1007/s13197-019-03581-4
  • Ehlbeck, J., Schnabel, U., Polak, M., Winter, J., Von Woedtke, T., Brandenburg, R., ... & Weltmann, K. D. (2010). Low temperature atmospheric pressure plasma sources for microbial decontamination. Journal of Physics D: Applied Physics, 44(1), 013002. https://doi.org/10.1088/0022-3727/44/1/013002
  • Ermolaeva, S. A., Varfolomeev, A. F., Chernukha, M. Y., Yurov, D. S., Vasiliev, M. M., Kaminskaya, A. A., ... & Gintsburg, A. L. (2011). Bactericidal effects of non-thermal argon plasma in vitro, in biofilms and in the animal model of infected wounds. Journal of Medical Microbiology, 60(1), 75-83. https://doi.org/10.1099/jmm.0.020263-0
  • Espina, L., Monfort, S., Álvarez, I., García-Gonzalo, D., & Pagán, R. (2014). Combination of pulsed electric fields, mild heat and essential oils as an alternative to the ultrapasteurization of liquid whole egg. International Journal of Food Microbiology, 189, 119-125. https://doi.org/10.1016/j.ijfoodmicro.2014.08.002
  • Evelyn, Milani, E., & Silva, F. V. M. (2017). Comparing high pressure thermal processing and thermosonication with thermal processing for the inactivation of bacteria, moulds, and yeasts spores in foods. Journal of Food Engineering, 214, 90-96. https://doi.org/10.1016/j.jfoodeng.2017.06.027
  • Falguera, V., Pagán, J., Garza, S., Garvín, A., & Ibarz, A. (2011). Ultraviolet processing of liquid food: A review. Part 1: Fundamental engineering aspects. Food Research International, 44, 1571–1579. https://doi.org/10.1016/j.foodres.2011.02.056
  • Faridnia, F., Ma, Q. L., Bremer, P. J., Burritt, D. J., Hamid, N., & Oey, I. J. (2015). Effect of freezing as pre-treatment prior to pulsed electric field processing on quality traits of beef muscles. Innovative Food Science & Emerging Technologies, 29, 31–40. https://doi.org/10.1016/j.ifset.2014.09.007
  • Fernández, A., Noriega, E., & Thompson, A. J. (2013). Inactivation of Salmonella enterica serovar Typhimurium on fresh produce by cold atmospheric gas plasma technology. Food Microbiology, 33(1), 24–29. https://doi.org/10.1016/j.fm.2012.08.007
  • Flores-Cervantes, D. X., Palou, E., & López-Malo, A. (2013). Efficacy of individual and combined UV-C light and food antimicrobial treatments to inactivate Aspergillus flavus or A. niger spores in peach nectar. Innovative Food Science & Emerging Technologies, 20, 244–252. https://doi.org/10.1016/j.ifset.2013.08.003
  • Fundo, J. F., Miller, F. A., Tremarin, A., Garcia, E., Brandão, T. R. S., & Silva, C. L. M. (2018). Quality assessment of Cantaloupe melon juice under ozone processing. Innovative Food Science & Emerging Technologies, 47, 461–466. https://doi.org/10.1016/j.ifset.2018.04.016
  • Gabriel, A. A., & Musni, A. C. (2019). Prior physicochemical stress exposures and subsequent UV-C resistance of E. coli O157:H7 in coconut liquid endosperm. Food and Bioproducts Processing, 117, 250–257. https://doi.org/10.1016/j.fbp.2019.06.011
  • Gallagher, M. J., Vaze, N., Gangoli, S., Vasilets, V. N., Gutsol, A. F., Milovanova, T. N., & Fridman, A. A. (2007). Rapid inactivation of airborne bacteria using atmospheric pressure dielectric barrier grating discharge. IEEE Transactions on Plasma Science, 35(5), 1501–1510. https://doi.org/10.1109/TPS.2007.905209
  • Gao, Y., Qiu, W., Wu, D., & Fu, Q. (2011). Assessment of Clostridium perfringens spore response to high hydrostatic pressure and heat with nisin. Applied Biochemistry and Biotechnology, 164(7), 1083–1095. https://doi.org/10.1007/s12010-011-9196-0
  • Gayán, E., Condón, S., & Álvarez, I. (2014). Biological aspects in food preservation by ultraviolet light: A review. Food and Bioprocess Technology, 7(1), 1–20. https://doi.org/10.1007/s11947-013-1168-7
  • Giannoglou, M., Stergiou, P., Dimitrakellis, P., Gogolides, E., Stoforos, N. G., & Katsaros, G. (2020). Effect of cold atmospheric plasma processing on quality and shelf-life of ready-to-eat rocket leafy salad. Innovative Food Science & Emerging Technologies, 66, 102502. https://doi.org/10.1016/j.ifset.2020.102502
  • Gibson, K. E., Almeida, G., Jones, S. L., Wright, K., & Lee, J. A. (2019). Inactivation of bacteria on fresh produce by batch wash ozone sanitation. Food Control, 106, 106747. https://doi.org/10.1016/j.foodcont.2019.106747
  • Gouma, M., Gayán, E., Raso, J., Condón, S., & Álvarez, I. (2015). Inactivation of spoilage yeasts in apple juice by UV–C light and in combination with mild heat. Innovative Food Science & Emerging Technologies, 32, 146–155. https://doi.org/10.1016/j.ifset.2015.09.008
  • Graves, D. B. (2014). Oxy-nitroso shielding burst model of cold atmospheric plasma therapeutics. Clinical Plasma Medicine, 2(2), 38–49. https://doi.org/10.1016/j.cpme.2014.11.001
  • Guzel-Seydim, Z. B., Greene, A. K., & Seydim, A. C. (2004). Use of ozone in the food industry. LWT – Food Science and Technology, 37(4), 453–460. https://doi.org/10.1016/j.lwt.2003.10.014
