Review
BibTex RIS Cite

Atık Döküm Kumunun Geoteknik Mühendisliği Uygulamalarında Kullanımı

Year 2022, Volume: 5 Issue: 2, 92 - 99, 31.12.2022

Abstract

Atık döküm kumu, metal döküm endüstrisinde ortaya çıkan ve büyük miktarlara ulaşan bir yan üründür. Döküm işlemi sırasında bünyesine aldığı metaller ve buna bağlı çevresel kaygılar nedeniyle bu malzeme genellikle atık olarak kabul edilmekte ve düzenli depolama tesislerinde bertaraf edilmektedir. Ancak, uygun mühendislik özellikleri nedeniyle atık döküm kumları inşaat mühendisliği alanında, özellikle büyük miktarlarda malzeme kullanımının gerekli olduğu çeşitli geoteknik uygulamalarında yeniden kullanılabilir. Bu çalışmada, atık döküm kumlaları hakkında genel bilgiler verilmiş ve bertaraf yöntemleri, çevresel etkileri, geoteknik özellikleri ve inşaat mühendisliği ve geoteknik uygulamalarında faydalı kullanım alanları incelenmiştir.

Supporting Institution

-

Project Number

-

Thanks

-

References

  • [1] Clean Washington Center, 1995, Beneficial reuse of spent foundry sand (IBP-95-1). Recycling Techonology Assistance Partnership (ReTAP), Seattle, Washington..
  • [2] Bhardwaj, B., Kumar, P., 2017, Waste foundry sand in concrete: a review, Constr. Mater. Build. Vol.156, 661–674
  • [3] Beeley, P. 2001. Foundry technology, 2nd Edition, Butterworth-Heinemann, Boston, Massachusetts
  • [4] Clegg, A.J. 1991, Precision casting processes, 1st Edition, Pergamon Press, New York.
  • [5] Tittarelli, F., 2018, Waste Foundry Sand, In: Waste and Supplementary Cementitious Materials in Concrete Characterization, Properties and Applications, Woodhead Publishing Series in Civil and Structural Engineering, 121-147.
  • [6] Siddique, R., Kaur, G., Rajor, A., 2010, Waste foundry sand and Its Leachate Characteristics, Resour. Conserv. Recycl., Vol. 54(12), 1027-1036.
  • [7] P.P.O.L. Dyer, M.G.D. Lima, L.M.G. Klinsky, S.A. Silva, G.J.L. Coppio, 2018, Environmental Characterization of Foundry Waste Sand (WFS) in Hot Mix Asphalt (HMA) Mixtures, Constr. Build. Mater., Vol. 171, 474-484.
  • [8] Zanetti, M., Godio, A., 2006, Recovery of Foundry Sands and Iron Fractions from an Industrial Waste Landfill, Resour. Conserv. Recycl., Vol. 48(4), 396-411.
  • [9] Çevre ve Şehircilik Bakanlığı Çevre Yönetimi Genel Müdürlüğü, Sektörel Atık Kılavuzları, Döküm Sektörü, web sayfası: https://webdosya.csb.gov.tr/db/cygm/editordosya/Dokum_Sektoru_Kilavuzu.pdf, erişim tarihi: 05/07/2021.
  • [10] Tüdoksad, 2017, Türkiye Sanayicileri Derneği, Türk Döküm Dergisi 45.
  • [11] Sharma, H.D,. Reddy, K.R., 2004, Geoenvironmental Engineering: Site Remediation, Waste Containment, and Emerging Waste Management Technologies, 1st Edition, John Wiley & Sons.
  • [12] Dyer, P.P.O.L., Klinsky, L.M.G., Silva, S.A., e Silva, R.A., de Lima, M.G., 2019, Macro and Microstructural Characterization of Waste Foundry Sand Reused as Aggregate, Road Mater. Pavement Des., Vol. 22(2), 464-477.
  • [13] Mynuddin, S.A., Mohan, M., I. Reddy, Reddy, N.P., 2018, Strength Behaviour of Concrete Produced with Foundry Sand as Fine Aggregate Replacement, Int. J. Technol. Res. Eng., Vol. 5, 3476–3480.
  • [14] Gedik, A., Lav, A.H., Lav, M.A., 2018, Investigation of alternative ways for Recycling Waste Foundry Sand: An Extensive Review to Present Benefits, Can. J. Civ. Eng., Vol. 45, 423-434.
  • [15] Bakis, R., Koyuncu, H., Demirbas, A., 2006, An Investigation of Waste Foundry Sand in Asphalt Concrete Mixtures, Waste Manage Res., Vol. 24, 269-274.
  • [16] Salokhe, E.P., Desai, D.B., 2011, Application of Foundry Sand in Manufacture of Concrete. Journal of Mechanical and Civil Engineering, 43-48.
