Research Article
BibTex RIS Cite

From Micro-Teaching to Classroom Teaching: An Examination of Prospective Mathematics Teachers’ Technology-Based Tasks

Year 2020, , 668 - 705, 15.12.2020
https://doi.org/10.16949/turkbilmat.682568

Abstract

This study examines the changes and development of prospective secondary mathematics teachers’ technology-based tasks through teaching practices. The Dynamic Geometry Task Analysis model consisting of the components of mathematical depth and technological action has been chosen as the conceptual framework of the study. In this study, a qualitative research paradigm has been adopted and action research methodology involving a cyclical process has been used. Participants of the study were four prospective secondary mathematics teachers, who were enrolled in a secondary mathematics education program at a state university in Turkey. This research was carried out within the scope of a 14-week Practicum course and focused on prospective mathematics teachers’ implementations of their technology-based tasks through micro-teaching and classroom teaching. Data mainly consisted of each prospective teacher’s one technology-based task, video recordings of their teaching practices (micro-teaching and classroom teaching) and interviews. Data was analyzed by using the video analysis method to examine how and why mathematical depth and technological action of the planned tasks changed or developed during micro-teaching and classroom practices. Findings of the study indicated that prospective mathematics teachers improved the levels of mathematical depth of their tasks by making use of their planned technological actions in a more effective way from micro-teaching to classroom teaching. In particular, it became apparent that micro-teaching supported the development of prospective mathematics teachers’ technology-based tasks in terms of content and also the implementation processes of their tasks in classrooms.