  • Ha, J.-W., & Kang, D.-H. (2015). Enhanced inactivation of food-borne pathogens in ready-to-eat sliced ham by near-infrared heating combined with UV-C irradiation and mechanism of the synergistic bactericidal action. Applied and Environmental Microbiology, 81(1), 2–8. https://doi.org/10.1128/AEM.01862-14
  • Hamidi-Oskouei, A. M., James, C., & James, S. J. (2015). The efficiency of UV-C radiation in the inactivation of Listeria monocytogenes on beef-agar food models. Food Tech Biotech, 53(2), 231–236. https://doi.org/10.17113/ftb.53.02.15.3966
  • Han, L., Patil, S., Boehm, D., Milosavljević, V., Cullen, P., & Bourke, P. (2016). Mechanisms of inactivation by high-voltage atmospheric cold plasma differ for Escherichia coli and Staphylococcus aureus. Applied and Environmental Microbiology, 82(2), 450–458. https://doi.org/10.1128/AEM.02660-15
  • Hayakawa, I., Kanno, T., Yoshiyama, K., & Fujio, Y. (1994). Oscillatory compared with continuous high pressure sterilization on Bacillus stearothermophilus spores. Journal of Food Science, 59(1), 164–167.https://doi.org/10.1111/j.1365-2621.1994.tb06924.x
  • Heinz, V., & Knorr, D. (2001). Effects of high pressure on spores. In M. E. G. Hendrickx, D. Knorr, L. Ludikhuyze, A. Van Loey, & V. Heinz (Eds.), Ultra High Pressure Treatments of Foods (pp. 77–113). https://doi.org/10.1007/978-1-4615-0723-9_4
  • Hertwig, C., Reineke, K., Ehlbeck, J., Knorr, D., & Schlüter, O. (2015). Decontamination of whole black pepper using different cold atmospheric pressure plasma applications. Food Control, 55, 221–229. https://doi.org/10.1016/j.foodcont.2015.03.003
  • Hodgins, A., Mittal, G., & Griffiths, M. W. (2002). Pasteurization of fresh orange juice using low-energy pulsed electrical field. Journal of Food Science, 67(6), 2294–2299. https://doi.org/10.1111/j.1365-2621.2002.tb09543.x
  • Holah, J., Lelieveld, H., & Gabric, D. (2016). Handbook of hygiene control in the food industry. Woodhead Publishing.
  • Hoover, D. G., Metrick, C., Papineau, A. M., Farkas, D. F., & Knorr, D. (1989). Biological effects of high hydrostatic pressure on food microorganisms. Food Technology, 43, 99–107.
  • Jemni, M., Gómez, P. A., Souza, M., Chaira, N., Ferchichi, A., Otón, M., & Artés, F. (2014). Combined effect of UV-C, ozone and electrolyzed water for keeping overall quality of date palm. LWT – Food Science and Technology, 59(2), 649–655. https://doi.org/10.1016/j.lwt.2014.07.016
  • Jin, T. Z., Yu, Y., & Gurtler, J. B. (2017). Effects of pulsed electric field processing on microbial survival, quality change and nutritional characteristics of blueberries. LWT – Food Sci Technol, 77, 517–524. https://doi.org/10.1016/j.lwt.2016.12.009
  • Pestana, J. M., Monteiro, B. W., Lehn, D. N., & Souza, C. F. V. (2015). Effects of pasteurization and ultra-high temperature processes on proximate composition and fatty acid profile in bovine milk. Amer Journal of Food Technology, 10, 265–272. https://doi.org/10.3923/ajft.2015.265.272
  • Joshi, S. G., Cooper, M., Yost, A., Paff, M., Ercan, U. K., & Fridman, G. (2011). Nonthermal dielectric-barrier discharge plasma-induced inactivation involves oxidative DNA damage and membrane lipid peroxidation in Escherichia coli. Antimicrobial Agents and Chemotherapy, 55(3), 1053–1062. https://doi.org/10.1128/aac.01002-10
  • Juliano, P., Gaber, M. A. F. M., Romaniello, R., Tamborrino, A., Berardi, A., & Leone, A. (2023). Advances in physical technologies to improve virgin olive oil extraction efficiency in high-throughput production plants. Food Engineering Reviews, 15(4), 625–642. https://doi.org/10.1007/s12393-023-09347-1
  • Kalagatur, N. K., Kamasani, J. R., Mudili, V., Krishna, K., Chauhan, O. P., & Sreepathi, M. H. (2018). Effect of high pressure processing on growth and mycotoxin production of Fusarium graminearum in maize. Food Bioscience, 21, 53–59. https://doi.org/10.1016/j.fbio.2017.11.005
  • Kalchayanand, N., Worlie, D., & Wheeler, T. (2019). A novel aqueous ozone treatment as a spray chill intervention against Escherichia coli O157:H7 on surfaces of fresh beef. Journal of Food Protection, 82(11), 1874–1878. https://doi.org/10.4315/0362-028X.JFP-19-093
  • Kantala, C., Supasin, S., Intra, P., & Rattanadecho, P. (2022). Evaluation of pulsed electric field and conventional thermal processing for microbial inactivation in Thai orange juice. Foods, 11(8), 1102. https://doi.org/10.3390/foods11081102
  • Karanth, S., Feng, S., Patra, D., & Pradhan, A. K. (2023). Linking microbial contamination to food spoilage and food waste: The role of smart packaging, spoilage risk assessments, and date labeling. Frontiers in Microbiology, 14, 1198124. https://doi.org/10.3389/fmicb.2023.1198124
  • Kato, M., Hayashi, R., Tsuda, T., & Taniguchi, K. (2002). High pressure-induced changes of biological membrane: Study on the membrane-bound Na(+)/K(+)-ATPase as a model system. European Journal of Biochemistry, 269(1), 110–118. https://doi.org/10.1046/j.0014-2956.2002.02621.x