  • [17] Oliveira, G.V., da Silva, W.L., de Oliveira, E.R., Lansarin, M.A., dos Santos, J.H.Z., 2016, Foundry Sands as Supports for Heterogeneous Photocatalysts, Water, Air, Soil Pollut., Vol. 227, 373.
  • [18] Yaghoubi E., Arulrajah, A., Yaghoubi, M., Horpibulsuk, S., 2020, Shear Strength Properties and Stress–Strain Behavior of Waste Foundry Sand, Constr. Build. Mater., Vol. 249, 118761.
  • [19] Guney, Y., Aydilek, A.H., Demirkan, M.M., 2006, Geoenvironmental Behavior of Foundry Sand Amended Mixtures for Highway Subbases. Waste Manage., Vol. 26, 932-945.
  • [20] Coz, A., Andrés, A., Soriano, S., Irabien, A., 2004, Environmental Behaviour of Stabilised Foundry Sludge. J. Hazard. Mater., Vol. 109, 95-104.
  • [21] Ham, R.K., Boyle, W.C., Kunes, T.P., 1981, Leachability of Foundry Process Solid Waste, J. Environ. Eng. Div. ASCE, Vol. 107 (1), 155-170.
  • [22] Lovejoy, M.A., Ham, R.K., Traeger, P.A., Wellander, D., Hippe, J., Boyle, W.C., 1996, Evaluation of Selected Foundry Wastes for Use in Highway Construction, Proceedings of the 19th International Madison Waste Conference, University of Wisconsin-Madison, 19-31.
  • [23] Naik, T., Singh, S., Ramme, B., 2001, Performance and Leaching Assessment of Flowable Slurry, J. Environ. Eng., Vol. 127 (4), 359-368.
  • [24] Siddique, R., Singh, G., Singh, M., 2018, Recycle Option for Metallurgical By-Product (Spent Foundry Sand) in Green Concrete for Sustainable Construction, J. Cleaner Prod., Vol. 172, 1111-1120.
  • [25] Basar, H.M., and Aksoy, N.D. 2012, The Effect of Waste Foundry Sand (WFS) as Partial Replacement of Sand on the Mechanical, Leaching and Micro-Structural Characteristics of Ready-Mixed Concrete, Constr. Build. Mater., Vol. (35), 508-515.
  • [26] Arulrajah, A., Yaghoubi, E., Imteaz, M., Horpibulsuk, S., 2017, Recycled Waste Foundry Sand as a Sustainable Subgrade Fill and Pipe-Bedding Construction Material: Engineering and Environmental Evaluation, Sustainable Cities Soc., Vol. 28, 343–349.
  • [27] Miguel, R.E., Ippolito, J.A., Leytem, A.B., Porta, A.A., Noriega, R.BB.., Dungan, R.S., 2012, Analysis of Total Metals in Waste Molding and Core Sands from Ferrous and Nonferrous Foundries, J. Environ. Manage, Vol. 110, 77-81.
  • [28] Yazoghli-Marzouk, O., Vulcano-Greullet, N., Cantegrit, L., Friteyre, L., Jullien, A., 2014, Recycling Foundry Sand in Road Construction-Field Assessment, Constr. Build. Mater. Vol. 61, 69-78.
  • [29] Mast, D.G., Fox, P.J. 1998. Geotechnical Performance of a Highway Embankment Constructed Using Waste Foundry Sand, Recycled Materials in Geotechnical Applications, ASCE, 66-85.
  • [30] Miguel, R.E., Ippolito, J.A., Porta, A.A., Banda Noriega, R.B., Dungan, R.S., 2013, Use of Standardized Procedures to Evaluate Metal Leaching From Waste Foundry Sands, J. Environ. Qual. Vol. 42 (2), 1-6.
  • [31] Foundry Industry Recycling Starts Today (FIRST), 2004, Foundry Sand Facts for Civil Engineers, Report No: FHWA-IF-04-004, Federal Highway Administration Environmental Protection Agency Washington, DC, USA.
  • [32] Bradshaw, S.L., Benson, C.H., E.H. Olenbush, J.S. Melton, 2010, Using Foundry Sand in Green Infrastructure Construction, Green Streets Highways, 280–298.
  • [33] Yin, J., Soleimanbeigi, A., Likos, W.J., Edil, T.B., 2018, Creep Response of Compacted Waste Foundry Sands for Use as Roadway Embankment Fill, J. Geotech. Geoenvironmental Eng., Vol. 144.
  • [34] Soleimanbeigi, A., Edil, T.B., 2015, Compressibility of Recycled Materials for Use as Highway Embankment Fill, J. Geotech. Geoenvironmental Eng. Vol. 141 (5), 1-14.
  • [35] Kumar, A., Sharma, R.K., Singh, B., 2014, Compaction and Sub-grade Characteristics of Clayey Soil Mixed with Foundry Sand and Fly Ash and Tile Waste, International Conference on Advances in Engineering & Technology – 2014 (ICAET-2014), 29th-30th March 2014, Singapore 1-5.
