Review
BibTex RIS Cite
Year 2020, Volume: 2 Issue: 1, 37 - 46, 23.06.2020

Abstract

References

  • 1. Mansuriya, B.D. and Z. Altintas, Graphene Quantum Dot-Based Electrochemical Immunosensors for Biomedical Applications. Materials (Basel), 2019. 13(1). 2. Martinelli, F., et al., Application of a portable instrument for rapid and reliable detection of SARS-CoV-2 infection in any environment. Immunol Rev, 2020. 3. Cho, I.H., D.H. Kim, and S. Park, Electrochemical biosensors: perspective on functional nanomaterials for on-site analysis. Biomater Res, 2020. 24: p. 6. 4. Lahcen, A.A. and A. Amine, Recent Advances in Electrochemical Sensors Based on Molecularly Imprinted Polymers and Nanomaterials. Electroanalysis, 2019. 31(2): p. 188-201. 5. Wang, Y., et al., Electrochemical Sensors for Clinic Analysis. Sensors, 2008. 8: p. 2043-2081. 6. Zhu, C., et al., Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal Chem, 2015. 87(1): p. 230-49. 7. Moreira, F.T.C., M.G.F. Sale, and M. Di Lorenzo, Towards timely Alzheimer diagnosis: A self-powered amperometric biosensor for the neurotransmitter acetylcholine. Biosens Bioelectron, 2017. 87: p. 607-614. 8. Asadian, E., M. Ghalkhani, and S. Shahrokhian, Electrochemical sensing based on carbon nanoparticles: A review. Sensors and Actuators B: Chemical, 2019. 293: p. 183-209. 9. Cesewski, E. and B.N. Johnson, Electrochemical biosensors for pathogen detection. Biosensors and Bioelectronics, 2020. 159. 10. Muniandy, S., et al., Carbon Nanomaterial-Based Electrochemical Biosensors for Foodborne Bacterial Detection. Crit Rev Anal Chem, 2019: p. 1-24. 11. Campuzano, S., P. Yanez-Sedeno, and J.M. Pingarron, Carbon Dots and Graphene Quantum Dots in Electrochemical Biosensing. Nanomaterials (Basel), 2019. 9(4). 12. Dinç, S., A simple and green extraction of carbon dots from sugar beet molasses: Biosensor applications. Sugar Industry, 2016. 141(9): p. 560-564. 13. Li, Y., et al., Carbon quantum dots/octahedral Cu2O nanocomposites for non-enzymatic glucose and hydrogen peroxide amperometric sensor. Sensors and Actuators B: Chemical, 2015. 206: p. 735-743. 14. Hill, S. and M.C. Galan, Fluorescent carbon dots from mono- and polysaccharides: synthesis, properties and applications. Beilstein J Org Chem, 2017. 13: p. 675-693. 15. Dinç, S., et al., Biocompatible yogurt carbon dots: evaluation of utilization for medical applications. Applied Physics A, 2017. 123(9). 16. Li, X., et al., Engineering surface states of carbon dots to achieve controllable luminescence for solid-luminescent composites and sensitive Be2+ detection. Scientific Reports, 2014. 4(1). 17. Benoit, L. and J.-P. Choi, Electrogenerated Chemiluminescence of Semiconductor Nanoparticles and Their Applications in Biosensors. ChemElectroChem, 2017. 4(7): p. 1573-1586. 18. Zhang, Y., et al., Recent advances in electrogenerated chemiluminescence biosensing methods for pharmaceuticals. J Pharm Anal, 2019. 9(1): p. 9-19. 19. Yang, N., X. Jiang, and D.-W. Pang, Carbon Nanoparticles and Nanostructures. 2016. 20. Richter, M.M., Electrochemiluminescence (ECL). Chemical Reviews, 2004. 104: p. 3003-3036. 21. Li, L., et al., Focusing on luminescent graphene quantum dots: current status and future perspectives. Nanoscale, 2013. 5(10): p. 4015-39. 22. Xu, Y., et al., Applications of carbon quantum dots in electrochemiluminescence: A mini review. Electrochemistry Communications, 2014. 48: p. 151-154. 23. Nekoueian, K., et al., Carbon-based quantum particles: an electroanalytical and biomedical perspective. Chem Soc Rev, 2019. 48(15): p. 4281-4316. 24. Zhuang, Z., et al., A glassy carbon electrode modified with carbon dots and gold nanoparticles for enhanced electrocatalytic oxidation and detection of nitrite. Microchimica Acta, 2016. 183(10): p. 2807-2814. 25. Mansuriya, B.D. and Z. Altintas, Applications of Graphene Quantum Dots in Biomedical Sensors. Sensors (Basel), 2020. 20(4). 26. Wang, Y., et al., Electrochemical Sensors for Clinic Analysis. Sensors 2008. 8: p. 2043-2081. 27. Shankar, S.S., et al., Carbon Quantum Dot-Modified Carbon Paste Electrode-Based Sensor for Selective and Sensitive Determination of Adrenaline. ACS Omega, 2019. 4(4): p. 7903-7910. 28. Zhou, Z., et al., Ultra-sensitive amperometric determination of quercetin by using a glassy carbon electrode modified with a nanocomposite prepared from aminated graphene quantum dots, thiolated beta-cyclodextrin and gold nanoparticles. Mikrochim Acta, 2020. 187(2): p. 130. 