  • Keklik, N. M., Krishnamurthy, K., & Demirci, A. (2012). Microbial decontamination of food by ultraviolet (UV) and pulsed UV light. In A. Demirci & M. O. Ngadi (Eds.), Microbial Decontamination in the Food Industry (pp. 344–369). Woodhead Publishing. https://doi.org/10.1533/9780857095756.2.344
  • Khadre, M. A., Yousef, A. E., & Kim, J. G. (2001). Microbiological aspects of ozone applications in food: A review. Journal of Food Science, 66(9), 1242–1252. https://doi.org/10.1111/j.1365-2621.2001.tb15196.x
  • Kim, H. J., Yong, H. I., Park, S. H., Kim, K. J., Bae, Y. S., Choe, W. H., & Jo, C. (2013). Effect of inactivating Salmonella Typhimurium in raw chicken breast and pork loin using an atmospheric pressure plasma jet. Food Control, 32(2), 562–567. https://doi.org/10.1016/j.foodcont.2013.01.027
  • Kim, J.-G., Yousef, A. E., & Khadre, M. A. (2003). Ozone and its current and future application in the food industry. Advances in Food and Nutrition Research, 45, 167–218. https://doi.org/10.1016/S1043-4526(03)45005-3
  • Kim, Y., Choi, Y., Kim, S., Park, J., Chung, M., Song, K. B., & Park, J. J. (2009). Disinfection of iceberg lettuce by titanium dioxide–UV photocatalytic reaction. Journal of Food Protection, 72(9), 1916–1922. https://doi.org/10.4315/0362-028X-72.9.1916
  • Koutchma, T. (2009). Advances in ultraviolet light technology for non-thermal processing of liquid foods. Food and Bioprocess Technology, 2(2), 138–155. https://doi.org/10.1007/s11947-008-0178-3
  • Kowalski, W. (2009). UV effects on materials. In W. Kowalski (Ed.), Ultraviolet Germicidal Irradiation Handbook: UVGI for Air and Surface Disinfection (pp. 361–381). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-01999-9_15
  • Landl, A., Abadias, M., Sárraga, C., Viñas, I., & Picouet, P.A.(2010). Effect of high pressure processing on the quality of acidified Granny Smith apple purée product. Innov Food Sci Emerg Technol 11(4), 557–564. https://doi.org/10.1016/j.ifset.2010.09.001
  • Laroussi, M. (2009). Low-temperature plasmas for medicine? IEEE Transactions on Plasma Science, 37(6), 714–725. https://doi.org/10.1109/TPS.2009.2017267
  • Ledy, A., Sulistiyani, & Trijoko, T. (2020). The ultraviolet light (UV) technology as a disinfection of drinking water: A literature study. International Journal of Health, Education & Social (IJHES), 3(6). https://doi.org/10.1234/ijhes.v3i6.95
  • Li, R., Wang, Y., Wang, S., & Liao, X. (2015). A comparative study of changes in microbiological quality and physicochemical properties of N₂-infused and N₂-degassed banana smoothies after high pressure processing. Food and Bioprocess Technology, 8(2), 333–342. https://doi.org/10.1007/s11947-014-1401-z
  • Linton, M., & Patterson, M. F. (2000). High pressure processing of foods for microbiological safety and quality. Acta Microbiologica et Immunologica Hungarica, 47(2–3), 175–182. https://doi.org/10.1556/amicr.47.2000.2-3.3
  • Lis, K. A., Boulaaba, A., Binder, S., Li, Y., Kehrenberg, C., Zimmermann, J. L., & Ahlfeld, B. (2018). Inactivation of Salmonella Typhimurium and Listeria monocytogenes on ham with nonthermal atmospheric pressure plasma. PLoS ONE, 13(5), e0197773. https://doi.org/10.1371/journal.pone.0197773
  • Liu, C., Li, X., & Chen, H. (2015). Application of water-assisted ultraviolet light processing on the inactivation of murine norovirus on blueberries. International J Food Microbiol, 214, 18–23. https://doi.org/10.1016/j.ijfoodmicro.2015.07.023
  • Liu, F., Li, R., Wang, Y., Bi, X., & Liao, X. (2014). Effects of high hydrostatic pressure and high-temperature short-time on mango nectars: Changes in microorganisms, acid invertase, 5-hydroxymethylfurfural, sugars, viscosity, and cloud. Innovative Food Science & Emerging Technologies, 22, 22–30. https://doi.org/10.1016/j.ifset.2013.11.014
  • Liu, F., Wang, Y., Bi, X., Guo, X., Fu, S., & Liao, X. (2013). Comparison of microbial inactivation and rheological characteristics of mango pulp after high hydrostatic pressure treatment and high temperature short time treatment. Food and Bioprocess Technology, 6(10), 2675–2684. https://doi.org/10.1007/s11947-012-0953-z
  • Lopez-Malo, A., & Palou, E. (2005). Ultraviolet light and food preservation. Novel food processing technologies, 405-422. https://doi.org/10.1201/9780203997277.ch18
  • Loredo, A. B. G., Guerrero, S. N., Alzamora, S. M. (2015). Inactivation kinetics and growth dynamics during cold storage of Escherichia coli ATCC 11229, Listeria innocua ATCC 33090 and Saccharomyces cerevisiae KE162 in peach juice using aqueous ozone. Innovative Food Science & Emerging Technologies, 29, 271–279. https://doi.org/10.1016/j.ifset.2015.02.007
  • Maggi, A., Gola, S., Rovere, P., Miglioli, L., Dall'Aglio, G., & Lonneborg, N. G. (1996). Effects of combined high pressure-temperature treatments on Clostridium sporogenes spores in liquid media. Industrie Conserve, 71, 8–14.