  • [36] Goodhue, M.J., Edil, T.B., Benson, C.H., 2001, Interaction of Foundry Sands with Geosynthetics, J. Geotech. Geoenviron. Eng., 127 (4), 353-362.
  • [37] Kleven, J., Edil, T., Benson, C., 2000, Evaluation of Excess Foundry System Sands for Use as Subbase Material, Transp. Res. Rec.: J. Transp. Res. Board, 1714, 40-48.
  • [38] Abichou, T., Benson, C. H., Edil, T.B., 2000, Foundry Green Sands as Hydraulic Barriers: Laboratory Study, J. Geotech. Geoenviron. Eng., Vol. 126 (12), 1174-1183.
  • [39] Raju, K.V.S.B., Pai, G.M., Murthy, N., Anirudha, K.V., Rao, P.R., Geotechnical Characterization of Miscellaneous Wastes, Indian Geotechnical Conference - 2010, GEOtrendz December 16–18, 2010, IGS Mumbai Chapter & IIT Bombay, 53-56.
  • [40] M. Heidemann, H.P. Nierwinski, D. Hastenpflug, B.S. Barra, Y.G. Perez, 2021, Geotechnical Behavior of a Compacted Waste Foundry Sand, Constr. Build. Mater., Vol. 277, 122267.
  • [41] Partridge, B., Fox, P., Alleman, J., Mast, D., 1999, Field Demonstration of Highway Embankment Construction using Waste Foundry Sand, Transp. Res. Rec.: J. Transp. Res. Board,, 1670, 98–105.
  • [42] S. Javed, 1994, Use of Waste Foundry Sand in Highway Construction. Rep. JHRP/INDOT/FHWA-94/2 J, Purdue School of Engineering, West Lafayette, IN.
  • [43] Abichou, T., Benson, C.H., Edil, T.B., 2002, Foundry Green Sands as Hydraulic Barriers: Field Study, J. Geotech. Geoenviron. Eng., Vol. 128 (3), 206-215.
  • [44] Koyuncu, H., Guney, Y., 2002, Properties of Permeability and Freeze-Thaw of Foundry (Casting Mold) Sand Wastes and Usable in Road Construction. In: Proceedings 6th International Symposium on Environmental Geotechnology and Global Sustainable Development, Edited by: WonPyo, Hong. Chung-Ang University and International Society Environmental Geotechnology Publisher, 2–5 July, 2002, Seoul, Korea, 85–90
  • [45] Siddique, R., Singh, G., 2011, Utilization of Waste Foundry Sand (WFS) in Concrete Manufacturing, Resourc. Conserv. Recycl., Vol. 55 (11) 885-892.
  • [46] Deng, A., Tikalsky, P. J., 2008, Geotechnical and Leaching Properties of Flowable Fill Incorporating Waste Foundry Sand, Waste Manage., Vol. 28 (11), 2161-2170.
  • [47] J. Yin, A. Soleimanbeigi, W.J. Likos, T.B. Edil, 2016, Compression Behavior of Foundry Sands, Geotechnical and Structural Engineering Congress 2016, 1392–1403.
  • [48] Nabhani, F., McKie, M., Hodgson, S., 2013, A Case Study on a Sustainable Alternative to the Landfill Disposal of Spent Foundry Sand, Int. J. Sustain. Manufac. Vol. 3 (1), 1-19.
  • [49] Orkas, J., 2001, Technical and environmental requirements for surplus foundry sand utilization, Valimotekniikan julkaisuja, no. TKK-VAL 3/2001, Otaniemi, 148.
  • [50] Abichou, T.H., Benson, C.H., Edil, T.B., 1999, Beneficial Reuse of Foundry By-Products, Environmental Geotechnical Report 99–1, Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, USA.
  • [51] C.H., Benson, Badshaw, S., 2011, User Guideline for Foundry Sand in Green Infrastructure Construction, Recycled materials resource center, University of Wisconsin-Madison, USA.
  • [52] Pasetto, M., Baldo, N., 2015, Experimental Analysis of Hydraulically Bound Mixtures Made with Waste Foundry Sand and Steel Slag, Mater. Struct., Vol. 48 (8), 2489-2503.
  • [53] L.M.G. Klinsky, G.T.P. Fabbri, dos Santos Bardini, V.S., 2016, Reuse of Waste Foundry Sand Mixed with Lateritic Clayey Soils in Pavement Bases and Sub-Bases Courses, 8th RILEM International Symposium on Testing and Characterization of Sustainable and Innovative Bituminous Materials, Springer, Dordrecht, Netherlands, 569-582.
