Research Article
BibTex RIS Cite

Schiff base catalysts for the oxidation of benzyl alcohol to benzaldehyde

Year 2024, , 129 - 137, 20.12.2024
https://doi.org/10.51435/turkjac.1584286

Abstract

Catalysts are crucial in promoting sustainability by facilitating chemical transformations under milder conditions, saving energy, and reducing pollution and by-product formation. In this work, we aimed to synthesize and characterize Schiff base complexes of copper, nickel, cobalt in alcohol oxidation, three asymmetric Schiff bases derived from 2,2’-( propenylenedioxy) di benzaldehyde bis(thiosemicarbazone) After that, catalytic activity of Schiff base complexes (Cu(II), Ni(II) and Co(II)) were investigated on the benzyl alcohol oxidation. Ni(II) complex served as an effective catalyst in converting benzyl alcohol to benzaldehyde with 89% conversion in the presence of TBHP oxidant. Moreover, in the catalytic tests performed using TBHP, H2O2 and m-CPBA oxidants, the highest product conversion (95% benzaldehyde conversion) was achieved in the presence of TBHP. In this study, in which the effect of the substrate-catalyst ratio on catalytic activity was investigated, the reaction was completed at the end of 1 hour at 90 °C in DMF solvent using 2.05x10-6 mol catalyst, 1.02x10-3 mol oxidant, and homogeneous catalysis system.