29. Bodur, O.C., et al., A sensitive amperometric detection of neurotransmitter acetylcholine using carbon dot-modified carbon paste electrode. Biotechnol Appl Biochem, 2020. 30. Sridara, T., et al., Non-Enzymatic Amperometric Glucose Sensor Based on Carbon Nanodots and Copper Oxide Nanocomposites Electrode. Sensors (Basel), 2020. 20(3). 31. Yan, Q., et al., A label-free electrochemical immunosensor based on the novel signal amplification system of AuPdCu ternary nanoparticles functionalized polymer nanospheres. Biosens Bioelectron, 2018. 103: p. 151-157. 32. Savas, S. and Z. Altintas, Graphene Quantum Dots as Nanozymes for Electrochemical Sensing of Yersinia enterocolitica in Milk and Human Serum. Materials (Basel), 2019. 12(13). 33. Sun, B., et al., Development of a sensitive electrochemical immunosensor using polyaniline functionalized graphene quantum dots for detecting a depression marker. Mater Sci Eng C Mater Biol Appl, 2020. 111: p. 110797. 34. Arumugasamy, S.K., S. Govindaraju, and K. Yun, Electrochemical sensor for detecting dopamine using graphene quantum dots incorporated with multiwall carbon nanotubes. Applied Surface Science, 2020. 508. 35. Majumdar, S., D. Thakur, and D. Chowdhury, DNA Carbon-Nanodots based Electrochemical Biosensor for Detection of Mutagenic Nitrosamines. ACS Applied Bio Materials, 2020. 3(3): p. 1796-1803. 36. Xiang, Q., et al., A label-free electrochemical platform for the highly sensitive detection of hepatitis B virus DNA using graphene quantum dots. RSC Advances, 2018. 8(4): p. 1820-1825. 37. Valipour, A. and M. Roushani, Using silver nanoparticle and thiol graphene quantum dots nanocomposite as a substratum to load antibody for detection of hepatitis C virus core antigen: Electrochemical oxidation of riboflavin was used as redox probe. Biosens Bioelectron, 2017. 89(Pt 2): p. 946-951. 38. Ye, W., et al., Rapid and Sensitive Detection of Bacteria Response to Antibiotics Using Nanoporous Membrane and Graphene Quantum Dot (GQDs)-Based Electrochemical Biosensors. Materials (Basel), 2017. 10(6). 39. Chowdhury, A.D., et al., Electrical pulse-induced electrochemical biosensor for hepatitis E virus detection. Nat Commun, 2019. 10(1): p. 3737. 40. Chen, Y., et al., Carbon-based dots for electrochemiluminescence sensing. Materials Chemistry Frontiers, 2020. 4(2): p. 369-385. 41. Zhu, H., et al., Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties. Chem Commun (Camb), 2009(34): p. 5118-20. 42. Li, L.-L., et al., A Facile Microwave Avenue to Electrochemiluminescent Two-Color Graphene Quantum Dots. Advanced Functional Materials, 2012. 22(14): p. 2971-2979. 43. Hu, Y., et al., A ratiometric electrochemiluminescent tetracycline assay based on the combined use of carbon nanodots, Ru(bpy)3(2+), and magnetic solid phase microextraction. Mikrochim Acta, 2019. 186(8): p. 512. 44. Zhu, R., et al., A novel anodic electrochemiluminescence behavior of sulfur-doped carbon nitride nanosheets in the presence of nitrogen-doped carbon dots and its application for detecting folic acid. Anal Bioanal Chem, 2019. 411(27): p. 7137-7146. 45. Li, S., et al., Aptamer-molecularly imprinted sensor base on electrogenerated chemiluminescence energy transfer for detection of lincomycin. Biosens Bioelectron, 2017. 91: p. 687-691. 46. Wu, Y., et al., Bifunctional S, N-Codoped carbon dots-based novel electrochemiluminescent bioassay for ultrasensitive detection of atrazine using activated mesoporous biocarbon as enzyme nanocarriers. Anal Chim Acta, 2019. 1073: p. 45-53. 47. Zhang, R., et al., Electrochemiluminescent carbon dot-based determination of microRNA-21 by using a hemin/G-wire supramolecular nanostructure as co-reaction accelerator. Mikrochim Acta, 2018. 185(9): p. 432. 48. Amiri, M., et al., Electrochemical methodologies for the detection of pathogens. ACS Sensors, American Chemical Society, 2018. 3(6): p. 1069-1086. 49. Zhao, H.F., et al., A dual-potential electrochemiluminescence ratiometric approach based on graphene quantum dots and luminol for highly sensitive detection of protein kinase activity. Chem Commun (Camb), 2015. 51(63): p. 12669-72. 50. Chen, S., et al., Electrochemiluminescence Detection of Escherichia coli O157:H7 Based on a Novel Polydopamine Surface Imprinted Polymer Biosensor. ACS Appl Mater Interfaces, 2017. 9(6): p. 5430-5436. 51. Li, S., et al., Electrogenerated chemiluminescence on smartphone with graphene quantum dots nanocomposites for Escherichia Coli detection. Sensors and Actuators B: Chemical, 2019. 297.