  • Mansor, A., Shamsudin, R., Adzahan, N. M., & Hamidon, M. N. (2014). Efficacy of ultraviolet radiation as non-thermal treatment for the inactivation of Salmonella Typhimurium TISTR 292 in pineapple fruit juice. Agriculture and Agricultural Science Procedia, 2, 173–180. https://doi.org/10.1016/j.aaspro.2014.11.025
  • Manzocco, L., Plazzotta, S., Maifreni, M., Calligaris, S., Anese, M., & Nicoli, M. C. (2016). Impact of UV-C light on storage quality of fresh-cut pineapple in two different packages. LWT - Food Science and Technology, 65, 1138–1143. https://doi.org/10.1016/j.lwt.2015.10.007
  • McLeod, A., Hovde Liland, K., Haugen, J. E., Sørheim, O., Myhrer, K. S., & Holck, A. L. (2018). Chicken fillets subjected to UV-C and pulsed UV light: Reduction of pathogenic and spoilage bacteria, and changes in sensory quality. Journal of Food Safety, 38(1), e12421. https://doi.org/10.1111/jfs.12421
  • Mendes‐Oliveira, G., Jin, T. Z., & Campanella, O. H. (2022). Microbial safety and shelf‐life of pulsed electric field processed nutritious juices and their potential for commercial production. Journal of Food Processing and Preservation, 46(10), e16249. https://doi.org/10.1111/jfpp.16249
  • Mendis, D., Rosenberg, M., & Azam, F. (2000). A note on the possible electrostatic disruption of bacteria. IEEE Transactions on Plasma Science, 28(4), 1304–1306. https://doi.org/10.1109/27.893321
  • Misra, N., Tiwari, B., Raghavarao, K., & Cullen, P. J. (2011). Nonthermal plasma inactivation of food-borne pathogens. Food Engineering Reviews, 3, 159–170. https://doi.org/10.1007/s12393-011-9041-9
  • Mohammad, Z., Kalbasi-Ashtari, A., Riskowski, G., & Castillo, A. (2019). Reduction of Salmonella and Shiga toxin-producing Escherichia coli on alfalfa seeds and sprouts using an ozone generating system. International Journal of Food Microbiology, 289, 57–63. https://doi.org/10.1016/j.ijfoodmicro.2018.08.023
  • Moreau, M., Orange, N., & Feuilloley, M. (2008). Non-thermal plasma technologies: New tools for bio-decontamination. Biotechnology Advances, 26(6), 610–617. https://doi.org/10.1016/j.biotechadv.2008.08.001
  • Mosqueda-Melgar, J., Raybaudi-Massilia, R. M., & Martín-Belloso, O. (2012). Microbiological shelf life and sensory evaluation of fruit juices treated by high-intensity pulsed electric fields and antimicrobials. Food and Bioprocess Technology, 90(2), 205–214. https://doi.org/10.1016/j.fbp.2011.03.004
  • Moussa-Ayoub, T. E., Jäger, H., Knorr, D., El-Samahy, S. K., Kroh, L. W., & Rohn, S. (2017). Impact of pulsed electric fields, high hydrostatic pressure, and thermal pasteurization on selected characteristics of Opuntia dillenii cactus juice. LWT - Food Science and Technology, 79, 534–542. https://doi.org/10.1016/j.lwt.2016.10.061
  • Muhlisin, M., Utama, D. T., Lee, J. H., Choi, J. H., & Lee, S. K. (2016). Effects of gaseous ozone exposure on bacterial counts and oxidative properties in chicken and duck breast meat. Korean Journal for Food Science of Animal Resources, 36(3), 405. https://doi.org/10.5851/kosfa.2016.36.3.405
  • Mukhopadhyay, S., & Ramaswamy, R. (2012). Application of emerging technologies to control Salmonella in foods: A review. Food Research International, 45(2), 666–677. https://doi.org/10.1016/j.foodres.2011.05.016
  • Mukhopadhyay, S., Sokorai, K., Ukuku, D., Fan, X., & Juneja, V. (2017). Effect of high hydrostatic pressure processing on the background microbial loads and quality of cantaloupe puree. Food Research International, 91, 55–62. https://doi.org/10.1016/j.foodres.2016.11.029
  • Mukhopadhyay, S., Sokorai, K., Ukuku, D., Fan, X., Juneja, V., Sites, J., & Cassidy, J. (2016). Inactivation of Salmonella enterica and Listeria monocytogenes in cantaloupe puree by high hydrostatic pressure with/without added ascorbic acid. International Journal of Food Microbiology, 235, 77–84. https://doi.org/10.1016/j.ijfoodmicro.2016.07.007
  • Munhõs, M., Navarro, R., Nunez, S., Kozusny-Andreani, D., & Baptista, A. (2019). Reduction of Pseudomonas inoculated into whole milk and skim milk by ozonation. In XXVI Brazilian Congress on Biomedical Engineering: CBEB 2018 (Vol. 1). Armação de Buzios, RJ, Brazil. https://doi.org/10.1007/978-981-13-2119-1_130
  • Nehra, V., Kumar, A., & Dwivedi, H. (2008). Atmospheric non-thermal plasma sources. International Journal of Engineering, 2(1), 53–68.
  • Niemira, B. A. (2012). Cold plasma reduction of Salmonella and Escherichia coli O157:H7 on almonds using ambient pressure gases. Journal of Food Science, 77(3), M171–M175. https://doi.org/10.1111/j.1750-3841.2011.02594.x
  • O'Donnell, C., Tiwari, B. K., Cullen, P., & Rice, R. G. (2012). Ozone in food processing. John Wiley & Sons.