References

  • Ou, H.W., Lo, K.H., Du, W.T., Lu, W.Y., Chuang, W.J., Huang, B.H., Chen, H.Y., Lin, C.C., Synthesis of Sodium Complexes Supported with NNO-Tridentate Schiff Base Ligands and Their Applications in the Ring-Opening Polymerization of l-Lactide, Inorg Chem, 2016, 55, 1423–1432.
  • Gijsman, P., Applied Plastics Engineering Handbook (Second Edition), 18 – Polymer Stabilization, Editors: Myer Kutz, 2017, Plastics Design Library, William Andrew Publishing.
  • Vasanthi, B.J., Ravikumar, L., Synthesis and characterization of new poly(azomethine ester)s having phenylthiourea units, Eur Polym J, 2007, 43, 4325–4331.
  • O'Donnell, M.J., The Enantioselective Synthesis of α-Amino Acids by Phase-Transfer Catalysis with Achiral Schiff Base Esters, Am Chem Soc, 2004, 37, 506–517.
  • Silva, R.C., Canisares, F.S.M., Mutti, A.M.G., Pires, A.M., Lima, S.A.M., Small Schiff base molecules derived from salicylaldehyde as colorimetric and fluorescent neutral-to-basic pH sensors, Dyes Pigments, 2023, 213, 111191.
  • Kaylor, J.J., Xu, T., Ingram, N.T., Tsan, A., Hakobyan, H., Fain, G.L., Travis, G.H., Blue light regenerates functional visual pigments in mammals through a retinyl-phospholipid intermediate, Nat Commun, 2017, 8, 16.
  • Wahba, O.A.G., Hassan, A.M., Naser, A.M., Hanafi, A.M., Preparation and Spectroscopic studies of some copper and nickel Schiff base complexes and their applications as coloring pigments in the protective paints industry, Egypt J Chem, 2017, 60, 25–40.
  • Mohan, N., Sreejith, S.S., Begum, P.M.S., Prathapachandra Kurup, M.R., Dual responsive sales-type Schiff bases for the effective detection of l-arginine via a static the quenching mechanism, New J Chem, 2018, 15.
  • Kılınç, D., Şahin, Ö., Performance of Zn-Schiff Base complex catalyst in NaBH4 hydrolysis reaction, Int J Hydrogen Energy, 2020, 45, 34783–34792.
  • Mahdavi, V., Mardani, M., Mn(Salen)Cl complexes immobilized on SBA-15 functionalized with amine as an efficient, selective, and recyclable catalyst for benzyl alcohol oxidation by TBHP: the effects of Mn loading and reaction conditions, Res Intermed, 2015, 41, 8907–8927.
  • Dayan, S., Tercan, M., Özdemir, F.A., Aykutoğlu, G., Özdemir, N., Şerbetçi, Z., Dinçer, M., Dayan, O., Catalytic and biological activities of homoleptic palladium(II) complexes bearing 2-aminobenzothiazole moiety, Polyhedron, 2021, 199, 115106.
  • Ofem, M.I., Louis, H., Agwupuye, J.A., Ameuru, U.S., Apebende, G.C., O, G.E., Terkumbur, O., Joseph, M., Neksumi, A., Ayi, A., Synthesis, spectral characterization, and theoretical investigation of the photovoltaic properties of (E)-6-(4-(dimethylamino)phenyl)diazenyl)-2-octyl-benzoisoquinoline-1, 3-dione, BMC Chem, 2022, 16, 109.
  • Turan, N., Buldurun, K., Bursal, E., Mahmoudi, G., Pd(II)-Schiff base complexes: Synthesis, characterization, Suzuki–Miyaura and Mizoroki–Heck cross-coupling reactions, enzyme inhibition and antioxidant activities, J Organomet Chem, 2022, 970–971, 122370.
  • Hkiria, S., Touil, S., Samarat, A., Sémeril, D., Palladium-catalyzed Suzuki–Miyaura cross-coupling with α-amino phosphonates based on 1,3,4-oxadiazole as ligands, C R Chim, 2022, 25, 53–65.
  • Sarmah, P., Das, B.K., Phukan, P., Novel dicopper(II)-tetra carboxylates as catalysts for selective oxidation of benzyl alcohols with aqueous TBHP, Catal Commun, 2010, 11, 932–935.
  • Saka, E.T., Tekintas, K., Light-driven photodegradation of 4-nitrophenol with novel Co and Cu phthalocyanine in aqueous media, J Mol Struct, 2020, 1215, 128189.
  • Saka, E.T., Acar, I., Bıyıklıoğlu, Z., Kantekin, H., Kani, I., Synthesis and characterization of peripheral and non-peripheral substituted Co(II) phthalocyanines and their catalytic activity in styrene oxidation, Synth Met, 2013, 169, 12.