Carbon dots applications in electrochemical and electrochemiluminescence sensors: Some examples of pathogen sensors

Year 2020, Volume: 2 Issue: 1, 37 - 46, 23.06.2020

Abstract

The ongoing outbreak of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection throughout the world has revealed that simple, fast, low-cost, reliable and portable sensor systems should be developed immediately. Electrochemical and electrochemiluminescence (ECL) based pathogen sensors are promising alternative to conventional methods due to several advantages including in situ and fast response time, high sensitivity, low cost, being portable, easy-to operate and simple to construct. Carbon dots / graphene quantum dots have been used as labels, electrode material, ECL luminophores, electrode modification materials, amplifier, reaction catalysts to increase sensitivity and selectivity of electrochemical and ECL sensors. In this mini review, applications of carbon dots in electrochemical and ECL based sensors are summarized and the some examples of pathogen sensor are given.

References

  • 1. Mansuriya, B.D. and Z. Altintas, Graphene Quantum Dot-Based Electrochemical Immunosensors for Biomedical Applications. Materials (Basel), 2019. 13(1). 2. Martinelli, F., et al., Application of a portable instrument for rapid and reliable detection of SARS-CoV-2 infection in any environment. Immunol Rev, 2020. 3. Cho, I.H., D.H. Kim, and S. Park, Electrochemical biosensors: perspective on functional nanomaterials for on-site analysis. Biomater Res, 2020. 24: p. 6. 4. Lahcen, A.A. and A. Amine, Recent Advances in Electrochemical Sensors Based on Molecularly Imprinted Polymers and Nanomaterials. Electroanalysis, 2019. 31(2): p. 188-201. 5. Wang, Y., et al., Electrochemical Sensors for Clinic Analysis. Sensors, 2008. 8: p. 2043-2081. 6. Zhu, C., et al., Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal Chem, 2015. 87(1): p. 230-49. 7. Moreira, F.T.C., M.G.F. Sale, and M. Di Lorenzo, Towards timely Alzheimer diagnosis: A self-powered amperometric biosensor for the neurotransmitter acetylcholine. Biosens Bioelectron, 2017. 87: p. 607-614. 8. Asadian, E., M. Ghalkhani, and S. Shahrokhian, Electrochemical sensing based on carbon nanoparticles: A review. Sensors and Actuators B: Chemical, 2019. 293: p. 183-209. 9. Cesewski, E. and B.N. Johnson, Electrochemical biosensors for pathogen detection. Biosensors and Bioelectronics, 2020. 159. 10. Muniandy, S., et al., Carbon Nanomaterial-Based Electrochemical Biosensors for Foodborne Bacterial Detection. Crit Rev Anal Chem, 2019: p. 1-24. 11. Campuzano, S., P. Yanez-Sedeno, and J.M. Pingarron, Carbon Dots and Graphene Quantum Dots in Electrochemical Biosensing. Nanomaterials (Basel), 2019. 9(4). 12. Dinç, S., A simple and green extraction of carbon dots from sugar beet molasses: Biosensor applications. Sugar Industry, 2016. 141(9): p. 560-564. 13. Li, Y., et al., Carbon quantum dots/octahedral Cu2O nanocomposites for non-enzymatic glucose and hydrogen peroxide amperometric sensor. Sensors and Actuators B: Chemical, 2015. 206: p. 735-743. 14. Hill, S. and M.C. Galan, Fluorescent carbon dots from mono- and polysaccharides: synthesis, properties and applications. Beilstein J Org Chem, 2017. 13: p. 675-693. 15. Dinç, S., et al., Biocompatible yogurt carbon dots: evaluation of utilization for medical applications. Applied Physics A, 2017. 