  • Ogawa, H., Fukuhisa, K., Kubo, Y., & Fukumoto, H. (1990). Pressure inactivation of yeasts, molds, and pectinesterase in Satsuma mandarin juice: Effects of juice concentration, pH, and organic acids, and comparison with heat sanitation. Agricultural and Biological Chemistry, 54(5), 1219–1225. https://doi.org/10.1080/00021369.1990.10870118
  • Oladunjoye, A. O., & Awani-Aguma, E. U. (2024). Chapter 7: Foodborne illnesses—Prevention and control. In I. O. Ademola & O. O. Folake (Eds.), Food safety and toxicology (pp. 149–174). De Gruyter. https://doi.org/10.1515/9783110748345-007
  • Oner, M. E., Walker, P. N., & Demirci, A. (2011). Effect of in-package gaseous ozone treatment on shelf life of blanched potato strips during refrigerated storage. Int. J Food Sci Technol, 46(2), 406–412. https://doi.org/10.1111/j.1365-2621.2010.02503.x
  • Ozkan, R., Smilanick, J. L., & Karabulut, O. A. (2011). Toxicity of ozone gas to conidia of Penicillium digitatum, Penicillium italicum, and Botrytis cinerea and control of gray mold on table grapes. Postharvest Biology and Technology, 60(1), 47–51. https://doi.org/10.1016/j.postharvbio.2010.12.004
  • Öztekin, S., Zorlugenç, B., & Zorlugenç, F. K. (2006). Effects of ozone treatment on microflora of dried figs. Journal of Food Engineering, 75(3), 396–399. https://doi.org/10.1016/j.jfoodeng.2005.04.024
  • Paidhungat, M., Setlow, B., Daniels, W. B., Hoover, D., Papafragkou, E., & Setlow, P. (2002). Mechanisms of induction of germination of Bacillus subtilis spores by high pressure. Applied and Environmental Microbiology, 68(6), 3172–3175. https://doi.org/10.1128/AEM.68.6.3172-3175.2002
  • Pandiselvam, R., Subhashini, S., Banuu Priya, E., Kothakota, A., Ramesh, S., & Shahir, S. (2019). Ozone-based food preservation: A promising green technology for enhanced food safety. Ozone: Science and Engineering, 41(1), 17–34. https://doi.org/10.1080/01919512.2018.1490636
  • Patange, A., Boehm, D., Bueno-Ferrer, C., Cullen, P., & Bourke, P. (2017). Controlling Brochothrix thermosphacta as a spoilage risk using in-package atmospheric cold plasma. Food Microbiology, 66, 48–54. https://doi.org/10.1016/j.fm.2017.04.002
  • Pathak, N., Grossi Bovi, G., Limnaios, A., Fröhling, A., Brincat, J. P., & Taoukis, P. (2020). Impact of cold atmospheric pressure plasma processing on storage of blueberries. Journal of Food Processing and Preservation, 44(8), e14581. https://doi.org/10.1111/jfpp.14581
  • Patterson, M. F., & Kilpatrick, D. J. (1998). The combined effect of high hydrostatic pressure and mild heat on inactivation of pathogens in milk and poultry. Journal of Food Protection, 61(4), 432–436. https://doi.org/10.4315/0362-028X-61.4.432
  • Perera, N., Gamage, T. V., Wakeling, L., Gamlath, G. G. S., & Versteeg, C. (2010). Colour and texture of apples high pressure processed in pineapple juice. Innov Food Sci Emerg Technol, 11(1), 39–46. https://doi.org/10.1016/j.ifset.2009.08.003
  • Perni, S., Liu, D. W., Shama, G., & Kong, M. G. (2008). Cold atmospheric plasma decontamination of the pericarps of fruit. Journal of Food Protection, 71(2), 302–308. https://doi.org/10.4315/0362-028X-71.2.302
  • Perry, J., Rodriguez‐Romo, L., & Yousef, A. (2008). Inactivation of Salmonella enterica serovar Enteritidis in shell eggs by sequential application of heat and ozone. Lett ApplMicrobiol, 46(6), 620–625. https://doi.org/10.1111/j.1472-765X.2008.02367.x
  • Perry, J. J., & Yousef, A. E. (2011). Decontamination of raw foods using ozone-based sanitization techniques. Annual Review of Food Science and Technology, 2(1), 281–298. https://doi.org/10.1146/annurev-food-022510-133637
  • Petrus, R. R., Churey, J. J., & Worobo, R. W. (2020). Challenging a range of high-pressure processing parameters to inactivate pathogens in orange juice. High Pressure Research, 40(4), 537–542. https://doi.org/10.1080/08957959.2020.1830081
  • Pinela, J., & Ferreira, I. C. (2017). Nonthermal physical technologies to decontaminate and extend the shelf-life of fruits and vegetables: Trends aiming at quality and safety. Critical Reviews in Food Science and Nutrition, 57(10), 2095–2111. https://doi.org/10.1080/10408398.2015.1046547
  • Pohlman, F. W. (2012). Ozone in meat processing. In Ozone in food processing (pp. 123–136). https://doi.org/10.1002/9781118307472
  • Possas, A., Valero, A., García-Gimeno, R. M., Pérez-Rodríguez, F., & de Souza, P. M. (2018). Influence of temperature on the inactivation kinetics of Salmonella Enteritidis by the application of UV-C technology in soymilk. Food Control, 94, 132–139. https://doi.org/10.1016/j.foodcont.2018.06.033
  • Proulx, J., Hsu, L. C., Miller, B. M., Sullivan, G., Paradis, K., & Moraru, C. I. (2015). Pulsed-light inactivation of pathogenic and spoilage bacteria on cheese surface. Journal of Dairy Science, 98(9), 5890–5898. https://doi.org/10.3168/jds.2015-9410
  • Ps, K., Ba, J., Rv, S., & Gm, M. (2011). Review on the high pressure technology (HPT) for food preservation. Journal of Food Processing and Technology, 3, 1–5. http://dx.doi.org/10.4172/2157-7110.1000135
  • Puligundla, P., Kim, J.-W., & Mok, C. (2017). Effect of corona discharge plasma jet treatment on decontamination and sprouting of rapeseed (Brassica napus L.) seeds. Food Control, 71, 376–382. https://doi.org/10.1016/j.foodcont.2016.07.021
  • Qin, B., Zhang, Q., Barbosa-Cánovas, G. V., Swanson, B., & Pedrow, P. J. (1995). Pulsed electric field treatment chamber design for liquid food pasteurization using a finite element method. Transactions of the ASAE, 38(2), 557–565.