  • Gokce, S., Saka, E.T., Bıyıklıoğlu, Z., Kantekin, H., Synthesis, characterization of metal-free, metal phthalocyanines and catalytic activity of cobalt phthalocyanine in cyclohexene oxidation, Synth Met, 2013, 176, 108.
  • Song, G.L., Feng, L., Xu, J., Zhu, H.J., Liquid-phase oxidation of toluene to benzaldehyde with molecular oxygen catalyzed by copper nanoparticles supported on graphene, Res Chem Intermed, 2018, 44, 4989.
  • Abednatanzi, S., Abbasi, A., Masteri-Farahani, M., Immobilization of catalytically active polyoxotungstate into ionic liquid-modified MIL-100(Fe): A recyclable catalyst for selective oxidation of benzyl alcohol, Cat Com, 2017, 96, 6.
  • Hamza, A., Srinivas, D., Selective Oxidation of Benzyl Alcohol Over Copper Phthalocyanine Immobilized on MCM-41, Catal Lett, 2009, 128, 434.
  • Wang, L.Y., Pan, D., Zhou, M., Liang, Q., Li, Z.Y., Effect of phthalocyanines supported carbon nanotube for the catalytic oxidation of benzyl alcohol, Solid State Sci, 2021, 113, 106546.
  • Bisz, E., Podchorodecka, P., Li, H., Ochedzan-Siodłak, W., An, J., Szostak, M., Sequential Iron-Catalyzed C(sp2)–C(sp3) Cross-Coupling of Chlorobenzamides/Chemoselective Amide Reduction and Reductive Deuteration to Benzylic Alcohols, Molecules, 2023, 28, 223.
  • Meng, C., Yang, K., Fu, X., Yuan, R., Photocatalytic Oxidation of Benzyl Alcohol by Homogeneous CuCl2/Solvent: A Model System to Explore the Role of Molecular Oxygen, ACS Catal, 2015, 5, 6, 3760–3766.
  • Pan, F.-F., Guo, P., Huang, X., Shu, X.-Z., Synthesis of Dibenzyls by Nickel-Catalyzed Homocoupling of Benzyl Alcohols, Synthesis, 2021, 53(17), 3094–3100.
  • Hao, Z., Gao, T., Zhou, X., Ma, Z., Han, Z., Lu, G.L., Nickel(II) complexes bearing 8-hydroxyquinoline-imine ligands: Synthesis and catalysis in the hydrosilylation of aldehydes and ketones, J Mol Struct, 2023, 1294, 136539.
  • Karaböcek, N., Küçükdumlu, A., Ekmekcioğlu, P., Karaböcek, S., Synthesis and Structural Studies of 2,2'-[(2E,5E)-hexane-2,5-diylidenedi-nitrilo]-dibenzenethiol and 2-Hydroxybenzaldehyde (2E,5E)-hexane-2,5-diylidenehydrazone ligands and their Mononuclear Cu(II) and Ni(II) Complexes, J Macromol Sci A, 2009, 46, 1007–1014.
  • Karaböcek, N., Küçükdumlu, A., Karaböcek, S., Synthesis and Structural Studies of (2E,3E)-3-[(6-{[(1E,2E)-2-(Hydroxyimino)-1-Methylpropylidene]Amino}Pyridin-2-yl) İmino]Butan-2-One Oxime, Ligand And İts Mono-, Di- And Trinuclear Copper(II) Complexes, Transit Met Chem, 2006, 31, 938-942.
  • Golcuk, K., Altun, A., Kumru, M., Spectroscopic and thermal studies of Mn(II), Co(II) and Ni(II) bromide m-methylaniline complexes, J Mol Struct, 2003, 657, 385–393.
  • Cotton, F.A., Wilkinson, G., Murillo, C.A., Bochmann, M., Advanced inorganic chemistry. 6th Edition, 1999, Wiley, New York.
  • Allan, J.R., Structural and Thermal Studies of The Chloro Complexes of Cobalt, Nickel and Copper with 2,6-Diaminopyridine and Assessment of their Suitability as Antistatic Additives for Polyethylene, Thermochim Acta, 1992, 208, 125–131.
  • Golcuk, K., Altun, A., Kumru, M., Spectroscopic and thermal studies of Mn(II), Co(II) and Ni(II) bromide m-methylaniline complexes, J Mol Struct, 2003, 657, 385–393.
  • Grabaric, Z., Koprivanac, N., Papic, S., Parac-Osterman, D., Matanic, H., Synthesis, Application Biodegradation of a Chromium Azomethine Dye, Dyes Pigment, 1993, 23, 255–265.
  • Allan, J.R., Brown, D.H., Nuttall, R.H., Sharp, D.W.A., The thermal decomposition of metal complexes—III: The decomposition of some pyridine and substituted-pyridine complexes of cobalt(II) halides, J Inorg Nucl Chem, 1964, 26, 1895–1902.
  • El-Asmy, E.T., Jeragh, B., Ali, M., Spectral, thermal, molecular modeling and biological studies on mono- and binuclear complexes derived from oxalo bis(2,3-butanedionehydrazone), Chem Cent J, 2015.