123(9). 16. Li, X., et al., Engineering surface states of carbon dots to achieve controllable luminescence for solid-luminescent composites and sensitive Be2+ detection. Scientific Reports, 2014. 4(1). 17. Benoit, L. and J.-P. Choi, Electrogenerated Chemiluminescence of Semiconductor Nanoparticles and Their Applications in Biosensors. ChemElectroChem, 2017. 4(7): p. 1573-1586. 18. Zhang, Y., et al., Recent advances in electrogenerated chemiluminescence biosensing methods for pharmaceuticals. J Pharm Anal, 2019. 9(1): p. 9-19. 19. Yang, N., X. Jiang, and D.-W. Pang, Carbon Nanoparticles and Nanostructures. 2016. 20. Richter, M.M., Electrochemiluminescence (ECL). Chemical Reviews, 2004. 104: p. 3003-3036. 21. Li, L., et al., Focusing on luminescent graphene quantum dots: current status and future perspectives. Nanoscale, 2013. 5(10): p. 4015-39. 22. Xu, Y., et al., Applications of carbon quantum dots in electrochemiluminescence: A mini review. Electrochemistry Communications, 2014. 48: p. 151-154. 23. Nekoueian, K., et al., Carbon-based quantum particles: an electroanalytical and biomedical perspective. Chem Soc Rev, 2019. 48(15): p. 4281-4316. 24. Zhuang, Z., et al., A glassy carbon electrode modified with carbon dots and gold nanoparticles for enhanced electrocatalytic oxidation and detection of nitrite. Microchimica Acta, 2016. 183(10): p. 2807-2814. 25. Mansuriya, B.D. and Z. Altintas, Applications of Graphene Quantum Dots in Biomedical Sensors. Sensors (Basel), 2020. 20(4). 26. Wang, Y., et al., Electrochemical Sensors for Clinic Analysis. Sensors 2008. 8: p. 2043-2081. 27. Shankar, S.S., et al., Carbon Quantum Dot-Modified Carbon Paste Electrode-Based Sensor for Selective and Sensitive Determination of Adrenaline. ACS Omega, 2019. 4(4): p. 7903-7910. 28. Zhou, Z., et al., Ultra-sensitive amperometric determination of quercetin by using a glassy carbon electrode modified with a nanocomposite prepared from aminated graphene quantum dots, thiolated beta-cyclodextrin and gold nanoparticles. Mikrochim Acta, 2020. 187(2): p. 130. 29. Bodur, O.C., et al., A sensitive amperometric detection of neurotransmitter acetylcholine using carbon dot-modified carbon paste electrode. Biotechnol Appl Biochem, 2020. 30. Sridara, T., et al., Non-Enzymatic Amperometric Glucose Sensor Based on Carbon Nanodots and Copper Oxide Nanocomposites Electrode. Sensors (Basel), 2020. 20(3). 31. Yan, Q., et al., A label-free electrochemical immunosensor based on the novel signal amplification system of AuPdCu ternary nanoparticles functionalized polymer nanospheres. Biosens Bioelectron, 2018. 103: p. 151-157. 32. Savas, S. and Z. Altintas, Graphene Quantum Dots as Nanozymes for Electrochemical Sensing of Yersinia enterocolitica in Milk and Human Serum. Materials (Basel), 2019. 12(13). 33. Sun, B., et al., Development of a sensitive electrochemical immunosensor using polyaniline functionalized graphene quantum dots for detecting a depression marker. Mater Sci Eng C Mater Biol Appl, 2020. 111: p. 110797. 34. Arumugasamy, S.K., S. Govindaraju, and K. Yun, Electrochemical sensor for detecting dopamine using graphene quantum dots incorporated with multiwall carbon nanotubes. Applied Surface Science, 2020. 508. 