  • Ragni, L., Berardinelli, A., Vannini, L., Montanari, C., Sirri, F., Guerzoni, M. E., & Guarnieri, A. (2010). Non-thermal atmospheric gas plasma device for surface decontamination of shell eggs. Journal of Food Engineering, 100(1), 125–132. https://doi.org/10.1016/j.jfoodeng.2010.03.036
  • Ramesh, T., Nayak, B., Amirbahman, A., Tripp, C. P., & Mukhopadhyay, S. (2016). Application of ultraviolet light assisted titanium dioxide photocatalysis for food safety: A review. Innov Food Sci Emerg Technol, 38, 105–115. https://doi.org/10.1016/j.ifset.2016.09.015
  • Raso, J., Alvarez, I., Condón, S., Trepat, F. J., & Sanz, J. (2000). Predicting inactivation of Salmonella senftenberg by pulsed electric fields. Innovative Food Science & Emerging Technologies, 1(1), 21–29. https://doi.org/10.1016/S1466-8564(99)00005-3
  • Raso, J., & Barbosa-Cánovas, G. (2003). Nonthermal preservation of foods using combined processing techniques. Critical Reviews in Food Science and Nutrition, 43, 265–285. https://doi.org/10.1080/10408690390826527
  • Rojas-Valencia, M. J. V. (2011). Research on ozone application as disinfectant and action mechanisms on wastewater microorganisms. Journal of Environmental Science and Engineering, 3(4), 1–8.
  • Rossitto, P. V., Cullor, J. S., Crook, J., Parko, J., Sechi, P., & Cenci-Goga, B. T. (2012). Effects of UV irradiation in a continuous turbulent flow UV reactor on microbiological and sensory characteristics of cow’s milk. Journal of Food Protection, 75(12), 2197–2207. https://doi.org/10.4315/0362-028X.JFP-12-036
  • Rowan, N., MacGregor, S. J., Anderson, J., Fouracre, R., & Farish, O. (2000). Pulsed electric field inactivation of diarrhoeagenic Bacillus cereus through irreversible electroporation. Letters in Applied Microbiology, 31(2), 110–114. https://doi.org/10.1046/j.1365-2672.2000.00772.x
  • Šalaševičius, A., Uždavinytė, D., Visockis, M., Ruzgys, P., & Šatkauskas, S. (2021). Effect of pulsed electric field (PEF) on bacterial viability and whey protein in the processing of raw milk. Applied Sciences, 11(23), 11281. https://doi.org/10.3390/app112311281
  • Sasagawa, A., Yamazaki, A., Kobayashi, A., Hoshino, J., Ohshima, T., Sato, M., & Yamada, A. (2006). Inactivation of Bacillus subtilis spores by a combination of hydrostatic high-pressure and pulsed electric field treatments. The Review of High Pressure Science and Technology, 16(1), 45–53. https://doi.org/10.4131/jshpreview.16.45
  • Scholtz, V., Pazlarova, J., Souskova, H., Khun, J., & Julak, J. (2015). Nonthermal plasma—A tool for decontamination and disinfection. Biotechnology Advances, 33(6), 1108–1119. https://doi.org/10.1016/j.biotechadv.2015.01.002
  • Selma, M. V., Beltrán, D., Allende, A., Chacón-Vera, E., & Gil, M. I. (2007). Elimination by ozone of Shigella sonnei in shredded lettuce and water. Food Microbiology, 24(5), 492–499. https://doi.org/10.1016/j.fm.2006.09.005
  • Shahbaz, H. M., Kim, S., Hong, J., Kim, J. U., Lee, D. U., Ghafoor, K., & Park, J. (2016). Effects of TiO₂–UV-C photocatalysis and thermal pasteurisation on microbial inactivation and quality characteristics of the Korean rice-and-malt drink sikhye. Journal of Food Processing and Technology, 51(1), 123–132. https://doi.org/10.1111/ijfs.12954
  • Shahbaz, H. M., Yoo, S., Seo, B., Ghafoor, K., Kim, J. U., Lee, D.-U., & Park, J. (2016). Combination of TiO₂-UV photocatalysis and high hydrostatic pressure to inactivate bacterial pathogens and yeast in commercial apple juice. Food and Bioprocess Technology, 9(1), 182–190. https://doi.org/10.1007/s11947-015-1614-9
  • Shao, Y., Zhu, S., Ramaswamy, H., & Marcotte, M. (2010). Compression heating and temperature control for high-pressure destruction of bacterial spores: An experimental method for kinetics evaluation. Food and Bioprocess Technology, 3(1), 71–78. https://doi.org/10.1007/s11947-008-0057-y
  • Sharma, P., Bremer, P., Oey, I., & Everett, D. (2014). Bacterial inactivation in whole milk using pulsed electric field processing. International Dairy Journal, 35(1), 49–56. https://doi.org/10.1016/j.idairyj.2013.10.005
  • Shi, X. M., Zhang, G. J., Wu, X. L., Li, Y. X., Ma, Y., & Shao, X. J. (2011). Effect of low-temperature plasma on microorganism inactivation and quality of freshly squeezed orange juice. IEEE Transactions on Plasma Science, 39(7), 1591–1597. https://doi.org/10.1109/TPS.2011.2142012
  • Siemer, C., Aganovic, K., Toepfl, S., & Heinz, V. (2014). Application of pulsed electric fields in food. In Advances in Food Processing Technology (pp. 645–672). https://doi.org/10.1002/9781118406281.ch26
