İnceleme Makalesi
BibTex RIS Kaynak Göster

İHA'LAR İLE TRAFİK İZLEME VE AKILLI ULAŞIM: 2020 SONRASI GELİŞMELER VE UYGULAMALAR

Yıl 2025, Sayı: 2, 236 - 258, 29.06.2025

Öz

İnsansız hava araçları (İHA’lar), trafik izleme ve akıllı ulaşım sistemlerinde önemli bir teknolojik araç olarak öne çıkmaktadır. Yüksek manevra kabiliyeti, operasyonel esneklik ve gerçek zamanlı veri toplama kapasiteleri sayesinde İHA’lar, ulaşım uygulamalarında etkin şekilde kullanılmaktadır. Bu çalışma, 2020 sonrası dönemde gerçekleştirilen İHA tabanlı trafik izleme ve akıllı ulaşım sistemlerine ilişkin literatürü incelemekte; görüntü işleme, yapay zekâ ve sensör füzyonu gibi teknolojilerle entegrasyon süreçlerini ele almaktadır. COVID-19 sonrası dönemde artan temasız ve uyarlanabilir izleme ihtiyacı, İHA’ların etkinliğini artırmıştır. Sabit kamera ve araç tabanlı sistemlere kıyasla daha geniş alanları kapsayabilen, esnek çözümler sunan ve altyapı maliyetlerini azaltan İHA’lar, trafik yönetiminde stratejik roller üstlenmektedir. Çalışma ayrıca Türkiye bağlamında değerlendirmeler yaparak, ulusal stratejilere yönelik politika önerileri ve teknik tavsiyelerde bulunmaktadır.