35. Majumdar, S., D. Thakur, and D. Chowdhury, DNA Carbon-Nanodots based Electrochemical Biosensor for Detection of Mutagenic Nitrosamines. ACS Applied Bio Materials, 2020. 3(3): p. 1796-1803. 36. Xiang, Q., et al., A label-free electrochemical platform for the highly sensitive detection of hepatitis B virus DNA using graphene quantum dots. RSC Advances, 2018. 8(4): p. 1820-1825. 37. Valipour, A. and M. Roushani, Using silver nanoparticle and thiol graphene quantum dots nanocomposite as a substratum to load antibody for detection of hepatitis C virus core antigen: Electrochemical oxidation of riboflavin was used as redox probe. Biosens Bioelectron, 2017. 89(Pt 2): p. 946-951. 38. Ye, W., et al., Rapid and Sensitive Detection of Bacteria Response to Antibiotics Using Nanoporous Membrane and Graphene Quantum Dot (GQDs)-Based Electrochemical Biosensors. Materials (Basel), 2017. 10(6). 39. Chowdhury, A.D., et al., Electrical pulse-induced electrochemical biosensor for hepatitis E virus detection. Nat Commun, 2019. 10(1): p. 3737. 40. Chen, Y., et al., Carbon-based dots for electrochemiluminescence sensing. Materials Chemistry Frontiers, 2020. 4(2): p. 369-385. 41. Zhu, H., et al., Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties. Chem Commun (Camb), 2009(34): p. 5118-20. 42. Li, L.-L., et al., A Facile Microwave Avenue to Electrochemiluminescent Two-Color Graphene Quantum Dots. Advanced Functional Materials, 2012. 22(14): p. 2971-2979. 43. Hu, Y., et al., A ratiometric electrochemiluminescent tetracycline assay based on the combined use of carbon nanodots, Ru(bpy)3(2+), and magnetic solid phase microextraction. Mikrochim Acta, 2019. 186(8): p. 512. 44. Zhu, R., et al., A novel anodic electrochemiluminescence behavior of sulfur-doped carbon nitride nanosheets in the presence of nitrogen-doped carbon dots and its application for detecting folic acid. Anal Bioanal Chem, 2019. 411(27): p. 7137-7146. 45. Li, S., et al., Aptamer-molecularly imprinted sensor base on electrogenerated chemiluminescence energy transfer for detection of lincomycin. Biosens Bioelectron, 2017. 91: p. 687-691. 46. Wu, Y., et al., Bifunctional S, N-Codoped carbon dots-based novel electrochemiluminescent bioassay for ultrasensitive detection of atrazine using activated mesoporous biocarbon as enzyme nanocarriers. Anal Chim Acta, 2019. 1073: p. 45-53. 47. Zhang, R., et al., Electrochemiluminescent carbon dot-based determination of microRNA-21 by using a hemin/G-wire supramolecular nanostructure as co-reaction accelerator. Mikrochim Acta, 2018. 185(9): p. 432. 48. Amiri, M., et al., Electrochemical methodologies for the detection of pathogens. ACS Sensors, American Chemical Society, 2018. 3(6): p. 1069-1086. 49. Zhao, H.F., et al., A dual-potential electrochemiluminescence ratiometric approach based on graphene quantum dots and luminol for highly sensitive detection of protein kinase activity. Chem Commun (Camb), 2015. 51(63): p. 12669-72. 50. Chen, S., et al., Electrochemiluminescence Detection of Escherichia coli O157:H7 Based on a Novel Polydopamine Surface Imprinted Polymer Biosensor. ACS Appl Mater Interfaces, 2017. 9(6): p. 5430-5436. 51. Li, S., et al., Electrogenerated chemiluminescence on smartphone with graphene quantum dots nanocomposites for Escherichia Coli detection. Sensors and Actuators B: Chemical, 2019. 297.
There are 1 citations in total.