  • Singh, H., Bhardwaj, S. K., Khatri, M., Kim, K.-H., & Bhardwaj, N. (2021). UV-C radiation for food safety: An emerging technology for the microbial disinfection of food products. Chemical Engineering Journal, 417, 128084. https://doi.org/10.1016/j.cej.2020.128084
  • Sobrino-López, A., & Martín-Belloso, O. (2010). Potential of high-intensity pulsed electric field technology for milk processing. Food Engineering Reviews, 2, 17–27. https://doi.org/10.1007/s12393-009-9011-7
  • Sommer, R., Lhotsky, M., Haider, T., & Cabaj, A. (2000). UV inactivation, liquid-holding recovery, and photoreactivation of Escherichia coli O157 and other pathogenic Escherichia coli strains in water. Journal of Food Protection, 63(8), 1015–1020. https://doi.org/10.4315/0362-028x-63.8.1015
  • Sommers, C. H., Sites, J. E., & Musgrove, M. (2010). Ultraviolet light (254 nm) inactivation of pathogens on foods and stainless steel surfaces. Journal of Food Safety, 30(2), 470–479. https://doi.org/10.1111/j.1745-4565.2010.00220.x
  • Sridipta Paul, R. D., Sreo Sree Roy, Subhangi Sahu, & Tanmoy Majhi. (2024). Utilization of non-thermal technologies for food preservation: Comparative analysis. International Journal of Research in Agronomy, 7(4S), 127–130. https://doi.org/10.33545/2618060X.2024.v7.i4Sb.564
  • Stoffels, E., Sakiyama, Y., & Graves, D. B. (2008). Cold atmospheric plasma: Charged species and their interactions with cells and tissues. IEEE Transactions on Plasma Science, 36(4), 1441–1457. https://doi.org/10.1109/TPS.2008.2001084
  • Syed, Q. A., Ishaq, A., Rahman, U. U., Aslam, S., & Shukat, R. (2017). Pulsed electric field technology in food preservation: A review. Journal of Nutrition & Health, 6(6), 168–172. https://doi.org/10.15406/jnhfe.2017.06.00219
  • Tallon, M. J., & Kalman, D. S. (2025). The regulatory challenges of placing dietary ingredients on the European and US market. Journal of Dietary Supplements, 22(1), 9-24. https://doi.org/10.1080/19390211.2024.2308261
  • Thomas-Popo, E. R. (2021). Application of atmospheric cold plasma, ultraviolet radiation, or natural antimicrobials for control of foodborne pathogenic and spoilage microorganisms [Master’s thesis, Iowa State University].
  • Timmermans, R., Mastwijk, H., Berendsen, L., Nederhoff, A., Matser, A., Van Boekel, M., & Groot, M. N. (2019). Moderate intensity pulsed electric fields (PEF) as alternative mild preservation technology for fruit juice. International Journal of Food Microbiology, 298, 63–73. https://doi.org/10.1016/j.ijfoodmicro.2019.02.015
  • Tokuşoğlu, Ö., Alpas, H., & Bozoğlu, F. (2010). High hydrostatic pressure effects on mold flora, citrinin mycotoxin, hydroxytyrosol, oleuropein phenolics and antioxidant activity of black table olives. Innovative Food Science & Emerging Technologies, 11(2), 250–258. https://doi.org/10.1016/j.ifset.2009.11.005
  • Tsagkaropoulou, T., & Karatzas, K. A. G. (2024). Microbial species and strain heterogeneity affect resistance to high pressure processing. Innovative Food Science & Emerging Technologies, 94, 103645. https://doi.org/10.1016/j.ifset.2024.103645
  • Türkmen, F. U., & Takci, H. A. M. (2018). Ultraviolet-C and ultraviolet-B lights effect on black carrot (Daucus carota ssp. sativus) juice. J Food Meas Charac, 12(2), 1038–1046. https://doi.org/10.1007/s11694-018-9719-2
  • Van Wyk, S., Silva, F. V., & Farid, M. M. (2019). Pulsed electric field treatment of red wine: Inactivation of Brettanomyces and potential hazard caused by metal ion dissolution. Innovative Food Science & Emerging Technologies, 52, 57–65. https://doi.org/10.1016/j.ifset.2018.11.001
  • Vercammen, A., Vivijs, B., Lurquin, I., & Michiels, C. W. (2012). Germination and inactivation of Bacillus coagulans and Alicyclobacillus acidoterrestris spores by high hydrostatic pressure treatment in buffer and tomato sauce. International Journal of Food Microbiology, 152(3), 162–167. https://doi.org/10.1016/j.ijfoodmicro.2011.02.019
  • Vorobiev, E., Jemai, A. B., Bouzrara, H., Lebovka, N., & Bazhal, M. (2004). Pulsed electric field-assisted extraction of juice from food plants. In Novel food processing technologies (pp. 127–152). CRC Press. https://doi.org/10.1201/9780203997277.ch5
  • Wade, W., Scouten, A., McWatters, K., Wick, R.,, W., & Beuchat, L. (2003). Efficacy of ozone in killing Listeria monocytogenes on alfalfa seeds and sprouts and effects on sensory quality of sprouts. Journal of Food Protection, 66(1), 44–51. https://doi.org/10.4315/0362-028X-66.1.44
  • Wan, J., Coventry, J., Swiergon, P., Sanguansri, P., & Versteeg, C. (2009). Advances in innovative processing technologies for microbial inactivation and enhancement of food safety–pulsed electric field and low-temperature plasma. Trends in Food Science & Technology, 20(9), 414–424. https://doi.org/10.1016/j.tifs.2009.01.050