Kaynakça

  • Aggarwal, S., & Kumar, N. (2020). Path planning techniques for unmanned aerial vehicles: A review, solutions, and challenges. Içinde Computer Communications (C. 149, ss. 270-299). Elsevier B.V. https://doi.org/10.1016/j.comcom.2019.10.014
  • Ahmed, A., Ngoduy, D., Adnan, M., & Baig, M. A. U. (2021). On the fundamental diagram and driving behavior modeling of heterogeneous traffic flow using UAV-based data. Transportation Research Part A: Policy and Practice, 148, 100-115. https://doi.org/10.1016/j.tra.2021.03.001
  • Alahvirdi, D., & Tuci, E. (2023). Autonomous Traffic Monitoring and Management by a Simulated Swarm of UAVs. 11th RSI International Conference on Robotics and Mechatronics, ICRoM 2023, 91-96. https://doi.org/10.1109/ICRoM60803.2023.10412448
  • Balamuralidhar, N., Tilon, S., & Nex, F. (2021). MultEYE: Monitoring system for real-time vehicle detection, tracking and speed estimation from UAV imagery on edge-computing platforms. Remote Sensing, 13(4), 1-24. https://doi.org/10.3390/rs13040573
  • Barmpounakis, E., & Geroliminis, N. (2020). On the new era of urban traffic monitoring with massive drone data: The pNEUMA large-scale field experiment. Transportation Research Part C: Emerging Technologies, 111, 50-71. https://doi.org/10.1016/j.trc.2019.11.023
  • Biyik, M. Y., Atik, M. E., & Duran, Z. (2023). Deep learning-based vehicle detection from orthophoto and spatial accuracy analysis. International Journal of Engineering and Geosciences, 8(2), 138-145. https://doi.org/10.26833/ijeg.1080624
  • Bouassida, S., Neji, N., Nouvelière, L., & Neji, J. (2020). Evaluating the Impact of Drone Signaling in Crosswalk Scenario. https://doi.org/10.3390/app11010
  • Butilă, E. V., & Boboc, R. G. (2022). Urban Traffic Monitoring and Analysis Using Unmanned Aerial Vehicles (UAVs): A Systematic Literature Review. Içinde Remote Sensing (C. 14, Sayı 3). MDPI. https://doi.org/10.3390/rs14030620
  • Byun, S., Shin, I. K., Moon, J., Kang, J., & Choi, S. Il. (2021). Road traffic monitoring from uav images using deep learning networks. Remote Sensing, 13(20). https://doi.org/10.3390/rs13204027
  • Cao, Z., Kooistra, L., Wang, W., Guo, L., & Valente, J. (2023). Real-Time Object Detection Based on UAV Remote Sensing: A Systematic Literature Review. Içinde Drones (C. 7,Sayı 10). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/drones7100620
  • Chen, H., & Qiu, T. Z. (2022). Distributed Dynamic Route Guidance and Signal Control for Mobile Edge Computing-Enhanced Connected Vehicle Environment. IEEE Transactions on Intelligent Transportation Systems, 23(8), 12251-12262. https://doi.org/10.1109/TITS.2021.3111855
  • Coifman, B., Mccord, M., Mishalani, R. G., Iswalt, M., & Ji, Y. (2006). Roadway Traffic Monitoring from an Unmanned Aerial Vehicle.
  • Coifman, B., Mccord, M., Mishalani, R. G., & Redmill, K. (2003). Surface Transportation Surveillance from Unmanned Aerial Vehicles.
  • Duman, Z. N., Çulcu, M. B., & Katar, O. (2022). YOLOv5-based Vehicle Objects Detection Using UAV Images. Turkish Journal of Forecasting, 06(1), 40-45. https://doi.org/10.34110/forecasting.1145381
  • Fu, F., Wang, D., Sun, M., Xie, R., & Cai, Z. (2024). Urban Traffic Flow Prediction Based on Bayesian Deep Learning Considering Optimal Aggregation Time Interval. Sustainability (Switzerland) , 16(5). https://doi.org/10.3390/su16051818
  • Garau Guzman, J., & Baeza, V. M. (2024). Enhancing Urban Mobility through Traffic Management with UAVs and VLC Technologies. Drones, 8(1). https://doi.org/10.3390/drones8010007
  • Gomez, C., & Purdie, H. (2016). UAV- based Photogrammetry and Geocomputing for Hazards and Disaster Risk Monitoring – A Review. Içinde Geoenvironmental Disasters (C. 3, Sayı 1). Springer. https://doi.org/10.1186/s40677-016-0060-y
  • Gupta, A., Afrin, T., Scully, E., & Yodo, N. (2021). Advances of UAVs toward Future Transportation: The State-of-the-Art, Challenges, and Opportunities. Future Transportation, 1(2), 326-350. https://doi.org/10.3390/futuretransp1020019
  • Heiets, I., Kuo, Y.-W., La, J., Yeun, R. C. K., & Verhagen, W. (2023). Future Trends in UAV Applications in the Australian Market. Aerospace, 10(6), 555. https://doi.org/10.3390/aerospace10060555
  • Hossain, M., Hossain, M. A., & Sunny, F. A. (2019, Aralık 1). A UAV-Based traffic monitoring system for smart cities. 2019 International Conference on Sustainable Technologies for Industry 4.0, STI 2019. https://doi.org/10.1109/STI47673.2019.9068088
  • Huang, H., Savkin, A. V., & Huang, C. (2021). Decentralized Autonomous Navigation of a UAV Network for Road Traffic Monitoring. IEEE Transactions on Aerospace and Electronic Systems, 57(4), 2558-2564. https://doi.org/10.1109/TAES.2021.3053115