  • [54] Tanyu, B.F., Benson, C.H., Edil, T.B., Kim, W.H., 2004, Equivalency of Crushed Rock and Three Industrial By-products used for Working Platforms during Pavement Construction, Transp. Res. Rec., 1874, 59-69.
  • [55] Foundry Society, 2019. Bases and Subbases. American Foundry Society AFS. web sayfası: https://www.afsinc.org/bases-and-subbases, erişim tarihi: 16.06.2021.
  • [56] Zhang, Y., Sappinen, T., Korkiala-Tanttu, L., Vilenius, M., Juuti, E., 2021, Investigations into Stabilized Structures with the Use of Waste Foundry Sand, Res. Conserv. Recycl., Vol. 170, 105585.
  • [57] Yazoghli-Marzouk O, Jullien A, Ropert C., 2012, Environmental Assessment of Foundry Sands Reuse Scenario, 4th International Conference on Engineering for Waste and Biomass Valorisation, Porto, Portugal.
  • [58] Abichou T, Edil TB, Benson CH, Bahia H., 2004, Beneficial Use of Foundry By-Products in Highway Construction, Geotechnical Engineering for Transportation Projects, American Society of Civil Engineers, Geotechnical Special Publication 126, M. K. Yegian and and E. Kavazanjian, eds., Vol. 1, 715-722.
  • [59] Abichou, T., Edil, T.B., Benson, C.H., Tawfiq, K., 2005, Hydraulic Conductivity of Foundry Sands and Their Use as Hydraulic Barriers. In: Recycled Materials in Geotechnics. Geotechnical Special Publications 127, ASCE, Reston, Va., 186-200.
  • [60] Prabhu, G.G., Hyun, J.H., Kim, Y.Y., 2014, Effects of Foundry Sand as a Fine Aggregate in Concrete Production, Constr. Build. Mater., Vol. 70, 514-521.
  • [61] Prabhu, G.G., Bang, J.W., Lee, B.J., Hyun, J.H., Kim, Y.Y., 2015, Mechanical and Durability Properties of Concrete Made with Used Foundry Sand as Fine Aggregate, Adv. Mater. Sci. Eng. 2015, Article ID 161753.
  • [62] Iqbal, M.F., Liu, Q.F., Azim, I., Zhu, X., Yang, J., Javed, M.F., Rauf, M., 2020, Prediction of Mechanical Properties of Green Concrete Incorporating Waste Foundry Sand based on Gene Expression Programming, J. Hazard. Mater., Vol. 384, 121322.
  • [63] Behnood, A., Golafshani, E.M., 2020, Machine Learning Study of the Mechanical Properties of Concretes Containing Waste Foundry Sand, Constr. Build. Mater., Vol. 243, 118152.
  • [64] de Matos, P.R., Pilar, R., Bromerchenkel, L.H., Schankoski, R.A., Gleize, P.J., de Brito, J., 2020, Self-compacting Mortars Produced with Fine Fraction of Calcined Waste Foundry Sand (WFS) as Alternative Filler: Fresh-state, Hydration and Hardened State Properties, J. Cleaner Prod., Vol. 252, 119871.
  • [65] Torres, A., Bartlett, L., Pilgrim, C., 2017, Effect of Foundry Waste on the Mechanical Properties of Portland Cement Concrete, Constr. Build. Mater., Vol. 135, 674-681.
  • [66] Mavroulidou, M., Lawrence, D., 2019, Can Waste Foundry Sand Fully Replace Structural Concrete Sand?, J. Mater., Cycles Waste Manag., Vol. 21, 594-605
  • [67] Manoharan, T., Laksmanan, D., Mylsamy, K., Sivakumar, P., and Sircar, A., 2018, Engineering Properties of Concrete with Partial Utilization of Used Foundry Sand, Waste Manage., Vol. 71, 454-460.
  • [68] Sandhu, R.K., Siddique, R., 2019, Strength Properties and Microstructural Analysis of Self-Compacting Concrete Incorporating Waste Foundry Sand, Constr. Build. Mater., Vol. 225, 371-383.
  • [69] Siddique, R., Noumowe, A., 2008, Utilization of Spent Foundry Sand in Controlled Low Strength Materials and Concrete, Resour. Conservat. Recycl., Vol. 53, 27-35.
  • [70] Siddique, R., 2009, Utilization of Waste Materials and By-Products in Producing Controlled Low-Strength Materials, Resour. Conservat. Recycl., Vol. 54, 1-8.
  • [71] Venkatesan, M., Zaib, Q., Shah, I.H., Park, H.S., 2019, Optimum Utilization of Waste Foundry Sand and Fly Ash for Geopolymer Concrete Synthesis Using D-optimal Mixture Design of Experiments, Resour. Conservat. Recycl., Vol. 148, 114-123.