  • Amer, S., El-Wakiel, N., El-Ghamry, H., Synthesis, spectral, antitumor and antimicrobial studies on Cu(II) complexes of purine and triazole Schiff base derivatives, J Mol Struct, 2013, 1049, 326–335.
  • Bardakçı, T., Altun, T., Kurtulus, A., Golcuk, K., Kumru, M., Synthesis, structural, spectral (FT-IR, FT-Ra, and UV-Vis), thermal, and density functional studies on p-methyl aniline complexes of Mn(II), Co(II), and Ni(II) bromides, J Mol Struct, 2015, 1100, 475–485.
  • Studer, A., Curran, D.P., Catalysis of Radical Reactions: A Radical Chemistry Perspective, Angew Chem Int Ed Engl, 2016, 55, 58–102.
  • Martemucci, G., Costagliola, C., Mariano, M., D’andrea, L., Napolitano, P., D’Alessandro, A.G., Free radical properties, source and targets, antioxidant consumption and health, Oxygen, 2022, 2, 48–78.
  • Wen, X., Ma, Y., Chen, J., Wang, B., A synthetically useful catalytic system for aliphatic C-H oxidation with a nonheme cobalt complex and m-CPBA, Org Biomol Chem, 2024, 22, 5729–5733.
  • Balamurugan, M., Suresh, E., Palaniandavar, M., μ-Oxo-bridged diiron(III) complexes of tripodal 4N ligands as catalysts for alkane hydroxylation reaction using m-CPBA as an oxidant: substrate vs. self hydroxylation, RSC Adv, 2021, 11, 21514–21526.
  • Nagataki, T., Itoh, S., Catalytic Alkane Hydroxylation Reaction with Nickel(II) Complexes Supported by Di- and Triphenol Ligands, Chem Lett, 2007, 36, 748.
  • Kani, I., Taskinlar, I., Uzel, Z., Avan, I., Catalytic oxidation of thymol and carvacrol with Mn(II)-benzoylbenzoate-bipyridine complex, Polyhedron, 2024, 249, 116772.
  • Pourali, A.R., Cheraghi-Parvin, M., Omidi-Ghallemohamadi, M., Synthesis of Cu(II) Schiff base complex supported on multi-wall carbon nanotube for the oxidation of benzyl alcohols, Inorg Chem Commun, 2023, 155, 111099.
  • Czepa, W., Fik, M.A., Witomska, S., Kubicki, M., Consiglio, G., Pawluc, P., Patroniak, V., Simple Schiff-Base Cu(II) Complexes as Efficient Catalysts for Benzyl Alcohol Oxidation, ChemistrySelect, 2018, 3(32), 9504–9509.
  • Sharif, M.A., Najafi, G.R., Nakhjiri, M.T., Co-Schiff base complexes functionalized on graphene as efficient heterogeneous nanocatalysts for alcohols oxidation, Inorg Nano-Met Chem, 2023, Early Access.
  • AlSaeedi, S., Abdel-Rahman, L.H., Abu-Dief, A.M., Abdel-Fatah, S.M., Alotaibi, T.M., Alsalme, A.M., Nafady, A., Catalytic Oxidation of Benzyl Alcohol Using Nanosized Cu/Ni Schiff-Base Complexes and Their Metal Oxide Nanoparticles, Catalysts, 2018, 8(10), 452.
  • Lagerspets, E., Lagerblom, K., Heliövaara, E., Hiltunen, O.M., Moslova, K., Nieger, M., Repo, T., Schiff base Cu(I) catalyst for aerobic oxidation of primary alcohols, Mol Catal, 2019, 468, 75–79.
  • Tayebani, M., Shafaat, B., Iravani, M., Hydrogen peroxide oxidation of primary alcohols by thiosemicarbazide Schiff base metal complexes, Iran J Chem, 2015, 5(3), 213–221.
  • Hatefi-Ardakani, M., Saeednia, S., Pakdin-Parizi, Z., Rafeezadeh, M., Efficient and selective oxidation of alcohols with tert-BuOOH catalyzed by a dioxomolybdenum(VI) Schiff base complex under organic solvent-free conditions, Res Chem Intermed, 2016, 42(10), 7223–7230.
  • Sutradhar, M., Martins, M.G., Simoes, D.H.B.G.O.R., Serodio, R.M.N., Lapa, H.M., Alegria, E.C.B.A., da Silva, M.F.C.G., Pombeiro, A.J.L., Ultrasound and photo-assisted oxidation of toluene and benzyl alcohol with oxidovanadium(V) complexes, Appl Catal A Gen, 2022, 638, 118623.
  • Sarkheil, M., Lashanizadegan, M., Copper(II) Schiff Base Complex Immobilized on Superparamagnetic Fe3O4@SiO2 as a Magnetically Separable Nanocatalyst for Oxidation of Alkenes and Alcohols, Appl Organomet Chem, 2017, 31(10), e3726.