  • Wilson, D. R., Dabrowski, L., Stringer, S., Moezelaar, R., & Brocklehurst, T. F. (2008). High pressure in combination with elevated temperature as a method for the sterilisation of food. Trends in Food Scince & Technology, 19(6), 289–299. https://doi.org/10.1016/j.tifs.2008.01.005
  • Woldemariam, H. W., & Emire, S. A. (2019). High pressure processing of foods for microbial and mycotoxins control: Current trends and future prospects. Cogent Food & Agriculture, 5(1), 1622184. https://doi.org/10.1080/23311932.2019.1622184
  • Won, M. Y., Lee, S. J., & Min, S. C. (2017). Mandarin preservation by microwave-powered cold plasma treatment. Innovative Food Science & Emerging Technologies, 39, 25–32. https://doi.org/10.1016/j.ifset.2016.10.021
  • Wouters, P. C., Alvarez, I., & Raso, J. (2001). Critical factors determining inactivation kinetics by pulsed electric field food processing. Trends in Food Science & Technology, 12(3–4), 112–121. https://doi.org/10.1016/S0924-2244(01)00067-X
  • Wouters, P. C., Dutreux, N., Smelt, J. P., & Lelieveld, H. L. (1999). Effects of pulsed electric fields on inactivation kinetics of Listeria innocua. J AgricFood Microbiol, 65(12), 5364–5371.https://doi.org/10.1128/AEM.65.12.5364-5371.1999
  • Yildiz, S., Shin, G. Y., Franco, B. G., Tang, J., Sablani, S., & Barbosa-Cánovas, G. V. (2023). Equivalent processing for pasteurization of a pineapple juice–coconut milk blend by selected nonthermal technologies. Journal of Food Science, 88(1), 403–416. https://doi.org/10.1111/1750-3841.16403
  • Yin, R., Dai, T., Avci, P., Jorge, A. E., Hamblin, M. R. (2013). Light based anti-infectives: Ultraviolet C irradiation, photodynamic therapy, blue light, and beyond. Current Opinion in Pharmacology, 13(5), 731–762. https://doi.org/10.1016/j.coph.2013.08.009
  • Zhang, M., Oh, J. K., Cisneros-Zevallos, L., & Akbulut, M. (2013). Bactericidal effects of nonthermal low-pressure oxygen plasma on S. typhimurium LT2 attached to fresh produce surfaces. Journal of Food Engineering, 119(3), 425–432. https://doi.org/10.1016/j.jfoodeng.2013.05.045
  • Zhu, Y., Koutchma, T., Warriner, K., & Zhou, T. (2014). Reduction of patulin in apple juice products by UV light of different wavelengths in the UV-C range. Journal of Food Protection, 77(6), 963–971. https://doi.org/10.4315/0362-028x.Jfp-13-429
  • Zhuang, H., Rothrock Jr, M. J., Line, J. E., Lawrence, K. C., Gamble, G. R., Bowker, B. C., … Technologies, E. (2020). Optimization of in-package cold plasma treatment conditions for raw chicken breast meat with response surface methodology. Innovative Food Science & Emerging Technologies, 66, 102477. https://doi.org/10.1016/j.ifset.2020.102477
  • Ziuzina, D., Patil, S., Cullen, P., Boehm, D., & Bourke, P. (2014). Dielectric barrier discharge atmospheric cold plasma for inactivation of Pseudomonas aeruginosa biofilms. Plasma Medicine, 4(1–4). https://doi.org/10.1615/PlasmaMed.2014011996
  • Ziyaina, M., & Rasco, B. (2021). Inactivation of microbes by ozone in the food industry: A review. American Journal of Food Science, 15(3), 113–120. https://doi.org/10.5897/AJFS2020.2074
  • Zorlugenç, B., Zorlugenç, F. K., Öztekin, S., & Evliya, I. B. (2008). The influence of gaseous ozone and ozonated water on microbial flora and degradation of aflatoxin B1 in dried figs. Journal of Food and Toxicology, 46(12), 3593–3597. https://doi.org/10.1016/j.fct.2008.09.003
  • Zuo, H., Wang, B., Zhang, J., Zhong, Z., & Tang, Z. (2024). Research progress on bacteria-reducing pretreatment technology of meat. Journal of Food, 13(15), 2361. https://doi.org/10.3390/foods13152361
There are 188 citations in total.

Details

Primary Language English
Subjects Food Microbiology, Basic Food Processes
Journal Section Review Article
Authors

Abdul Mueez Ahmad 0009-0009-1800-8354

Publication Date December 1, 2025
Submission Date July 5, 2025
Acceptance Date September 6, 2025
Published in Issue Year 2025 Volume: 7 Issue: 2

Cite

APA Ahmad, A. M. (n.d.). Advanced physical techniques to prevent microorganisms in food. Turkish Journal of Food and Agriculture Sciences, 7(2), 138-160. https://doi.org/10.53663/turjfas.1735346

 22605      22604        23639     


17579     21244    21245   29292



21866   

Turkish Journal of Food and Agriculture Sciences (TURJFAS) is an open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is accordance with the BOAI (Budapest Open Access Initiative) definition of open access. 


 17580 

Turkish Journal of Food and Agriculture Sciences is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Journal Abbreviation: Turk J Food Agric Sci