Review
BibTex RIS Cite

Sekonder Metabolitler ve Rolleri

Year 2020, Volume: 2 Issue: 4, 39 - 45, 27.11.2020

Abstract

Sekonder metabolitler, bitkinin normal büyüme ve gelişmesi için ihtiyaç duymadığı ancak hücre metabolizmasının yan ürünü olarak bitkilerde üretilen kimyasal bileşiklerdir. Sekonder metabolitler, bitki yaşamı için elzem olmamakla birlikte bitki herhangi bir stres faktörü ile karşı karşıya kaldığında savunma mekanizması olarak sentezlenmeye başlarlar. Bazı sekonder metabolitler ilaçlar, tatlar, kokular, böcek öldürücüler ve boyalar gibi kimyasal olarak kullanılmaktadır ve bu nedenle büyük bir ekonomik değere sahiptir. Bu yeni teknolojiler, özellikle tıbbi bileşikler olmak üzere kimyasalların yenilenme kaynakları olarak yüksek bitkilerin sürekli kullanışlılığını genişletmeye ve geliştirmeye hizmet edecektir. Bu alandaki yoğunlaştırma çabalarının spesifik, değerli ve henüz bilinmeyen bitki kimyasallarının biyoteknolojik üretimine katkı sağlaması beklenmektedir.