  • İnağ, T., & Arıkan, M. (2024). A Fuzzy Based Intelligent Traffic Light Control (ITLC) Method: An Implementation in Ankara City. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 13(1), 292-306. https://doi.org/10.17798/bitlisfen.1388486
  • Javadi, S., Dahl, M., & Pettersson, M. I. (2021). Vehicle Detection in Aerial Images Based on 3D Depth Maps and Deep Neural Networks. IEEE Access, 9, 8381-8391. https://doi.org/10.1109/ACCESS.2021.3049741
  • Jian, L., Li, Z., Yang, X., Wu, W., Ahmad, A., & Jeon, G. (2019). Combining Unmanned Aerial Vehicles With Artificial-Intelligence Technology for Traffic-Congestion Recognition: Electronic Eyes in the Skies to Spot Clogged Roads. IEEE Consumer Electronics Magazine, 8(3), 81-86. https://doi.org/10.1109/MCE.2019.2892286
  • Khan, M. A., Ectors, W., Bellemans, T., Ruichek, Y., Yasar, A.-H., Janssens, D., & Wets, G. (2018). Unmanned Aerial Vehicle-based Traffic Analysis: A Case Study to Analyze Traffic Streams at Urban Roundabouts. Procedia Computer Science, 130, 636-643. https://doi.org/10.1016/j.procs.2018.04.114
  • Khan, N. A., Jhanjhi, N. Z., Brohi, S. N., Usmani, R. S. A., & Nayyar, A. (2020). Smart traffic monitoring system using Unmanned Aerial Vehicles (UAVs). Computer Communications, 157, 434-443. https://doi.org/10.1016/j.comcom.2020.04.049
  • Krueger, L. B. (2004). Airborne traffic surveillance systems proof of concept study: A leadingedge traffic surveillance success.
  • Kujawski, A., & Dudek, T. (2021). Analysis and visualization of data obtained from camera mounted on unmanned aerial vehicle used in areas of urban transport. Sustainable Cities and Society, 72. https://doi.org/10.1016/j.scs.2021.103004
  • Kunovjanek, M., & Wankmüller, C. (2021). Containing the COVID-19 pandemic with drones - Feasibility of a drone enabled back-up transport system. Transport Policy, 106, 141-152. https://doi.org/10.1016/j.tranpol.2021.03.015
  • Lee, J., Zhong, Z., Kim, K., Dimitrijevic, B., Du, B., & Gutesa, S. (2015, Ocak 15). Examining the Applicability of Small Quadcopter Drone for Traffic Surveillance and Roadway Incident Monitoring. Transportation Research Board 94th Annual Meeting.
  • Li, S., Yang, X., Lin, X., Zhang, Y., & Wu, J. (2023). Real-Time Vehicle Detection from UAV Aerial Images Based on Improved YOLOv5. Sensors, 23(12). https://doi.org/10.3390/s23125634
  • Liu, X., & Zhang, Z. (2021). A Vision-Based Target Detection, Tracking, and Positioning Algorithm for Unmanned Aerial Vehicle. Wireless Communications and Mobile Computing, 2021. https://doi.org/10.1155/2021/5565589
  • Mohammed, F., Idries, A., Mohamed, N., Al-Jaroodi, J., & Jawhar, I. (2014). Opportunities and Challenges of Using UAVs for Dubai Smart City. 2014 6th International Conference on New Technologies, Mobility and Security (NTMS), 1-4. https://doi.org/10.1109/NTMS.2014.6814041
  • Niu, H., Gonzalez-Prelcic, N., & Heath, R. W. (2018). A UAV-Based Traffic Monitoring System - Invited Paper. 2018 IEEE 87th Vehicular Technology Conference (VTC Spring),1-5. https://doi.org/10.1109/VTCSpring.2018.8417546
  • Oubbati, O. S., Lakas, A., Lorenz, P., Atiquzzaman, M., & Jamalipour, A. (2021). Leveraging Communicating UAVs for Emergency Vehicle Guidance in Urban Areas. IEEE Transactions on Emerging Topics in Computing, 9(2), 1070-1082. https://doi.org/10.1109/TETC.2019.2930124
  • Outay, F., Mengash, H. A., & Adnan, M. (2020). Applications of unmanned aerial vehicle (UAV) in road safety, traffic and highway infrastructure management: Recent advances and challenges. Transportation Research Part A: Policy and Practice, 141, 116-129. https://doi.org/10.1016/j.tra.2020.09.018
  • Shan, D., Lei, T., Yin, X., Luo, Q., & Gong, L. (2021). Extracting key traffic parameters from UAV video with on-board vehicle data validation. Sensors, 21(16). https://doi.org/10.3390/s21165620
  • Sharma, M. (2021). Drone Technology for Assisting COVID-19 Victims in Remote Areas: Opportunity and Challenges. Journal of Medical Systems, 45(9), 85. https://doi.org/10.1007/s10916-021-01759-y
  • Shulajkovska, M., Smerkol, M., Noveski, G., & Gams, M. (2024). Enhancing Urban Sustainability: Developing an Open-Source AI Framework for Smart Cities. Smart Cities, 7(5), 2670-2701. https://doi.org/10.3390/smartcities7050104
  • Srivastava, S., Narayan, S., & Mittal, S. (2021). A survey of deep learning techniques for vehicle detection from UAV images. Içinde Journal of Systems Architecture (C. 117). Elsevier B.V. https://doi.org/10.1016/j.sysarc.2021.102152