Schiff base catalysts for the oxidation of benzyl alcohol to benzaldehyde

Year 2024, , 129 - 137, 20.12.2024
https://doi.org/10.51435/turkjac.1584286

Abstract

References

  • Ou, H.W., Lo, K.H., Du, W.T., Lu, W.Y., Chuang, W.J., Huang, B.H., Chen, H.Y., Lin, C.C., Synthesis of Sodium Complexes Supported with NNO-Tridentate Schiff Base Ligands and Their Applications in the Ring-Opening Polymerization of l-Lactide, Inorg Chem, 2016, 55, 1423–1432.
  • Gijsman, P., Applied Plastics Engineering Handbook (Second Edition), 18 – Polymer Stabilization, Editors: Myer Kutz, 2017, Plastics Design Library, William Andrew Publishing.
  • Vasanthi, B.J., Ravikumar, L., Synthesis and characterization of new poly(azomethine ester)s having phenylthiourea units, Eur Polym J, 2007, 43, 4325–4331.
  • O'Donnell, M.J., The Enantioselective Synthesis of α-Amino Acids by Phase-Transfer Catalysis with Achiral Schiff Base Esters, Am Chem Soc, 2004, 37, 506–517.
  • Silva, R.C., Canisares, F.S.M., Mutti, A.M.G., Pires, A.M., Lima, S.A.M., Small Schiff base molecules derived from salicylaldehyde as colorimetric and fluorescent neutral-to-basic pH sensors, Dyes Pigments, 2023, 213, 111191.
  • Kaylor, J.J., Xu, T., Ingram, N.T., Tsan, A., Hakobyan, H., Fain, G.L., Travis, G.H., Blue light regenerates functional visual pigments in mammals through a retinyl-phospholipid intermediate, Nat Commun, 2017, 8, 16.
  • Wahba, O.A.G., Hassan, A.M., Naser, A.M., Hanafi, A.M., Preparation and Spectroscopic studies of some copper and nickel Schiff base complexes and their applications as coloring pigments in the protective paints industry, Egypt J Chem, 2017, 60, 25–40.
  • Mohan, N., Sreejith, S.S., Begum, P.M.S., Prathapachandra Kurup, M.R., Dual responsive sales-type Schiff bases for the effective detection of l-arginine via a static the quenching mechanism, New J Chem, 2018, 15.
  • Kılınç, D., Şahin, Ö., Performance of Zn-Schiff Base complex catalyst in NaBH4 hydrolysis reaction, Int J Hydrogen Energy, 2020, 45, 34783–34792.
  • Mahdavi, V., Mardani, M., Mn(Salen)Cl complexes immobilized on SBA-15 functionalized with amine as an efficient, selective, and recyclable catalyst for benzyl alcohol oxidation by TBHP: the effects of Mn loading and reaction conditions, Res Intermed, 2015, 41, 8907–8927.
  • Dayan, S., Tercan, M., Özdemir, F.A., Aykutoğlu, G., Özdemir, N., Şerbetçi, Z., Dinçer, M., Dayan, O., Catalytic and biological activities of homoleptic palladium(II) complexes bearing 2-aminobenzothiazole moiety, Polyhedron, 2021, 199, 115106.
  • Ofem, M.I., Louis, H., Agwupuye, J.A., Ameuru, U.S., Apebende, G.C., O, G.E., Terkumbur, O., Joseph, M., Neksumi, A., Ayi, A., Synthesis, spectral characterization, and theoretical investigation of the photovoltaic properties of (E)-6-(4-(dimethylamino)phenyl)diazenyl)-2-octyl-benzoisoquinoline-1, 3-dione, BMC Chem, 2022, 16, 109.
  • Turan, N., Buldurun, K., Bursal, E., Mahmoudi, G., Pd(II)-Schiff base complexes: Synthesis, characterization, Suzuki–Miyaura and Mizoroki–Heck cross-coupling reactions, enzyme inhibition and antioxidant activities, J Organomet Chem, 2022, 970–971, 122370.
  • Hkiria, S., Touil, S., Samarat, A., Sémeril, D., Palladium-catalyzed Suzuki–Miyaura cross-coupling with α-amino phosphonates based on 1,3,4-oxadiazole as ligands, C R Chim, 2022, 25, 53–65.
  • Sarmah, P., Das, B.K., Phukan, P., Novel dicopper(II)-tetra carboxylates as catalysts for selective oxidation of benzyl alcohols with aqueous TBHP, Catal Commun, 2010, 11, 932–935.
  • Saka, E.T., Tekintas, K., Light-driven photodegradation of 4-nitrophenol with novel Co and Cu phthalocyanine in aqueous media, J Mol Struct, 2020, 1215, 128189.
  • Saka, E.T., Acar, I., Bıyıklıoğlu, Z., Kantekin, H., Kani, I., Synthesis and characterization of peripheral and non-peripheral substituted Co(II) phthalocyanines and their catalytic activity in styrene oxidation, Synth Met, 2013, 169, 12.