References

  • Akkoç, H. (2012). Bilgisayar destekli ölçme-değerlendirme araçlarının matematik öğretimine entegrasyonuna yönelik hizmet öncesi eğitim uygulamaları ve matematik öğretmen adaylarının gelişimi. Türk Bilgisayar ve Matematik Eğitimi Dergisi, 3(2), 99-114.
  • Akyüz, D. (2016). Farklı öğretim yöntemleri ve sınıf seviyesine göre öğretmen adaylarının TPAB analizi. Türk Bilgisayar ve Matematik Eğitimi Dergisi, 7(1), 89-111.
  • Allen, D. W (1980). Micro-teaching a personal review. British Journal of Teacher Education, 6(2), 147-151.
  • Allen, D. W., & Eve, A. W. (1968). Microteaching. Theory into Practice, 7(5), 181–185.
  • Arzarello, F., Olivero, F., Paola, D., & Robutti, O. (2002). A cognitive analysis of dragging practises in Cabri environments. ZDM, 34(3), 66–72.
  • Baccaglini-Frank, A., & Mariotti, M. (2010). Generating conjectures in dynamic geometry: The maintaining dragging model. International Journal of Computers for Mathematical Learning, 15(3), 225–253.
  • Baki, A. (1996). Matematik öğretiminde bilgisayar herşey midir? Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 12(12), 135-143.
  • Berg, B. L. (2004). Qualitative research methods for the social sciences. Boston: Pearson Education.
  • Bowen, G. A. (2006). Document analysis as a qualitative research method. Qualitative Research Journal, 9(2), 27-40.
  • Bowers, J.S., & Stephens, B. (2011). Using technology to explore mathematical relationships: A framework for orienting mathematics courses for prospective teachers. Journal of Mathematics Teacher Education, 14(4), 285-304.
  • Bozkurt, A. ve Cilavdaroğlu, A. K. (2011). Matematik ve sınıf öğretmenlerinin teknolojiyi kullanma ve derslerine teknolojiyi entegre etme algıları, Kastamonu Eğitim Dergisi, 19(3), 859-870.
  • Bozkurt, G., & Yigit Koyunkaya, M. (2020). Preparing prospective mathematics teachers to design and teach technology-based lessons. In B. Barbel, B. Ruth, G. Lisa, P. Maximilian, R. Hana, S. Florian, & T. Daniel (Eds.), Proceedings of the 14th International Conference on Technology in Mathematics Teaching – ICTMT 14 (pp. 255-262). Essen, Germany: University of Duisburg-Essen.
  • Charles, C., & Mertler, C. A. (2002). Introduction to educational research. Boston: Allyn & Bacon.
  • Christou, C., Mousoulides, N., Pittalis, M., & Pitta-Pantazi, D. (2004). Proofs through exploration in dynamic geometry environments. International Journal of Science and Mathematics Education, 2(3), 339–352.
  • Clark-Wilson, A., Robutti, O., & Sinclair, N. (2014). The mathematics teacher in the digital era. Dordrecht: Springer.
  • Çiftçi, S., Taşkaya, S. M. ve Alemdar, M. (2013). Sınıf öğretmenlerinin FATİH Projesine ilişkin görüşleri. İlköğretim Online, 12(1), 227-240.
  • Donnelly, R., & Fitzmaurice, M. (2011). Towards productive reflective practice in microteaching. Innovations in Education and Teaching International, 48(3), 335-346.
  • Drijvers, P. (2012). Teachers transforming resources into orchestraitons. In G. Gueudet, B. Pepin, & L. Trouche (Eds.), From text to ‘lived’ resources: Mathematics curriculum materials and teacher development (pp. 265–281). New York: Springer.
  • Erfjord, I. (2011). Teachers’ initial orchestration of students’ dynamic geometry software use: Consequences for students’ opportunities to learn mathematics. Technology, Knowledge and Learning, 16(1), 35-54.
  • Erickson, F. (2006). Definition and analysis of data from videotape: Some research procedures and their rationales. In J.L. Green, G. Camilli, & P. B. Elmore (Eds.), Handbook of complementary methods in education research, (pp. 177–191). Mahwah, NJ: Erlbaum.
  • Griffiths, J. (2016). Bridging the school placement gap with peer micro-teaching lesson study. International Journal for Lesson and Learning Studies, 5(3), 227–238. Hollenbeck, R. M., Wray, J. A., & Fey, J. T. (2010). Technology and the teaching of mathematics. In B. J. Reys, R. E. Reys, & R. Rubenstein (Eds.), Mathematics curriculum: Issues, trends, and future directions (pp. 265–276). Reston,VA: NCTM.
  • Hollebrands, K. F. (2007). The role of a dynamic software program for geometry in the strategies high school mathematics students employ. Journal for Research in Mathematics Education, 38(2), 164–192.
  • Hölzl, R. (2001). Using dynamic geometry software to add contrast to geometric situations: A case study. International Journal of Computers for Mathematical Learning, 6(1), 63–86.
  • Hui, M. F., & Grossman, D. L. (2008). Improving teacher education through action research. New York, NY: Routledge.
  • Hur, J.W., Cullen, T., & Brush, T. (2010). Teaching for application: A model for assisting pre-service teachers with technology integration. Journal of Technology and Teacher Education, 18(1), 161-182.
  • Kayaduman, H., Sırakaya, M. ve Seferoğlu, S. S. (2011). Eğitimde FATİH projesinin öğretmenlerin yeterlik durumları açısından incelenmesi. Akademik Bilişim, 11, 123-129.