TRAFFIC MONITORING AND INTELLIGENT TRANSPORTATION WITH UAVS: POST-2020 DEVELOPMENTS AND APPLICATIONS

Yıl 2025, Sayı: 2, 236 - 258, 29.06.2025

Öz

Unmanned Aerial Vehicles (UAVs) have emerged as a key technology in traffic monitoring and intelligent transportation systems. Their agility, operational flexibility, and real-time high-resolution data collection capabilities suit them for various transportation applications. This study reviews UAV-based traffic monitoring and intelligent transportation research conducted since 2020, focusing on the integration of image processing, artificial intelligence, and sensor fusion technologies. The increasing demand for contactless and adaptive monitoring solutions in the post-COVID-19 era has further highlighted the advantages of UAVs. Unlike stationary or vehicle-mounted systems, UAVs can efficiently cover large areas, adapt to dynamic conditions, and reduce infrastructure costs. The study also provides policy recommendations and technical guidance for the effective integration of UAVs into national traffic management strategies, with a specific emphasis on the Turkiye context.

Kaynakça

  • Aggarwal, S., & Kumar, N. (2020). Path planning techniques for unmanned aerial vehicles: A review, solutions, and challenges. Içinde Computer Communications (C. 149, ss. 270-299). Elsevier B.V. https://doi.org/10.1016/j.comcom.2019.10.014
  • Ahmed, A., Ngoduy, D., Adnan, M., & Baig, M. A. U. (2021). On the fundamental diagram and driving behavior modeling of heterogeneous traffic flow using UAV-based data. Transportation Research Part A: Policy and Practice, 148, 100-115. https://doi.org/10.1016/j.tra.2021.03.001
  • Alahvirdi, D., & Tuci, E. (2023). Autonomous Traffic Monitoring and Management by a Simulated Swarm of UAVs. 11th RSI International Conference on Robotics and Mechatronics, ICRoM 2023, 91-96. https://doi.org/10.1109/ICRoM60803.2023.10412448
  • Balamuralidhar, N., Tilon, S., & Nex, F. (2021). MultEYE: Monitoring system for real-time vehicle detection, tracking and speed estimation from UAV imagery on edge-computing platforms. Remote Sensing, 13(4), 1-24. https://doi.org/10.3390/rs13040573
  • Barmpounakis, E., & Geroliminis, N. (2020). On the new era of urban traffic monitoring with massive drone data: The pNEUMA large-scale field experiment. Transportation Research Part C: Emerging Technologies, 111, 50-71. https://doi.org/10.1016/j.trc.2019.11.023
  • Biyik, M. Y., Atik, M. E., & Duran, Z. (2023). Deep learning-based vehicle detection from orthophoto and spatial accuracy analysis. International Journal of Engineering and Geosciences, 8(2), 138-145. https://doi.org/10.26833/ijeg.1080624
  • Bouassida, S., Neji, N., Nouvelière, L., & Neji, J. (2020). Evaluating the Impact of Drone Signaling in Crosswalk Scenario. https://doi.org/10.3390/app11010
  • Butilă, E. V., & Boboc, R. G. (2022). Urban Traffic Monitoring and Analysis Using Unmanned Aerial Vehicles (UAVs): A Systematic Literature Review. Içinde Remote Sensing (C. 14, Sayı 3). MDPI. https://doi.org/10.3390/rs14030620
  • Byun, S., Shin, I. K., Moon, J., Kang, J., & Choi, S. Il. (2021). Road traffic monitoring from uav images using deep learning networks. Remote Sensing, 13(20). https://doi.org/10.3390/rs13204027
  • Cao, Z., Kooistra, L., Wang, W., Guo, L., & Valente, J. (2023). Real-Time Object Detection Based on UAV Remote Sensing: A Systematic Literature Review. Içinde Drones (C. 7,Sayı 10). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/drones7100620