  • Gokce, S., Saka, E.T., Bıyıklıoğlu, Z., Kantekin, H., Synthesis, characterization of metal-free, metal phthalocyanines and catalytic activity of cobalt phthalocyanine in cyclohexene oxidation, Synth Met, 2013, 176, 108.
  • Song, G.L., Feng, L., Xu, J., Zhu, H.J., Liquid-phase oxidation of toluene to benzaldehyde with molecular oxygen catalyzed by copper nanoparticles supported on graphene, Res Chem Intermed, 2018, 44, 4989.
  • Abednatanzi, S., Abbasi, A., Masteri-Farahani, M., Immobilization of catalytically active polyoxotungstate into ionic liquid-modified MIL-100(Fe): A recyclable catalyst for selective oxidation of benzyl alcohol, Cat Com, 2017, 96, 6.
  • Hamza, A., Srinivas, D., Selective Oxidation of Benzyl Alcohol Over Copper Phthalocyanine Immobilized on MCM-41, Catal Lett, 2009, 128, 434.
  • Wang, L.Y., Pan, D., Zhou, M., Liang, Q., Li, Z.Y., Effect of phthalocyanines supported carbon nanotube for the catalytic oxidation of benzyl alcohol, Solid State Sci, 2021, 113, 106546.
  • Bisz, E., Podchorodecka, P., Li, H., Ochedzan-Siodłak, W., An, J., Szostak, M., Sequential Iron-Catalyzed C(sp2)–C(sp3) Cross-Coupling of Chlorobenzamides/Chemoselective Amide Reduction and Reductive Deuteration to Benzylic Alcohols, Molecules, 2023, 28, 223.
  • Meng, C., Yang, K., Fu, X., Yuan, R., Photocatalytic Oxidation of Benzyl Alcohol by Homogeneous CuCl2/Solvent: A Model System to Explore the Role of Molecular Oxygen, ACS Catal, 2015, 5, 6, 3760–3766.
  • Pan, F.-F., Guo, P., Huang, X., Shu, X.-Z., Synthesis of Dibenzyls by Nickel-Catalyzed Homocoupling of Benzyl Alcohols, Synthesis, 2021, 53(17), 3094–3100.
  • Hao, Z., Gao, T., Zhou, X., Ma, Z., Han, Z., Lu, G.L., Nickel(II) complexes bearing 8-hydroxyquinoline-imine ligands: Synthesis and catalysis in the hydrosilylation of aldehydes and ketones, J Mol Struct, 2023, 1294, 136539.
  • Karaböcek, N., Küçükdumlu, A., Ekmekcioğlu, P., Karaböcek, S., Synthesis and Structural Studies of 2,2'-[(2E,5E)-hexane-2,5-diylidenedi-nitrilo]-dibenzenethiol and 2-Hydroxybenzaldehyde (2E,5E)-hexane-2,5-diylidenehydrazone ligands and their Mononuclear Cu(II) and Ni(II) Complexes, J Macromol Sci A, 2009, 46, 1007–1014.
  • Karaböcek, N., Küçükdumlu, A., Karaböcek, S., Synthesis and Structural Studies of (2E,3E)-3-[(6-{[(1E,2E)-2-(Hydroxyimino)-1-Methylpropylidene]Amino}Pyridin-2-yl) İmino]Butan-2-One Oxime, Ligand And İts Mono-, Di- And Trinuclear Copper(II) Complexes, Transit Met Chem, 2006, 31, 938-942.
  • Golcuk, K., Altun, A., Kumru, M., Spectroscopic and thermal studies of Mn(II), Co(II) and Ni(II) bromide m-methylaniline complexes, J Mol Struct, 2003, 657, 385–393.
  • Cotton, F.A., Wilkinson, G., Murillo, C.A., Bochmann, M., Advanced inorganic chemistry. 6th Edition, 1999, Wiley, New York.
  • Allan, J.R., Structural and Thermal Studies of The Chloro Complexes of Cobalt, Nickel and Copper with 2,6-Diaminopyridine and Assessment of their Suitability as Antistatic Additives for Polyethylene, Thermochim Acta, 1992, 208, 125–131.
  • Golcuk, K., Altun, A., Kumru, M., Spectroscopic and thermal studies of Mn(II), Co(II) and Ni(II) bromide m-methylaniline complexes, J Mol Struct, 2003, 657, 385–393.
  • Grabaric, Z., Koprivanac, N., Papic, S., Parac-Osterman, D., Matanic, H., Synthesis, Application Biodegradation of a Chromium Azomethine Dye, Dyes Pigment, 1993, 23, 255–265.
  • Allan, J.R., Brown, D.H., Nuttall, R.H., Sharp, D.W.A., The thermal decomposition of metal complexes—III: The decomposition of some pyridine and substituted-pyridine complexes of cobalt(II) halides, J Inorg Nucl Chem, 1964, 26, 1895–1902.