  • Kemmis, S. & McTaggart, R. (2005). Participatory action research: Communicative action and the public sphere. In N. Denzin & Y. Lincoln (Eds.), The Sage handbook of qualitative research (3rd ed., pp. 559-603). Thousand Oaks, CA: Sage.
  • Laborde, C. (2001). Integration of technology in the design of geometry tasks with Cabri-geometry. International Journal of Computers for Mathematical Learning, 6(3), 283–317.
  • Lagrange, J. B., & Ozdemir-Erdogan, E. (2009). Teachers’ emergent goals inspreadsheet-based lessons: analyzing the complexity of technology integration. Educational Studies in Mathematics, 71(1), 65–84.
  • Ledger, S., & Fischetti, J. (2019). Micro-teaching 2.0: Technology as the classroom. Australasian Journal of Educational Technology, 36(1), 37-54.
  • Ledger, S., Ersozlu, Z., & Fischetti, J. (2019). Preservice teachers’ confidence and preferred teaching strategies using TeachLivE virtual learning environment: A two-step cluster analysis. Eurasia Journal of Mathematics, Science and Technology, 15(3), 1-17.
  • Merriam, S. B., & Tisdell, E. J. (2016). Qualitative research: A guide to design and implementation (4th edition). San Francisco, CA: John Wiley & Sons.
  • Milli Eğitim Bakanlığı [MEB]. (2013). Ortaöğretim matematik dersi (9, 10, 11 ve 12.sınıflar) öğretim programı. Ankara: MEB Yayınları.
  • Milli Eğitim Bakanlığı [MEB]. (2018). Ortaöğretim matematik dersi (9, 10, 11 ve 12. Sınıflar) öğretim programı. Ankara: MEB Yayınları.
  • Milli Eğitim Bakanlığı [MEB]. (2017). Öğretmenlik mesleği genel yeterlikleri. Ankara: Öğretmen Yetiştirme ve Geliştirme Genel Müdürlüğü.
  • National Centre for Excellence in the Teaching of Mathematics -NCETM. (2014). Mastery approaches to mathematics and the new national curriculum. Retrieved August 17, 2020 from http://www.numbergym.co.uk/NGSdocs/HowNGymSupportsMasteryTeaching.pdf
  • National Council of Teachers of Mathematics [NCTM]. (2000). Principles and standards for school mathematics. Reston, VA: Author.
  • Ozgun-Koca, S. A., Meagher, M., & Edwards, M. T. (2010). Preservice Teachers' Emerging TPACK in a Technology-Rich Methods Class. Mathematics Educator, 19(2), 10-20.
  • Pamuk, S., Çakır, R., Ergun, M., Yılmaz, H. B. ve Ayas, C. (2013). Öğretmen ve öğrenci bakış açısıyla tablet PC ve etkileşimli tahta kullanımı: FATİH Projesi değerlendirmesi. Kuram ve Uygulamada Eğitim Bilimleri, 13(3), 1799-1822.
  • Patton, M. Q. (2002). Qualitative Research and Evaluative Methods. California: Sage Publications.
  • Ruthven, K. (2009). Towards a naturalistic conceptualisation of technology integration in classroom practice: The example of school mathematics. Education and Didactique, 3(1), 131–159.
  • Sinclair, M. (2003). Some implications of the results of a case study for the design of pre constructed, dynamic geometry sketches and accompanying materials. Educational Studies in Mathematics, 52(3), 289–317.
  • Smith, M. S., & Stein, M. K. (1998). Selecting and creating mathematical tasks: from research to practice. Mathematics Teaching in the Middle School, 3(5), 344-350.
  • Stylianides, G. (2008). An analytic framework of reasoning-and-proving. For the Learning of Mathematics, 28(1), 9–16.
  • Swan, M. (2007). The impact of task-based professional development on teachers’ practices and beliefs: A design research study. Journal of Mathematics Education, 10, 217-237.
  • Trocki, A. (2015). Designing and examining the effects of a dynamic geometry task analysis framework on teachers’ written Geometer’s Sketchpad tasks (Unpublished doctoral dissertation). North Carolina State University, the USA.
  • Trocki, A., & Hollebrands, K. (2018). The development of a framework for assessing dynamic geometry task quality. Digital Experiences in Mathematics Education, 4 (2-3), 110-138.
  • Türk Eğitim Derneği [TED]. (2009). Öğretmen Yeterlilikleri. Ankara: MEB Yayınları.
  • Uslu, O. ve Bümen, N. T. (2012). Effects of the professional development program on Turkish teachers: Technology ıntegration along with attitude towards ICT in education. Turkish Online Journal of Educational Technology-TOJET, 11(3), 115-127.
  • Yiğit Koyunkaya, M. (2017). Matematik öğretmeni adaylarının teknolojik pedagojik alan bilgilerinin gelişimini amaçlayan bir öğretim deneyi. Türk Bilgisayar ve Matematik Eğitimi Dergisi, 8(2), 284-322.
  • Yiğit Koyunkaya, M. ve Bozkurt, G. (2019). Öğretmen adaylarının geliştirdiği GeoGebra etkinliklerinin matematiksel derinlik ve teknolojik eylem açısından incelenmesi. Necatibey Eğitim Fakültesi Elektronik Fen ve Matematik Eğitimi Dergisi, 13(2), 511-544.
  • Zbiek, R. M. (2005). Using technology to make the power of many points with prospective mathematics teachers. In W. J. Masalaski & P. C. Elliott (Eds.), Technology-supported mathematics learning environments (pp. 295-306). Reston, VA: National Council of Teachers of Mathematics.
  • Zbiek, R., Heid, K., Blume, G., & Dick, T. (2007). Research on technology in mathematics education. In F. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 1169–1207). Charlotte: Information Age Publishing.