  • Chen, H., & Qiu, T. Z. (2022). Distributed Dynamic Route Guidance and Signal Control for Mobile Edge Computing-Enhanced Connected Vehicle Environment. IEEE Transactions on Intelligent Transportation Systems, 23(8), 12251-12262. https://doi.org/10.1109/TITS.2021.3111855
  • Coifman, B., Mccord, M., Mishalani, R. G., Iswalt, M., & Ji, Y. (2006). Roadway Traffic Monitoring from an Unmanned Aerial Vehicle.
  • Coifman, B., Mccord, M., Mishalani, R. G., & Redmill, K. (2003). Surface Transportation Surveillance from Unmanned Aerial Vehicles.
  • Duman, Z. N., Çulcu, M. B., & Katar, O. (2022). YOLOv5-based Vehicle Objects Detection Using UAV Images. Turkish Journal of Forecasting, 06(1), 40-45. https://doi.org/10.34110/forecasting.1145381
  • Fu, F., Wang, D., Sun, M., Xie, R., & Cai, Z. (2024). Urban Traffic Flow Prediction Based on Bayesian Deep Learning Considering Optimal Aggregation Time Interval. Sustainability (Switzerland) , 16(5). https://doi.org/10.3390/su16051818
  • Garau Guzman, J., & Baeza, V. M. (2024). Enhancing Urban Mobility through Traffic Management with UAVs and VLC Technologies. Drones, 8(1). https://doi.org/10.3390/drones8010007
  • Gomez, C., & Purdie, H. (2016). UAV- based Photogrammetry and Geocomputing for Hazards and Disaster Risk Monitoring – A Review. Içinde Geoenvironmental Disasters (C. 3, Sayı 1). Springer. https://doi.org/10.1186/s40677-016-0060-y
  • Gupta, A., Afrin, T., Scully, E., & Yodo, N. (2021). Advances of UAVs toward Future Transportation: The State-of-the-Art, Challenges, and Opportunities. Future Transportation, 1(2), 326-350. https://doi.org/10.3390/futuretransp1020019
  • Heiets, I., Kuo, Y.-W., La, J., Yeun, R. C. K., & Verhagen, W. (2023). Future Trends in UAV Applications in the Australian Market. Aerospace, 10(6), 555. https://doi.org/10.3390/aerospace10060555
  • Hossain, M., Hossain, M. A., & Sunny, F. A. (2019, Aralık 1). A UAV-Based traffic monitoring system for smart cities. 2019 International Conference on Sustainable Technologies for Industry 4.0, STI 2019. https://doi.org/10.1109/STI47673.2019.9068088
  • Huang, H., Savkin, A. V., & Huang, C. (2021). Decentralized Autonomous Navigation of a UAV Network for Road Traffic Monitoring. IEEE Transactions on Aerospace and Electronic Systems, 57(4), 2558-2564. https://doi.org/10.1109/TAES.2021.3053115
  • İnağ, T., & Arıkan, M. (2024). A Fuzzy Based Intelligent Traffic Light Control (ITLC) Method: An Implementation in Ankara City. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 13(1), 292-306. https://doi.org/10.17798/bitlisfen.1388486
  • Javadi, S., Dahl, M., & Pettersson, M. I. (2021). Vehicle Detection in Aerial Images Based on 3D Depth Maps and Deep Neural Networks. IEEE Access, 9, 8381-8391. https://doi.org/10.1109/ACCESS.2021.3049741
  • Jian, L., Li, Z., Yang, X., Wu, W., Ahmad, A., & Jeon, G. (2019). Combining Unmanned Aerial Vehicles With Artificial-Intelligence Technology for Traffic-Congestion Recognition: Electronic Eyes in the Skies to Spot Clogged Roads. IEEE Consumer Electronics Magazine, 8(3), 81-86. https://doi.org/10.1109/MCE.2019.2892286
  • Khan, M. A., Ectors, W., Bellemans, T., Ruichek, Y., Yasar, A.-H., Janssens, D., & Wets, G. (2018). Unmanned Aerial Vehicle-based Traffic Analysis: A Case Study to Analyze Traffic Streams at Urban Roundabouts. Procedia Computer Science, 130, 636-643. https://doi.org/10.1016/j.procs.2018.04.114