  • El-Asmy, E.T., Jeragh, B., Ali, M., Spectral, thermal, molecular modeling and biological studies on mono- and binuclear complexes derived from oxalo bis(2,3-butanedionehydrazone), Chem Cent J, 2015.
  • Amer, S., El-Wakiel, N., El-Ghamry, H., Synthesis, spectral, antitumor and antimicrobial studies on Cu(II) complexes of purine and triazole Schiff base derivatives, J Mol Struct, 2013, 1049, 326–335.
  • Bardakçı, T., Altun, T., Kurtulus, A., Golcuk, K., Kumru, M., Synthesis, structural, spectral (FT-IR, FT-Ra, and UV-Vis), thermal, and density functional studies on p-methyl aniline complexes of Mn(II), Co(II), and Ni(II) bromides, J Mol Struct, 2015, 1100, 475–485.
  • Studer, A., Curran, D.P., Catalysis of Radical Reactions: A Radical Chemistry Perspective, Angew Chem Int Ed Engl, 2016, 55, 58–102.
  • Martemucci, G., Costagliola, C., Mariano, M., D’andrea, L., Napolitano, P., D’Alessandro, A.G., Free radical properties, source and targets, antioxidant consumption and health, Oxygen, 2022, 2, 48–78.
  • Wen, X., Ma, Y., Chen, J., Wang, B., A synthetically useful catalytic system for aliphatic C-H oxidation with a nonheme cobalt complex and m-CPBA, Org Biomol Chem, 2024, 22, 5729–5733.
  • Balamurugan, M., Suresh, E., Palaniandavar, M., μ-Oxo-bridged diiron(III) complexes of tripodal 4N ligands as catalysts for alkane hydroxylation reaction using m-CPBA as an oxidant: substrate vs. self hydroxylation, RSC Adv, 2021, 11, 21514–21526.
  • Nagataki, T., Itoh, S., Catalytic Alkane Hydroxylation Reaction with Nickel(II) Complexes Supported by Di- and Triphenol Ligands, Chem Lett, 2007, 36, 748.
  • Kani, I., Taskinlar, I., Uzel, Z., Avan, I., Catalytic oxidation of thymol and carvacrol with Mn(II)-benzoylbenzoate-bipyridine complex, Polyhedron, 2024, 249, 116772.
  • Pourali, A.R., Cheraghi-Parvin, M., Omidi-Ghallemohamadi, M., Synthesis of Cu(II) Schiff base complex supported on multi-wall carbon nanotube for the oxidation of benzyl alcohols, Inorg Chem Commun, 2023, 155, 111099.
  • Czepa, W., Fik, M.A., Witomska, S., Kubicki, M., Consiglio, G., Pawluc, P., Patroniak, V., Simple Schiff-Base Cu(II) Complexes as Efficient Catalysts for Benzyl Alcohol Oxidation, ChemistrySelect, 2018, 3(32), 9504–9509.
  • Sharif, M.A., Najafi, G.R., Nakhjiri, M.T., Co-Schiff base complexes functionalized on graphene as efficient heterogeneous nanocatalysts for alcohols oxidation, Inorg Nano-Met Chem, 2023, Early Access.
  • AlSaeedi, S., Abdel-Rahman, L.H., Abu-Dief, A.M., Abdel-Fatah, S.M., Alotaibi, T.M., Alsalme, A.M., Nafady, A., Catalytic Oxidation of Benzyl Alcohol Using Nanosized Cu/Ni Schiff-Base Complexes and Their Metal Oxide Nanoparticles, Catalysts, 2018, 8(10), 452.
  • Lagerspets, E., Lagerblom, K., Heliövaara, E., Hiltunen, O.M., Moslova, K., Nieger, M., Repo, T., Schiff base Cu(I) catalyst for aerobic oxidation of primary alcohols, Mol Catal, 2019, 468, 75–79.
  • Tayebani, M., Shafaat, B., Iravani, M., Hydrogen peroxide oxidation of primary alcohols by thiosemicarbazide Schiff base metal complexes, Iran J Chem, 2015, 5(3), 213–221.
  • Hatefi-Ardakani, M., Saeednia, S., Pakdin-Parizi, Z., Rafeezadeh, M., Efficient and selective oxidation of alcohols with tert-BuOOH catalyzed by a dioxomolybdenum(VI) Schiff base complex under organic solvent-free conditions, Res Chem Intermed, 2016, 42(10), 7223–7230.
  • Sutradhar, M., Martins, M.G., Simoes, D.H.B.G.O.R., Serodio, R.M.N., Lapa, H.M., Alegria, E.C.B.A., da Silva, M.F.C.G., Pombeiro, A.J.L., Ultrasound and photo-assisted oxidation of toluene and benzyl alcohol with oxidovanadium(V) complexes, Appl Catal A Gen, 2022, 638, 118623.
  • Sarkheil, M., Lashanizadegan, M., Copper(II) Schiff Base Complex Immobilized on Superparamagnetic Fe3O4@SiO2 as a Magnetically Separable Nanocatalyst for Oxidation of Alkenes and Alcohols, Appl Organomet Chem, 2017, 31(10), e3726.
There are 52 citations in total.