Mikro Öğretimden Gerçek Sınıfa: Matematik Öğretmeni Adaylarının Teknoloji Destekli Öğretimlerinin İncelenmesi

Year 2020, , 668 - 705, 15.12.2020
https://doi.org/10.16949/turkbilmat.682568

Abstract

Bu çalışma, ortaöğretim matematik öğretmeni adaylarının tasarladıkları teknoloji destekli etkinlikleri öğretme süreçlerindeki değişim ve gelişimlerini incelemektedir. Matematiksel derinlik ve teknolojik eylemin çeşidi bileşenlerinden oluşan Dinamik Geometri Etkinlik Analiz Çerçevesi çalışmanın kavramsal temelini oluşturmaktadır. Bu çalışma, nitel araştırma paradigması benimsenerek döngüsel bir süreci içeren eylem araştırması ile desenlenmiştir. Katılımcılar Türkiye'deki bir devlet üniversitesinde ortaöğretim matematik eğitimi programına kayıtlı dört matematik öğretmeni adayından oluşmaktadır. 14 hafta süren Öğretmenlik Uygulaması dersi kapsamında yürütülen bu araştırmada öğretmen adaylarının geliştirdiği etkinliklerin mikro öğretim ve sınıf içi uygulama süreçlerine odaklanılmıştır. Araştırmanın veri grubunu her bir öğretmen adayının tasarladığı bir etkinlik, bu etkinliğin uygulama video kayıtları (mikro öğretim ve sınıf içi uygulama) ve görüşme video kayıtları oluşturmaktadır. Bu verilerin analizinde özellikle video analiz yöntemi kullanılarak etkinlikte amaçlanan matematiksel derinlik ve teknolojik eylemin çeşidi bileşenlerinin plandan uygulama süreçlerine nasıl ve neden değiştiği veya geliştiği incelenmiştir. Araştırmanın bulguları, mikro öğretimden sınıfa geçiş süreçlerinde, öğretmen adaylarının etkinliklerinin matematiksel derinliğini arttırdıkları ve bu derinliği arttırmak için etkili teknolojik eylemler kullandıkları görülmektedir. Özellikle, mikro öğretim sürecinin öğretmen adaylarının hem teknoloji destekli etkinliklerinin içeriğini geliştirmelerine hem de bu etkinliklerin sınıflarda uygulama süreçlerine katkı sağladığı belirlenmiştir.