Use of Waste Foundry Sand in Geotechnical Engineering Applications

Year 2022, Volume: 5 Issue: 2, 92 - 99, 31.12.2022

Abstract

Waste foundry sand is a by-product of the metal casting industry that reaches large quantities. Due to the metals it contains during the casting process and the associated environmental concerns, this material is generally considered as waste and disposed of in landfills. However, due to its favourable engineering properties, waste foundry sands can be reused in civil engineering field, especially in various geotechnical applications where the use of large quantities of material is required. In this study, general information about waste foundry sands is given and their disposal methods, environmental effects, geotechnical properties and areas of beneficial reuse in civil engineering and geotechnical applications are examined.

Project Number

-

References

  • [1] Clean Washington Center, 1995, Beneficial reuse of spent foundry sand (IBP-95-1). Recycling Techonology Assistance Partnership (ReTAP), Seattle, Washington..
  • [2] Bhardwaj, B., Kumar, P., 2017, Waste foundry sand in concrete: a review, Constr. Mater. Build. Vol.156, 661–674
  • [3] Beeley, P. 2001. Foundry technology, 2nd Edition, Butterworth-Heinemann, Boston, Massachusetts
  • [4] Clegg, A.J. 1991, Precision casting processes, 1st Edition, Pergamon Press, New York.
  • [5] Tittarelli, F., 2018, Waste Foundry Sand, In: Waste and Supplementary Cementitious Materials in Concrete Characterization, Properties and Applications, Woodhead Publishing Series in Civil and Structural Engineering, 121-147.
  • [6] Siddique, R., Kaur, G., Rajor, A., 2010, Waste foundry sand and Its Leachate Characteristics, Resour. Conserv. Recycl., Vol. 54(12), 1027-1036.
  • [7] P.P.O.L. Dyer, M.G.D. Lima, L.M.G. Klinsky, S.A. Silva, G.J.L. Coppio, 2018, Environmental Characterization of Foundry Waste Sand (WFS) in Hot Mix Asphalt (HMA) Mixtures, Constr. Build. Mater., Vol. 171, 474-484.
  • [8] Zanetti, M., Godio, A., 2006, Recovery of Foundry Sands and Iron Fractions from an Industrial Waste Landfill, Resour. Conserv. Recycl., Vol. 48(4), 396-411.
  • [9] Çevre ve Şehircilik Bakanlığı Çevre Yönetimi Genel Müdürlüğü, Sektörel Atık Kılavuzları, Döküm Sektörü, web sayfası: https://webdosya.csb.gov.tr/db/cygm/editordosya/Dokum_Sektoru_Kilavuzu.pdf, erişim tarihi: 05/07/2021.
  • [10] Tüdoksad, 2017, Türkiye Sanayicileri Derneği, Türk Döküm Dergisi 45.
  • [11] Sharma, H.D,. Reddy, K.R., 2004, Geoenvironmental Engineering: Site Remediation, Waste Containment, and Emerging Waste Management Technologies, 1st Edition, John Wiley & Sons.
  • [12] Dyer, P.P.O.L., Klinsky, L.M.G., Silva, S.A., e Silva, R.A., de Lima, M.G., 2019, Macro and Microstructural Characterization of Waste Foundry Sand Reused as Aggregate, Road Mater. Pavement Des., Vol. 22(2), 464-477.
  • [13] Mynuddin, S.A., Mohan, M., I. Reddy, Reddy, N.P., 2018, Strength Behaviour of Concrete Produced with Foundry Sand as Fine Aggregate Replacement, Int. J. Technol. Res. Eng., Vol. 5, 3476–3480.
  • [14] Gedik, A., Lav, A.H., Lav, M.A., 2018, Investigation of alternative ways for Recycling Waste Foundry Sand: An Extensive Review to Present Benefits, Can. J. Civ. Eng., Vol. 45, 423-434.
  • [15] Bakis, R., Koyuncu, H., Demirbas, A., 2006, An Investigation of Waste Foundry Sand in Asphalt Concrete Mixtures, Waste Manage Res., Vol. 24, 269-274.
  • [16] Salokhe, E.P., Desai, D.B., 2011, Application of Foundry Sand in Manufacture of Concrete. Journal of Mechanical and Civil Engineering, 43-48.
  • [17] Oliveira, G.V., da Silva, W.L., de Oliveira, E.R., Lansarin, M.A., dos Santos, J.H.Z., 2016, Foundry Sands as Supports for Heterogeneous Photocatalysts, Water, Air, Soil Pollut., Vol. 227, 373.
  • [18] Yaghoubi E., Arulrajah, A., Yaghoubi, M., Horpibulsuk, S., 2020, Shear Strength Properties and Stress–Strain Behavior of Waste Foundry Sand, Constr. Build. Mater., Vol. 249, 118761.
  • [19] Guney, Y., Aydilek, A.H., Demirkan, M.M., 2006, Geoenvironmental Behavior of Foundry Sand Amended Mixtures for Highway Subbases. Waste Manage., Vol. 26, 932-945.
  • [20] Coz, A., Andrés, A., Soriano, S., Irabien, A., 2004, Environmental Behaviour of Stabilised Foundry Sludge. J. Hazard. Mater., Vol. 109, 95-104.
  • [21] Ham, R.K., Boyle, W.C., Kunes, T.P., 1981, Leachability of Foundry Process Solid Waste, J. Environ. Eng. Div. ASCE, Vol. 107 (1), 155-170.
  • [22] Lovejoy, M.A., Ham, R.K., Traeger, P.A., Wellander, D., Hippe, J., Boyle, W.C., 1996, Evaluation of Selected Foundry Wastes for Use in Highway Construction, Proceedings of the 19th International Madison Waste Conference, University of Wisconsin-Madison, 19-31.
  • [23] Naik, T., Singh, S., Ramme, B., 2001, Performance and Leaching Assessment of Flowable Slurry, J. Environ. Eng., Vol. 127 (4), 359-368.