Details

Primary Language English
Subjects Analytical Chemistry
Journal Section Rewiev
Authors

Saliha Dinç 0000-0003-2485-8434

Rabia Günhan Özmelleş This is me

Publication Date June 23, 2020
Submission Date May 10, 2020
Acceptance Date June 17, 2020
Published in Issue Year 2020 Volume: 2 Issue: 1

Cite

APA Dinç, S., & Günhan Özmelleş, R. (2020). Carbon dots applications in electrochemical and electrochemiluminescence sensors: Some examples of pathogen sensors. Turkish Journal of Analytical Chemistry, 2(1), 37-46.
AMA Dinç S, Günhan Özmelleş R. Carbon dots applications in electrochemical and electrochemiluminescence sensors: Some examples of pathogen sensors. TurkJAC. June 2020;2(1):37-46.
Chicago Dinç, Saliha, and Rabia Günhan Özmelleş. “Carbon Dots Applications in Electrochemical and Electrochemiluminescence Sensors: Some Examples of Pathogen Sensors”. Turkish Journal of Analytical Chemistry 2, no. 1 (June 2020): 37-46.
EndNote Dinç S, Günhan Özmelleş R (June 1, 2020) Carbon dots applications in electrochemical and electrochemiluminescence sensors: Some examples of pathogen sensors. Turkish Journal of Analytical Chemistry 2 1 37–46.
IEEE S. Dinç and R. Günhan Özmelleş, “Carbon dots applications in electrochemical and electrochemiluminescence sensors: Some examples of pathogen sensors”, TurkJAC, vol. 2, no. 1, pp. 37–46, 2020.
ISNAD Dinç, Saliha - Günhan Özmelleş, Rabia. “Carbon Dots Applications in Electrochemical and Electrochemiluminescence Sensors: Some Examples of Pathogen Sensors”. Turkish Journal of Analytical Chemistry 2/1 (June 2020), 37-46.
JAMA Dinç S, Günhan Özmelleş R. Carbon dots applications in electrochemical and electrochemiluminescence sensors: Some examples of pathogen sensors. TurkJAC. 2020;2:37–46.
MLA Dinç, Saliha and Rabia Günhan Özmelleş. “Carbon Dots Applications in Electrochemical and Electrochemiluminescence Sensors: Some Examples of Pathogen Sensors”. Turkish Journal of Analytical Chemistry, vol. 2, no. 1, 2020, pp. 37-46.
Vancouver Dinç S, Günhan Özmelleş R. Carbon dots applications in electrochemical and electrochemiluminescence sensors: Some examples of pathogen sensors. TurkJAC. 2020;2(1):37-46.

6th International Environmental Chemistry Congress (EnviroChem)

https://www.envirochem.org.tr/