References

  • Akkoç, H. (2012). Bilgisayar destekli ölçme-değerlendirme araçlarının matematik öğretimine entegrasyonuna yönelik hizmet öncesi eğitim uygulamaları ve matematik öğretmen adaylarının gelişimi. Türk Bilgisayar ve Matematik Eğitimi Dergisi, 3(2), 99-114.
  • Akyüz, D. (2016). Farklı öğretim yöntemleri ve sınıf seviyesine göre öğretmen adaylarının TPAB analizi. Türk Bilgisayar ve Matematik Eğitimi Dergisi, 7(1), 89-111.
  • Allen, D. W (1980). Micro-teaching a personal review. British Journal of Teacher Education, 6(2), 147-151.
  • Allen, D. W., & Eve, A. W. (1968). Microteaching. Theory into Practice, 7(5), 181–185.
  • Arzarello, F., Olivero, F., Paola, D., & Robutti, O. (2002). A cognitive analysis of dragging practises in Cabri environments. ZDM, 34(3), 66–72.
  • Baccaglini-Frank, A., & Mariotti, M. (2010). Generating conjectures in dynamic geometry: The maintaining dragging model. International Journal of Computers for Mathematical Learning, 15(3), 225–253.
  • Baki, A. (1996). Matematik öğretiminde bilgisayar herşey midir? Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 12(12), 135-143.
  • Berg, B. L. (2004). Qualitative research methods for the social sciences. Boston: Pearson Education.
  • Bowen, G. A. (2006). Document analysis as a qualitative research method. Qualitative Research Journal, 9(2), 27-40.
  • Bowers, J.S., & Stephens, B. (2011). Using technology to explore mathematical relationships: A framework for orienting mathematics courses for prospective teachers. Journal of Mathematics Teacher Education, 14(4), 285-304.
  • Bozkurt, A. ve Cilavdaroğlu, A. K. (2011). Matematik ve sınıf öğretmenlerinin teknolojiyi kullanma ve derslerine teknolojiyi entegre etme algıları, Kastamonu Eğitim Dergisi, 19(3), 859-870.
  • Bozkurt, G., & Yigit Koyunkaya, M. (2020). Preparing prospective mathematics teachers to design and teach technology-based lessons. In B. Barbel, B. Ruth, G. Lisa, P. Maximilian, R. Hana, S. Florian, & T. Daniel (Eds.), Proceedings of the 14th International Conference on Technology in Mathematics Teaching – ICTMT 14 (pp. 255-262). Essen, Germany: University of Duisburg-Essen.
  • Charles, C., & Mertler, C. A. (2002). Introduction to educational research. Boston: Allyn & Bacon.
  • Christou, C., Mousoulides, N., Pittalis, M., & Pitta-Pantazi, D. (2004). Proofs through exploration in dynamic geometry environments. International Journal of Science and Mathematics Education, 2(3), 339–352.
  • Clark-Wilson, A., Robutti, O., & Sinclair, N. (2014). The mathematics teacher in the digital era. Dordrecht: Springer.
  • Çiftçi, S., Taşkaya, S. M. ve Alemdar, M. (2013). Sınıf öğretmenlerinin FATİH Projesine ilişkin görüşleri. İlköğretim Online, 12(1), 227-240.
  • Donnelly, R., & Fitzmaurice, M. (2011). Towards productive reflective practice in microteaching. Innovations in Education and Teaching International, 48(3), 335-346.
  • Drijvers, P. (2012). Teachers transforming resources into orchestraitons. In G. Gueudet, B. Pepin, & L. Trouche (Eds.), From text to ‘lived’ resources: Mathematics curriculum materials and teacher development (pp. 265–281). New York: Springer.
  • Erfjord, I. (2011). Teachers’ initial orchestration of students’ dynamic geometry software use: Consequences for students’ opportunities to learn mathematics. Technology, Knowledge and Learning, 16(1), 35-54.
  • Erickson, F. (2006). Definition and analysis of data from videotape: Some research procedures and their rationales. In J.L. Green, G. Camilli, & P. B. Elmore (Eds.), Handbook of complementary methods in education research, (pp. 177–191). Mahwah, NJ: Erlbaum.
  • Griffiths, J. (2016). Bridging the school placement gap with peer micro-teaching lesson study. International Journal for Lesson and Learning Studies, 5(3), 227–238. Hollenbeck, R. M., Wray, J. A., & Fey, J. T. (2010). Technology and the teaching of mathematics. In B. J. Reys, R. E. Reys, & R. Rubenstein (Eds.), Mathematics curriculum: Issues, trends, and future directions (pp. 265–276). Reston,VA: NCTM.
  • Hollebrands, K. F. (2007). The role of a dynamic software program for geometry in the strategies high school mathematics students employ. Journal for Research in Mathematics Education, 38(2), 164–192.
  • Hölzl, R. (2001). Using dynamic geometry software to add contrast to geometric situations: A case study. International Journal of Computers for Mathematical Learning, 6(1), 63–86.
  • Hui, M. F., & Grossman, D. L. (2008). Improving teacher education through action research. New York, NY: Routledge.
  • Hur, J.W., Cullen, T., & Brush, T. (2010). Teaching for application: A model for assisting pre-service teachers with technology integration. Journal of Technology and Teacher Education, 18(1), 161-182.
  • Kayaduman, H., Sırakaya, M. ve Seferoğlu, S. S. (2011). Eğitimde FATİH projesinin öğretmenlerin yeterlik durumları açısından incelenmesi. Akademik Bilişim, 11, 123-129.