  • [24] Siddique, R., Singh, G., Singh, M., 2018, Recycle Option for Metallurgical By-Product (Spent Foundry Sand) in Green Concrete for Sustainable Construction, J. Cleaner Prod., Vol. 172, 1111-1120.
  • [25] Basar, H.M., and Aksoy, N.D. 2012, The Effect of Waste Foundry Sand (WFS) as Partial Replacement of Sand on the Mechanical, Leaching and Micro-Structural Characteristics of Ready-Mixed Concrete, Constr. Build. Mater., Vol. (35), 508-515.
  • [26] Arulrajah, A., Yaghoubi, E., Imteaz, M., Horpibulsuk, S., 2017, Recycled Waste Foundry Sand as a Sustainable Subgrade Fill and Pipe-Bedding Construction Material: Engineering and Environmental Evaluation, Sustainable Cities Soc., Vol. 28, 343–349.
  • [27] Miguel, R.E., Ippolito, J.A., Leytem, A.B., Porta, A.A., Noriega, R.BB.., Dungan, R.S., 2012, Analysis of Total Metals in Waste Molding and Core Sands from Ferrous and Nonferrous Foundries, J. Environ. Manage, Vol. 110, 77-81.
  • [28] Yazoghli-Marzouk, O., Vulcano-Greullet, N., Cantegrit, L., Friteyre, L., Jullien, A., 2014, Recycling Foundry Sand in Road Construction-Field Assessment, Constr. Build. Mater. Vol. 61, 69-78.
  • [29] Mast, D.G., Fox, P.J. 1998. Geotechnical Performance of a Highway Embankment Constructed Using Waste Foundry Sand, Recycled Materials in Geotechnical Applications, ASCE, 66-85.
  • [30] Miguel, R.E., Ippolito, J.A., Porta, A.A., Banda Noriega, R.B., Dungan, R.S., 2013, Use of Standardized Procedures to Evaluate Metal Leaching From Waste Foundry Sands, J. Environ. Qual. Vol. 42 (2), 1-6.
  • [31] Foundry Industry Recycling Starts Today (FIRST), 2004, Foundry Sand Facts for Civil Engineers, Report No: FHWA-IF-04-004, Federal Highway Administration Environmental Protection Agency Washington, DC, USA.
  • [32] Bradshaw, S.L., Benson, C.H., E.H. Olenbush, J.S. Melton, 2010, Using Foundry Sand in Green Infrastructure Construction, Green Streets Highways, 280–298.
  • [33] Yin, J., Soleimanbeigi, A., Likos, W.J., Edil, T.B., 2018, Creep Response of Compacted Waste Foundry Sands for Use as Roadway Embankment Fill, J. Geotech. Geoenvironmental Eng., Vol. 144.
  • [34] Soleimanbeigi, A., Edil, T.B., 2015, Compressibility of Recycled Materials for Use as Highway Embankment Fill, J. Geotech. Geoenvironmental Eng. Vol. 141 (5), 1-14.
  • [35] Kumar, A., Sharma, R.K., Singh, B., 2014, Compaction and Sub-grade Characteristics of Clayey Soil Mixed with Foundry Sand and Fly Ash and Tile Waste, International Conference on Advances in Engineering & Technology – 2014 (ICAET-2014), 29th-30th March 2014, Singapore 1-5.
  • [36] Goodhue, M.J., Edil, T.B., Benson, C.H., 2001, Interaction of Foundry Sands with Geosynthetics, J. Geotech. Geoenviron. Eng., 127 (4), 353-362.
  • [37] Kleven, J., Edil, T., Benson, C., 2000, Evaluation of Excess Foundry System Sands for Use as Subbase Material, Transp. Res. Rec.: J. Transp. Res. Board, 1714, 40-48.
  • [38] Abichou, T., Benson, C. H., Edil, T.B., 2000, Foundry Green Sands as Hydraulic Barriers: Laboratory Study, J. Geotech. Geoenviron. Eng., Vol. 126 (12), 1174-1183.
  • [39] Raju, K.V.S.B., Pai, G.M., Murthy, N., Anirudha, K.V., Rao, P.R., Geotechnical Characterization of Miscellaneous Wastes, Indian Geotechnical Conference - 2010, GEOtrendz December 16–18, 2010, IGS Mumbai Chapter & IIT Bombay, 53-56.
  • [40] M. Heidemann, H.P. Nierwinski, D. Hastenpflug, B.S. Barra, Y.G. Perez, 2021, Geotechnical Behavior of a Compacted Waste Foundry Sand, Constr. Build. Mater., Vol. 277, 122267.
  • [41] Partridge, B., Fox, P., Alleman, J., Mast, D., 1999, Field Demonstration of Highway Embankment Construction using Waste Foundry Sand, Transp. Res. Rec.: J. Transp. Res. Board,, 1670, 98–105.
  • [42] S. Javed, 1994, Use of Waste Foundry Sand in Highway Construction. Rep. JHRP/INDOT/FHWA-94/2 J, Purdue School of Engineering, West Lafayette, IN.
  • [43] Abichou, T., Benson, C.H., Edil, T.B., 2002, Foundry Green Sands as Hydraulic Barriers: Field Study, J. Geotech. Geoenviron. Eng., Vol. 128 (3), 206-215.
  • [44] Koyuncu, H., Guney, Y., 2002, Properties of Permeability and Freeze-Thaw of Foundry (Casting Mold) Sand Wastes and Usable in Road Construction. In: Proceedings 6th International Symposium on Environmental Geotechnology and Global Sustainable Development, Edited by: WonPyo, Hong. Chung-Ang University and International Society Environmental Geotechnology Publisher, 2–5 July, 2002, Seoul, Korea, 85–90
  • [45] Siddique, R., Singh, G., 2011, Utilization of Waste Foundry Sand (WFS) in Concrete Manufacturing, Resourc. Conserv. Recycl., Vol. 55 (11) 885-892.
  • [46] Deng, A., Tikalsky, P. J., 2008, Geotechnical and Leaching Properties of Flowable Fill Incorporating Waste Foundry Sand, Waste Manage., Vol. 28 (11), 2161-2170.
  • [47] J. Yin, A. Soleimanbeigi, W.J. Likos, T.B. Edil, 2016, Compression Behavior of Foundry Sands, Geotechnical and Structural Engineering Congress 2016, 1392–1403.
  • [48] Nabhani, F., McKie, M., Hodgson, S., 2013, A Case Study on a Sustainable Alternative to the Landfill Disposal of Spent Foundry Sand, Int. J. Sustain. Manufac. Vol. 3 (1), 1-19.