References

  • Ali, S.T., Mahmooduzzafar-Abdin, M.Z., Iqbal, M., 2008. Ontogenetic changes in Folier features and psoralen content of Psoralea corylifolia Linn. Exposed to SO2 stress. Journal Environmental Biology, 29(5): 661-668.
  • Berli, F.J., Moreno, D., Piccolo, P., Hespanhol-Viana, L., Silva, M.F., BressanSmith, R., Cavarnaro, J.B., Bottini, R., 2010. Abscisic acid is involved in the response of grape (Vitis vinifera L.) cv. Malbec leaf tissues to ultraviolet‐B radiation by enhancing ultraviolet‐absorbing compounds, antioxidant enzymes and membrane sterols. Plant, cell and environment, 33(1): 1-10.
  • Brooker, N., Windorski, J., Blumi, E., 2008. Halogenated coumarins derivatives as novel seed protectants. Communications in Agricultural and Applied Biological Sciences, 73(2): 81-89.
  • Croteau, R., Kutchan, T.M., Lewis, N.G., 2000. Natural products (secondary metabolites). Biochemistry and molecular biology of plants, 24: 1250-1319.
  • Grubb, C., Abel, S., 2006. Glucosinolate metabolism and its control. Trends Plant Science, 11: 89-100.
  • Halkier, B.A., Gershenzon, J., 2006. Biology and biochemistry of glucosinolates. Annual Review of Plant Biology, 57: 303-333.
  • Han, Y. S., Heijden V., Verpoorte R., 2001. Biosynthesis of antraquinones in cell cultures of the Rubiacea. Plant Cell, Tissue and Organ Culture, 67: 201-220.
  • Iriti, M., Faoro, F., 2009. Bioactivity of grape chemicals for human health. Nat Prod Commun, 4: 611-634.
  • Kang, S.Y., Kim, Y.C., 2007. Decursinol and decursin protect primary cultured rat cortical cells from glutamate-induced neurotoxicity. Journal Pharmacy Pharmacology, 59(6): 863-870.
  • Kurkin, V. A., 2003. Phenylpropanoids from medicinal plants: Distribution, classification, structural analysis and biological activity. Chem. Nat. Compd, 3: 123-153.
  • Lake, J.A., Field, K.J., Davey, M.P., Beerling, D.J., Lomax, B.H., 2009. Metabolomic and physiological responses reveal multiphasic acclimation of Arabidopsis thaliana to chronic UV radiation. Plant cell Environmental, 32(10): 1377-1389.
  • Mansfield, J.W., 2000. Antimicrobial compounds and resistances. The role of phytoalexins and phytoanticipins. In: slusarenko A.J., fraser R.S.S., vanloon L.C. and fraser R.S.(eds). Mechanism of resisyance to plant diseases. Springer-verlag New York., 325-363.
  • Mazid, M., Khan, T.A., Mohammad, F., 2011. Role of secondary metabolites in defense mechanisms of plants. Biology and medicine, 3(2): 232-249.
  • Naik, P. M., Al-Khayri, J. M., 2016. Abiotic and biotic elicitors–role in secondary metabolites production through in vitro culture of medicinal plants. Abiotic and biotic stress in plants-recent advances and future perspectives, 247-277.
  • Ncube, N.S., Afolayan, A.J., Okoh, A.I., 2008. Assessment techniques of antimicrobial properties of natural compounds of plant origin: current methods and future trends. African Journal Biotechnology, 7 (12): 1797-1806.
  • Pagare, S., Bhatia, M., Tripathi, N., Bansal, Y.K., 2015. Secondary metabolites of plants and their role: Overview. Current Trends in Biotechnology and Pharmacy, 9(3): 293-304.
  • Olivira, A.J.B., Koike, L., Reis, F.A.M., Shepherd, S.L.K., 2001. Callus culture of Aspidosperma ramiflorum Muell.-Arg.: growth and alkaloid production. Acta Scientia. 23:609-612
  • Posmyk, M.M., Kontek, R., Janas, K.M., 2009. Antioxidant enzymes activity and phenolic compounds content in red cabbage seedlings exposed to copper stress. Ecotoxicology Environmental Safety, 72(2): 596-602.
  • Raskin, I., Ribnicky, D.M., Komarnytsky, S., Ilic, N., Poulev, A., Borisjuk, N., Brinker, A., Moreno, D.A., Yakoby, R.N., 2002. Plant and human health in the twenty-first century. Trends Biotechnology, 20:522-531.
  • Reddy, L., Odhav, B., Bhoola, K.D., 2003. Natural product for cancer prevention: global perspective. Pharmacology and therapeutics, 99: 1-13.
  • Saito, K., 2004. Sulfur assimilatory metabolism. The long and smelling road. Plant Physiology, 136: 2443-2450.
  • Saviranta, N.M., Julkunen-Tiitto, R., Oksanen, E., Karjalainen, R.O., 2001. Leaf phenolic compounds in red clover (Trifolium pratense L.) induced by exposure to moderately elevated ozone. Environmental Pollution, 158(2):440-446.
  • Sreevidya, V.S., Srinivasa, R.C., Rao, C., Sullia, S.B., Ladha, J.K., Reddy, P.M., 2006. Metabolic engineering of rice with soyabean isoflavone synthase for promoting nodulation gene expression in rhizobia. Journal Experimental Botany, 57(9): 1957-1969.
  • Tholl, D., 2006. Terpene Synthases and the regulation, diversity and biological roles of terpene metabolism. Current Opinion Plant Biology, 9: 297-304.
  • Tolonen, A., 2003. Analysis of Secondary Metabolites in Plant and Cell Culture Tissue of Hypericum perfolatum L. and Rhodiola rosea L. Qulu Üniversitesi, Doktora Tezi.
  • Ünay, A., 2004. Ürün Fizyolojisi Ders Notları. Adnan Menderes Üniversitesi, Aydın.
  • Verpoorte, R., Alfermann, A.W., 2013. Metabolic engineering of plant secondary metabolism. Springer Science and Business Media.
  • Watson, A.A., Fleet, G.W.J., Asano, N., Molyneux, R.J., Nash, R.J., 2001. Polyhydroxy latedalkaloid natural occurrence and therapeutic applications. Phytochemistry, 56: 265-295.
  • Wink, M., 2009. Chapter 1 Introduction. Annual Plant Reviews, 39: 1-20.
  • Winkel-Shirley, B., 2001. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant physiology, 126(2): 485-493.
  • Wuyts, N., De Waele, D., Swennen, R., 2006. Extraction and partial characterization of polyphenol oxidase from banana (Musa acuminata Grande naine) roots. Plant Physiology and Biochemistry, 44(5-6):308-314.