  • Khan, N. A., Jhanjhi, N. Z., Brohi, S. N., Usmani, R. S. A., & Nayyar, A. (2020). Smart traffic monitoring system using Unmanned Aerial Vehicles (UAVs). Computer Communications, 157, 434-443. https://doi.org/10.1016/j.comcom.2020.04.049
  • Krueger, L. B. (2004). Airborne traffic surveillance systems proof of concept study: A leadingedge traffic surveillance success.
  • Kujawski, A., & Dudek, T. (2021). Analysis and visualization of data obtained from camera mounted on unmanned aerial vehicle used in areas of urban transport. Sustainable Cities and Society, 72. https://doi.org/10.1016/j.scs.2021.103004
  • Kunovjanek, M., & Wankmüller, C. (2021). Containing the COVID-19 pandemic with drones - Feasibility of a drone enabled back-up transport system. Transport Policy, 106, 141-152. https://doi.org/10.1016/j.tranpol.2021.03.015
  • Lee, J., Zhong, Z., Kim, K., Dimitrijevic, B., Du, B., & Gutesa, S. (2015, Ocak 15). Examining the Applicability of Small Quadcopter Drone for Traffic Surveillance and Roadway Incident Monitoring. Transportation Research Board 94th Annual Meeting.
  • Li, S., Yang, X., Lin, X., Zhang, Y., & Wu, J. (2023). Real-Time Vehicle Detection from UAV Aerial Images Based on Improved YOLOv5. Sensors, 23(12). https://doi.org/10.3390/s23125634
  • Liu, X., & Zhang, Z. (2021). A Vision-Based Target Detection, Tracking, and Positioning Algorithm for Unmanned Aerial Vehicle. Wireless Communications and Mobile Computing, 2021. https://doi.org/10.1155/2021/5565589
  • Mohammed, F., Idries, A., Mohamed, N., Al-Jaroodi, J., & Jawhar, I. (2014). Opportunities and Challenges of Using UAVs for Dubai Smart City. 2014 6th International Conference on New Technologies, Mobility and Security (NTMS), 1-4. https://doi.org/10.1109/NTMS.2014.6814041
  • Niu, H., Gonzalez-Prelcic, N., & Heath, R. W. (2018). A UAV-Based Traffic Monitoring System - Invited Paper. 2018 IEEE 87th Vehicular Technology Conference (VTC Spring),1-5. https://doi.org/10.1109/VTCSpring.2018.8417546
  • Oubbati, O. S., Lakas, A., Lorenz, P., Atiquzzaman, M., & Jamalipour, A. (2021). Leveraging Communicating UAVs for Emergency Vehicle Guidance in Urban Areas. IEEE Transactions on Emerging Topics in Computing, 9(2), 1070-1082. https://doi.org/10.1109/TETC.2019.2930124
  • Outay, F., Mengash, H. A., & Adnan, M. (2020). Applications of unmanned aerial vehicle (UAV) in road safety, traffic and highway infrastructure management: Recent advances and challenges. Transportation Research Part A: Policy and Practice, 141, 116-129. https://doi.org/10.1016/j.tra.2020.09.018
  • Shan, D., Lei, T., Yin, X., Luo, Q., & Gong, L. (2021). Extracting key traffic parameters from UAV video with on-board vehicle data validation. Sensors, 21(16). https://doi.org/10.3390/s21165620
  • Sharma, M. (2021). Drone Technology for Assisting COVID-19 Victims in Remote Areas: Opportunity and Challenges. Journal of Medical Systems, 45(9), 85. https://doi.org/10.1007/s10916-021-01759-y
  • Shulajkovska, M., Smerkol, M., Noveski, G., & Gams, M. (2024). Enhancing Urban Sustainability: Developing an Open-Source AI Framework for Smart Cities. Smart Cities, 7(5), 2670-2701. https://doi.org/10.3390/smartcities7050104
  • Srivastava, S., Narayan, S., & Mittal, S. (2021). A survey of deep learning techniques for vehicle detection from UAV images. Içinde Journal of Systems Architecture (C. 117). Elsevier B.V. https://doi.org/10.1016/j.sysarc.2021.102152
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Ulaşım Planlaması, Ulaşım ve Trafik, Akıllı Hareketlilik
Bölüm İnceleme Makalesi
Yazarlar