Details

Primary Language English
Subjects Instrumental Methods
Journal Section Research Articles
Authors

Çağla Akkol 0000-0003-1966-618X

Serdar Karaböcek 0000-0003-0942-9818

Ece Tuğba Saka 0000-0002-1074-7752

Bekir Sıtkı Cevrimli 0000-0001-9686-7511

Publication Date December 20, 2024
Submission Date November 14, 2024
Acceptance Date December 17, 2024
Published in Issue Year 2024

Cite

APA Akkol, Ç., Karaböcek, S., Saka, E. T., Cevrimli, B. S. (2024). Schiff base catalysts for the oxidation of benzyl alcohol to benzaldehyde. Turkish Journal of Analytical Chemistry, 6(2), 129-137. https://doi.org/10.51435/turkjac.1584286
AMA Akkol Ç, Karaböcek S, Saka ET, Cevrimli BS. Schiff base catalysts for the oxidation of benzyl alcohol to benzaldehyde. TurkJAC. December 2024;6(2):129-137. doi:10.51435/turkjac.1584286
Chicago Akkol, Çağla, Serdar Karaböcek, Ece Tuğba Saka, and Bekir Sıtkı Cevrimli. “Schiff Base Catalysts for the Oxidation of Benzyl Alcohol to Benzaldehyde”. Turkish Journal of Analytical Chemistry 6, no. 2 (December 2024): 129-37. https://doi.org/10.51435/turkjac.1584286.
EndNote Akkol Ç, Karaböcek S, Saka ET, Cevrimli BS (December 1, 2024) Schiff base catalysts for the oxidation of benzyl alcohol to benzaldehyde. Turkish Journal of Analytical Chemistry 6 2 129–137.
IEEE Ç. Akkol, S. Karaböcek, E. T. Saka, and B. S. Cevrimli, “Schiff base catalysts for the oxidation of benzyl alcohol to benzaldehyde”, TurkJAC, vol. 6, no. 2, pp. 129–137, 2024, doi: 10.51435/turkjac.1584286.
ISNAD Akkol, Çağla et al. “Schiff Base Catalysts for the Oxidation of Benzyl Alcohol to Benzaldehyde”. Turkish Journal of Analytical Chemistry 6/2 (December 2024), 129-137. https://doi.org/10.51435/turkjac.1584286.
JAMA Akkol Ç, Karaböcek S, Saka ET, Cevrimli BS. Schiff base catalysts for the oxidation of benzyl alcohol to benzaldehyde. TurkJAC. 2024;6:129–137.
MLA Akkol, Çağla et al. “Schiff Base Catalysts for the Oxidation of Benzyl Alcohol to Benzaldehyde”. Turkish Journal of Analytical Chemistry, vol. 6, no. 2, 2024, pp. 129-37, doi:10.51435/turkjac.1584286.
Vancouver Akkol Ç, Karaböcek S, Saka ET, Cevrimli BS. Schiff base catalysts for the oxidation of benzyl alcohol to benzaldehyde. TurkJAC. 2024;6(2):129-37.



6th International Environmental Chemistry Congress (EnviroChem)

https://www.envirochem.org.tr/