Secondary Metabolites and Their Roles

Year 2020, Volume: 2 Issue: 4, 39 - 45, 27.11.2020

Abstract

Secondary metabolites are chemical compounds that the plant does not need for normal growth and development, but are produced in plants as by-products of cell metabolism. Although secondary metabolites are not essential for plant life, they start to be synthesized as a defense mechanism when the plant is exposed to any stress factor. A few secondary metabolites are used chemically, especially drugs, flavors, fragrances, insecticides and dyes, and therefore have a great economic value. These new technologies will serve to expand and improve the continuous usefulness of high plants as sources of chemicals regeneration, especially medical compounds. Concentration efforts in this area are expected to contribute to the biotechnological production of specific, valuable and unknown plant chemicals.

References

  • Ali, S.T., Mahmooduzzafar-Abdin, M.Z., Iqbal, M., 2008. Ontogenetic changes in Folier features and psoralen content of Psoralea corylifolia Linn. Exposed to SO2 stress. Journal Environmental Biology, 29(5): 661-668.
  • Berli, F.J., Moreno, D., Piccolo, P., Hespanhol-Viana, L., Silva, M.F., BressanSmith, R., Cavarnaro, J.B., Bottini, R., 2010. Abscisic acid is involved in the response of grape (Vitis vinifera L.) cv. Malbec leaf tissues to ultraviolet‐B radiation by enhancing ultraviolet‐absorbing compounds, antioxidant enzymes and membrane sterols. Plant, cell and environment, 33(1): 1-10.
  • Brooker, N., Windorski, J., Blumi, E., 2008. Halogenated coumarins derivatives as novel seed protectants. Communications in Agricultural and Applied Biological Sciences, 73(2): 81-89.
  • Croteau, R., Kutchan, T.M., Lewis, N.G., 2000. Natural products (secondary metabolites). Biochemistry and molecular biology of plants, 24: 1250-1319.
  • Grubb, C., Abel, S., 2006. Glucosinolate metabolism and its control. Trends Plant Science, 11: 89-100.
  • Halkier, B.A., Gershenzon, J., 2006. Biology and biochemistry of glucosinolates. Annual Review of Plant Biology, 57: 303-333.
  • Han, Y. S., Heijden V., Verpoorte R., 2001. Biosynthesis of antraquinones in cell cultures of the Rubiacea. Plant Cell, Tissue and Organ Culture, 67: 201-220.
  • Iriti, M., Faoro, F., 2009. Bioactivity of grape chemicals for human health. Nat Prod Commun, 4: 611-634.
  • Kang, S.Y., Kim, Y.C., 2007. Decursinol and decursin protect primary cultured rat cortical cells from glutamate-induced neurotoxicity. Journal Pharmacy Pharmacology, 59(6): 863-870.
  • Kurkin, V. A., 2003. Phenylpropanoids from medicinal plants: Distribution, classification, structural analysis and biological activity. Chem. Nat. Compd, 3: 123-153.
  • Lake, J.A., Field, K.J., Davey, M.P., Beerling, D.J., Lomax, B.H., 2009. Metabolomic and physiological responses reveal multiphasic acclimation of Arabidopsis thaliana to chronic UV radiation. Plant cell Environmental, 32(10): 1377-1389.
  • Mansfield, J.W., 2000. Antimicrobial compounds and resistances. The role of phytoalexins and phytoanticipins. In: slusarenko A.J., fraser R.S.S., vanloon L.C. and fraser R.S.(eds). Mechanism of resisyance to plant diseases. Springer-verlag New York., 325-363.
  • Mazid, M., Khan, T.A., Mohammad, F., 2011. Role of secondary metabolites in defense mechanisms of plants. Biology and medicine, 3(2): 232-249.