Busra Biskin

Tuğçe İnağ

Yayımlanma Tarihi 29 Haziran 2025
Gönderilme Tarihi 28 Nisan 2025
Kabul Tarihi 12 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Sayı: 2

Kaynak Göster

APA Biskin, B., & İnağ, T. (2025). İHA’LAR İLE TRAFİK İZLEME VE AKILLI ULAŞIM: 2020 SONRASI GELİŞMELER VE UYGULAMALAR. Ulaştırma ve Altyapı(2), 236-258.
AMA Biskin B, İnağ T. İHA’LAR İLE TRAFİK İZLEME VE AKILLI ULAŞIM: 2020 SONRASI GELİŞMELER VE UYGULAMALAR. Ulaştırma ve Altyapı. Haziran 2025;(2):236-258.
Chicago Biskin, Busra, ve Tuğçe İnağ. “İHA’LAR İLE TRAFİK İZLEME VE AKILLI ULAŞIM: 2020 SONRASI GELİŞMELER VE UYGULAMALAR”. Ulaştırma ve Altyapı, sy. 2 (Haziran 2025): 236-58.
EndNote Biskin B, İnağ T (01 Haziran 2025) İHA’LAR İLE TRAFİK İZLEME VE AKILLI ULAŞIM: 2020 SONRASI GELİŞMELER VE UYGULAMALAR. Ulaştırma ve Altyapı 2 236–258.
IEEE B. Biskin ve T. İnağ, “İHA’LAR İLE TRAFİK İZLEME VE AKILLI ULAŞIM: 2020 SONRASI GELİŞMELER VE UYGULAMALAR”, Ulaştırma ve Altyapı, sy. 2, ss. 236–258, Haziran2025.
ISNAD Biskin, Busra - İnağ, Tuğçe. “İHA’LAR İLE TRAFİK İZLEME VE AKILLI ULAŞIM: 2020 SONRASI GELİŞMELER VE UYGULAMALAR”. Ulaştırma ve Altyapı 2 (Haziran2025), 236-258.
JAMA Biskin B, İnağ T. İHA’LAR İLE TRAFİK İZLEME VE AKILLI ULAŞIM: 2020 SONRASI GELİŞMELER VE UYGULAMALAR. Ulaştırma ve Altyapı. 2025;:236–258.
MLA Biskin, Busra ve Tuğçe İnağ. “İHA’LAR İLE TRAFİK İZLEME VE AKILLI ULAŞIM: 2020 SONRASI GELİŞMELER VE UYGULAMALAR”. Ulaştırma ve Altyapı, sy. 2, 2025, ss. 236-58.
Vancouver Biskin B, İnağ T. İHA’LAR İLE TRAFİK İZLEME VE AKILLI ULAŞIM: 2020 SONRASI GELİŞMELER VE UYGULAMALAR. Ulaştırma ve Altyapı. 2025(2):236-58.