  • Kemmis, S. & McTaggart, R. (2005). Participatory action research: Communicative action and the public sphere. In N. Denzin & Y. Lincoln (Eds.), The Sage handbook of qualitative research (3rd ed., pp. 559-603). Thousand Oaks, CA: Sage.
  • Laborde, C. (2001). Integration of technology in the design of geometry tasks with Cabri-geometry. International Journal of Computers for Mathematical Learning, 6(3), 283–317.
  • Lagrange, J. B., & Ozdemir-Erdogan, E. (2009). Teachers’ emergent goals inspreadsheet-based lessons: analyzing the complexity of technology integration. Educational Studies in Mathematics, 71(1), 65–84.
  • Ledger, S., & Fischetti, J. (2019). Micro-teaching 2.0: Technology as the classroom. Australasian Journal of Educational Technology, 36(1), 37-54.
  • Ledger, S., Ersozlu, Z., & Fischetti, J. (2019). Preservice teachers’ confidence and preferred teaching strategies using TeachLivE virtual learning environment: A two-step cluster analysis. Eurasia Journal of Mathematics, Science and Technology, 15(3), 1-17.
  • Merriam, S. B., & Tisdell, E. J. (2016). Qualitative research: A guide to design and implementation (4th edition). San Francisco, CA: John Wiley & Sons.
  • Milli Eğitim Bakanlığı [MEB]. (2013). Ortaöğretim matematik dersi (9, 10, 11 ve 12.sınıflar) öğretim programı. Ankara: MEB Yayınları.
  • Milli Eğitim Bakanlığı [MEB]. (2018). Ortaöğretim matematik dersi (9, 10, 11 ve 12. Sınıflar) öğretim programı. Ankara: MEB Yayınları.
  • Milli Eğitim Bakanlığı [MEB]. (2017). Öğretmenlik mesleği genel yeterlikleri. Ankara: Öğretmen Yetiştirme ve Geliştirme Genel Müdürlüğü.
  • National Centre for Excellence in the Teaching of Mathematics -NCETM. (2014). Mastery approaches to mathematics and the new national curriculum. Retrieved August 17, 2020 from http://www.numbergym.co.uk/NGSdocs/HowNGymSupportsMasteryTeaching.pdf
  • National Council of Teachers of Mathematics [NCTM]. (2000). Principles and standards for school mathematics. Reston, VA: Author.
  • Ozgun-Koca, S. A., Meagher, M., & Edwards, M. T. (2010). Preservice Teachers' Emerging TPACK in a Technology-Rich Methods Class. Mathematics Educator, 19(2), 10-20.
  • Pamuk, S., Çakır, R., Ergun, M., Yılmaz, H. B. ve Ayas, C. (2013). Öğretmen ve öğrenci bakış açısıyla tablet PC ve etkileşimli tahta kullanımı: FATİH Projesi değerlendirmesi. Kuram ve Uygulamada Eğitim Bilimleri, 13(3), 1799-1822.
  • Patton, M. Q. (2002). Qualitative Research and Evaluative Methods. California: Sage Publications.
  • Ruthven, K. (2009). Towards a naturalistic conceptualisation of technology integration in classroom practice: The example of school mathematics. Education and Didactique, 3(1), 131–159.
  • Sinclair, M. (2003). Some implications of the results of a case study for the design of pre constructed, dynamic geometry sketches and accompanying materials. Educational Studies in Mathematics, 52(3), 289–317.
  • Smith, M. S., & Stein, M. K. (1998). Selecting and creating mathematical tasks: from research to practice. Mathematics Teaching in the Middle School, 3(5), 344-350.
  • Stylianides, G. (2008). An analytic framework of reasoning-and-proving. For the Learning of Mathematics, 28(1), 9–16.
  • Swan, M. (2007). The impact of task-based professional development on teachers’ practices and beliefs: A design research study. Journal of Mathematics Education, 10, 217-237.
  • Trocki, A. (2015). Designing and examining the effects of a dynamic geometry task analysis framework on teachers’ written Geometer’s Sketchpad tasks (Unpublished doctoral dissertation). North Carolina State University, the USA.
  • Trocki, A., & Hollebrands, K. (2018). The development of a framework for assessing dynamic geometry task quality. Digital Experiences in Mathematics Education, 4 (2-3), 110-138.
  • Türk Eğitim Derneği [TED]. (2009). Öğretmen Yeterlilikleri. Ankara: MEB Yayınları.
  • Uslu, O. ve Bümen, N. T. (2012). Effects of the professional development program on Turkish teachers: Technology ıntegration along with attitude towards ICT in education. Turkish Online Journal of Educational Technology-TOJET, 11(3), 115-127.
  • Yiğit Koyunkaya, M. (2017). Matematik öğretmeni adaylarının teknolojik pedagojik alan bilgilerinin gelişimini amaçlayan bir öğretim deneyi. Türk Bilgisayar ve Matematik Eğitimi Dergisi, 8(2), 284-322.
  • Yiğit Koyunkaya, M. ve Bozkurt, G. (2019). Öğretmen adaylarının geliştirdiği GeoGebra etkinliklerinin matematiksel derinlik ve teknolojik eylem açısından incelenmesi. Necatibey Eğitim Fakültesi Elektronik Fen ve Matematik Eğitimi Dergisi, 13(2), 511-544.
  • Zbiek, R. M. (2005). Using technology to make the power of many points with prospective mathematics teachers. In W. J. Masalaski & P. C. Elliott (Eds.), Technology-supported mathematics learning environments (pp. 295-306). Reston, VA: National Council of Teachers of Mathematics.
  • Zbiek, R., Heid, K., Blume, G., & Dick, T. (2007). Research on technology in mathematics education. In F. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 1169–1207). Charlotte: Information Age Publishing.
There are 53 citations in total.