  • Naik, P. M., Al-Khayri, J. M., 2016. Abiotic and biotic elicitors–role in secondary metabolites production through in vitro culture of medicinal plants. Abiotic and biotic stress in plants-recent advances and future perspectives, 247-277.
  • Ncube, N.S., Afolayan, A.J., Okoh, A.I., 2008. Assessment techniques of antimicrobial properties of natural compounds of plant origin: current methods and future trends. African Journal Biotechnology, 7 (12): 1797-1806.
  • Pagare, S., Bhatia, M., Tripathi, N., Bansal, Y.K., 2015. Secondary metabolites of plants and their role: Overview. Current Trends in Biotechnology and Pharmacy, 9(3): 293-304.
  • Olivira, A.J.B., Koike, L., Reis, F.A.M., Shepherd, S.L.K., 2001. Callus culture of Aspidosperma ramiflorum Muell.-Arg.: growth and alkaloid production. Acta Scientia. 23:609-612
  • Posmyk, M.M., Kontek, R., Janas, K.M., 2009. Antioxidant enzymes activity and phenolic compounds content in red cabbage seedlings exposed to copper stress. Ecotoxicology Environmental Safety, 72(2): 596-602.
  • Raskin, I., Ribnicky, D.M., Komarnytsky, S., Ilic, N., Poulev, A., Borisjuk, N., Brinker, A., Moreno, D.A., Yakoby, R.N., 2002. Plant and human health in the twenty-first century. Trends Biotechnology, 20:522-531.
  • Reddy, L., Odhav, B., Bhoola, K.D., 2003. Natural product for cancer prevention: global perspective. Pharmacology and therapeutics, 99: 1-13.
  • Saito, K., 2004. Sulfur assimilatory metabolism. The long and smelling road. Plant Physiology, 136: 2443-2450.
  • Saviranta, N.M., Julkunen-Tiitto, R., Oksanen, E., Karjalainen, R.O., 2001. Leaf phenolic compounds in red clover (Trifolium pratense L.) induced by exposure to moderately elevated ozone. Environmental Pollution, 158(2):440-446.
  • Sreevidya, V.S., Srinivasa, R.C., Rao, C., Sullia, S.B., Ladha, J.K., Reddy, P.M., 2006. Metabolic engineering of rice with soyabean isoflavone synthase for promoting nodulation gene expression in rhizobia. Journal Experimental Botany, 57(9): 1957-1969.
  • Tholl, D., 2006. Terpene Synthases and the regulation, diversity and biological roles of terpene metabolism. Current Opinion Plant Biology, 9: 297-304.
  • Tolonen, A., 2003. Analysis of Secondary Metabolites in Plant and Cell Culture Tissue of Hypericum perfolatum L. and Rhodiola rosea L. Qulu Üniversitesi, Doktora Tezi.
  • Ünay, A., 2004. Ürün Fizyolojisi Ders Notları. Adnan Menderes Üniversitesi, Aydın.
  • Verpoorte, R., Alfermann, A.W., 2013. Metabolic engineering of plant secondary metabolism. Springer Science and Business Media.
  • Watson, A.A., Fleet, G.W.J., Asano, N., Molyneux, R.J., Nash, R.J., 2001. Polyhydroxy latedalkaloid natural occurrence and therapeutic applications. Phytochemistry, 56: 265-295.
  • Wink, M., 2009. Chapter 1 Introduction. Annual Plant Reviews, 39: 1-20.
  • Winkel-Shirley, B., 2001. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant physiology, 126(2): 485-493.
  • Wuyts, N., De Waele, D., Swennen, R., 2006. Extraction and partial characterization of polyphenol oxidase from banana (Musa acuminata Grande naine) roots. Plant Physiology and Biochemistry, 44(5-6):308-314.
There are 31 citations in total.

Details

Primary Language Turkish
Subjects Agricultural Engineering (Other)
Journal Section Articles
Authors

Özlem Bakır 0000-0002-1964-3271

Publication Date November 27, 2020
Submission Date June 29, 2020
Published in Issue Year 2020 Volume: 2 Issue: 4

Cite

APA Bakır, Ö. (2020). Sekonder Metabolitler ve Rolleri. Uluslararası Anadolu Ziraat Mühendisliği Bilimleri Dergisi, 2(4), 39-45.