  • [49] Orkas, J., 2001, Technical and environmental requirements for surplus foundry sand utilization, Valimotekniikan julkaisuja, no. TKK-VAL 3/2001, Otaniemi, 148.
  • [50] Abichou, T.H., Benson, C.H., Edil, T.B., 1999, Beneficial Reuse of Foundry By-Products, Environmental Geotechnical Report 99–1, Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, USA.
  • [51] C.H., Benson, Badshaw, S., 2011, User Guideline for Foundry Sand in Green Infrastructure Construction, Recycled materials resource center, University of Wisconsin-Madison, USA.
  • [52] Pasetto, M., Baldo, N., 2015, Experimental Analysis of Hydraulically Bound Mixtures Made with Waste Foundry Sand and Steel Slag, Mater. Struct., Vol. 48 (8), 2489-2503.
  • [53] L.M.G. Klinsky, G.T.P. Fabbri, dos Santos Bardini, V.S., 2016, Reuse of Waste Foundry Sand Mixed with Lateritic Clayey Soils in Pavement Bases and Sub-Bases Courses, 8th RILEM International Symposium on Testing and Characterization of Sustainable and Innovative Bituminous Materials, Springer, Dordrecht, Netherlands, 569-582.
  • [54] Tanyu, B.F., Benson, C.H., Edil, T.B., Kim, W.H., 2004, Equivalency of Crushed Rock and Three Industrial By-products used for Working Platforms during Pavement Construction, Transp. Res. Rec., 1874, 59-69.
  • [55] Foundry Society, 2019. Bases and Subbases. American Foundry Society AFS. web sayfası: https://www.afsinc.org/bases-and-subbases, erişim tarihi: 16.06.2021.
  • [56] Zhang, Y., Sappinen, T., Korkiala-Tanttu, L., Vilenius, M., Juuti, E., 2021, Investigations into Stabilized Structures with the Use of Waste Foundry Sand, Res. Conserv. Recycl., Vol. 170, 105585.
  • [57] Yazoghli-Marzouk O, Jullien A, Ropert C., 2012, Environmental Assessment of Foundry Sands Reuse Scenario, 4th International Conference on Engineering for Waste and Biomass Valorisation, Porto, Portugal.
  • [58] Abichou T, Edil TB, Benson CH, Bahia H., 2004, Beneficial Use of Foundry By-Products in Highway Construction, Geotechnical Engineering for Transportation Projects, American Society of Civil Engineers, Geotechnical Special Publication 126, M. K. Yegian and and E. Kavazanjian, eds., Vol. 1, 715-722.
  • [59] Abichou, T., Edil, T.B., Benson, C.H., Tawfiq, K., 2005, Hydraulic Conductivity of Foundry Sands and Their Use as Hydraulic Barriers. In: Recycled Materials in Geotechnics. Geotechnical Special Publications 127, ASCE, Reston, Va., 186-200.
  • [60] Prabhu, G.G., Hyun, J.H., Kim, Y.Y., 2014, Effects of Foundry Sand as a Fine Aggregate in Concrete Production, Constr. Build. Mater., Vol. 70, 514-521.
  • [61] Prabhu, G.G., Bang, J.W., Lee, B.J., Hyun, J.H., Kim, Y.Y., 2015, Mechanical and Durability Properties of Concrete Made with Used Foundry Sand as Fine Aggregate, Adv. Mater. Sci. Eng. 2015, Article ID 161753.
  • [62] Iqbal, M.F., Liu, Q.F., Azim, I., Zhu, X., Yang, J., Javed, M.F., Rauf, M., 2020, Prediction of Mechanical Properties of Green Concrete Incorporating Waste Foundry Sand based on Gene Expression Programming, J. Hazard. Mater., Vol. 384, 121322.
  • [63] Behnood, A., Golafshani, E.M., 2020, Machine Learning Study of the Mechanical Properties of Concretes Containing Waste Foundry Sand, Constr. Build. Mater., Vol. 243, 118152.
  • [64] de Matos, P.R., Pilar, R., Bromerchenkel, L.H., Schankoski, R.A., Gleize, P.J., de Brito, J., 2020, Self-compacting Mortars Produced with Fine Fraction of Calcined Waste Foundry Sand (WFS) as Alternative Filler: Fresh-state, Hydration and Hardened State Properties, J. Cleaner Prod., Vol. 252, 119871.
  • [65] Torres, A., Bartlett, L., Pilgrim, C., 2017, Effect of Foundry Waste on the Mechanical Properties of Portland Cement Concrete, Constr. Build. Mater., Vol. 135, 674-681.
  • [66] Mavroulidou, M., Lawrence, D., 2019, Can Waste Foundry Sand Fully Replace Structural Concrete Sand?, J. Mater., Cycles Waste Manag., Vol. 21, 594-605
  • [67] Manoharan, T., Laksmanan, D., Mylsamy, K., Sivakumar, P., and Sircar, A., 2018, Engineering Properties of Concrete with Partial Utilization of Used Foundry Sand, Waste Manage., Vol. 71, 454-460.
  • [68] Sandhu, R.K., Siddique, R., 2019, Strength Properties and Microstructural Analysis of Self-Compacting Concrete Incorporating Waste Foundry Sand, Constr. Build. Mater., Vol. 225, 371-383.
  • [69] Siddique, R., Noumowe, A., 2008, Utilization of Spent Foundry Sand in Controlled Low Strength Materials and Concrete, Resour. Conservat. Recycl., Vol. 53, 27-35.
  • [70] Siddique, R., 2009, Utilization of Waste Materials and By-Products in Producing Controlled Low-Strength Materials, Resour. Conservat. Recycl., Vol. 54, 1-8.
  • [71] Venkatesan, M., Zaib, Q., Shah, I.H., Park, H.S., 2019, Optimum Utilization of Waste Foundry Sand and Fly Ash for Geopolymer Concrete Synthesis Using D-optimal Mixture Design of Experiments, Resour. Conservat. Recycl., Vol. 148, 114-123.
There are 71 citations in total.