Details

Primary Language English
Subjects Other Fields of Education
Journal Section Research Articles
Authors

Gülay Bozkurt 0000-0001-9573-5920

Melike Yiğit Koyunkaya 0000-0002-7872-3917

Publication Date December 15, 2020
Published in Issue Year 2020

Cite

APA Bozkurt, G., & Yiğit Koyunkaya, M. (2020). From Micro-Teaching to Classroom Teaching: An Examination of Prospective Mathematics Teachers’ Technology-Based Tasks. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 11(3), 668-705. https://doi.org/10.16949/turkbilmat.682568
AMA Bozkurt G, Yiğit Koyunkaya M. From Micro-Teaching to Classroom Teaching: An Examination of Prospective Mathematics Teachers’ Technology-Based Tasks. Turkish Journal of Computer and Mathematics Education (TURCOMAT). December 2020;11(3):668-705. doi:10.16949/turkbilmat.682568
Chicago Bozkurt, Gülay, and Melike Yiğit Koyunkaya. “From Micro-Teaching to Classroom Teaching: An Examination of Prospective Mathematics Teachers’ Technology-Based Tasks”. Turkish Journal of Computer and Mathematics Education (TURCOMAT) 11, no. 3 (December 2020): 668-705. https://doi.org/10.16949/turkbilmat.682568.
EndNote Bozkurt G, Yiğit Koyunkaya M (December 1, 2020) From Micro-Teaching to Classroom Teaching: An Examination of Prospective Mathematics Teachers’ Technology-Based Tasks. Turkish Journal of Computer and Mathematics Education (TURCOMAT) 11 3 668–705.
IEEE G. Bozkurt and M. Yiğit Koyunkaya, “From Micro-Teaching to Classroom Teaching: An Examination of Prospective Mathematics Teachers’ Technology-Based Tasks”, Turkish Journal of Computer and Mathematics Education (TURCOMAT), vol. 11, no. 3, pp. 668–705, 2020, doi: 10.16949/turkbilmat.682568.
ISNAD Bozkurt, Gülay - Yiğit Koyunkaya, Melike. “From Micro-Teaching to Classroom Teaching: An Examination of Prospective Mathematics Teachers’ Technology-Based Tasks”. Turkish Journal of Computer and Mathematics Education (TURCOMAT) 11/3 (December 2020), 668-705. https://doi.org/10.16949/turkbilmat.682568.
JAMA Bozkurt G, Yiğit Koyunkaya M. From Micro-Teaching to Classroom Teaching: An Examination of Prospective Mathematics Teachers’ Technology-Based Tasks. Turkish Journal of Computer and Mathematics Education (TURCOMAT). 2020;11:668–705.
MLA Bozkurt, Gülay and Melike Yiğit Koyunkaya. “From Micro-Teaching to Classroom Teaching: An Examination of Prospective Mathematics Teachers’ Technology-Based Tasks”. Turkish Journal of Computer and Mathematics Education (TURCOMAT), vol. 11, no. 3, 2020, pp. 668-05, doi:10.16949/turkbilmat.682568.
Vancouver Bozkurt G, Yiğit Koyunkaya M. From Micro-Teaching to Classroom Teaching: An Examination of Prospective Mathematics Teachers’ Technology-Based Tasks. Turkish Journal of Computer and Mathematics Education (TURCOMAT). 2020;11(3):668-705.