Details

Primary Language Turkish
Subjects Environmental Engineering
Journal Section Articles
Authors

Müge Balkaya 0000-0002-9509-1675

Project Number -
Early Pub Date December 26, 2022
Publication Date December 31, 2022
Submission Date October 29, 2021
Published in Issue Year 2022 Volume: 5 Issue: 2

Cite

APA Balkaya, M. (2022). Atık Döküm Kumunun Geoteknik Mühendisliği Uygulamalarında Kullanımı. Ulusal Çevre Bilimleri Araştırma Dergisi, 5(2), 92-99.
AMA Balkaya M. Atık Döküm Kumunun Geoteknik Mühendisliği Uygulamalarında Kullanımı. UCBAD. December 2022;5(2):92-99.
Chicago Balkaya, Müge. “Atık Döküm Kumunun Geoteknik Mühendisliği Uygulamalarında Kullanımı”. Ulusal Çevre Bilimleri Araştırma Dergisi 5, no. 2 (December 2022): 92-99.
EndNote Balkaya M (December 1, 2022) Atık Döküm Kumunun Geoteknik Mühendisliği Uygulamalarında Kullanımı. Ulusal Çevre Bilimleri Araştırma Dergisi 5 2 92–99.
IEEE M. Balkaya, “Atık Döküm Kumunun Geoteknik Mühendisliği Uygulamalarında Kullanımı”, UCBAD, vol. 5, no. 2, pp. 92–99, 2022.
ISNAD Balkaya, Müge. “Atık Döküm Kumunun Geoteknik Mühendisliği Uygulamalarında Kullanımı”. Ulusal Çevre Bilimleri Araştırma Dergisi 5/2 (December 2022), 92-99.
JAMA Balkaya M. Atık Döküm Kumunun Geoteknik Mühendisliği Uygulamalarında Kullanımı. UCBAD. 2022;5:92–99.
MLA Balkaya, Müge. “Atık Döküm Kumunun Geoteknik Mühendisliği Uygulamalarında Kullanımı”. Ulusal Çevre Bilimleri Araştırma Dergisi, vol. 5, no. 2, 2022, pp. 92-99.
Vancouver Balkaya M. Atık Döküm Kumunun Geoteknik Mühendisliği Uygulamalarında Kullanımı. UCBAD. 2022;5(2):92-9.

 ❤ UCBAD