Research Article
BibTex RIS Cite
Year 2018, Volume: 1 Issue: 3, 186 - 195, 30.09.2018
https://doi.org/10.32323/ujma.388067

Abstract

References

  • [1] O. Agrawal, J. Tenreiro Machado, J. Sabatier, Fractional derivatives and their applications, Springer-Verlag, Berlin, 2004;
  • [2] T. Bartolo, V. Benci, D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with strong resonance at infinity, Nonlinear Analysis, Vol. 7 , No. 9 (1983) 981-1012;
  • [3] N. Nyamoradi, A. Alsaedi, B. Ahmad, Y. Zou, Multiplicity of homoclinic solutions for fractional Hamiltonian systems with subquadratic potential, Entropy 2017, 19,50,1-24;
  • [4] N. Nyamoradi, A. Alsaedi, B. Ahmad, Y. Zou, Variational approach to homoclinic solutions for fractional Hamiltonian systems, J. Optim. Theory Appl. 2017;
  • [5] Z. Bai, H. L ¨ u, Positive solutions for boundary value problem of nonlinear fractional differential equation, J. Math. Anal. Appl. (2005), 311, 495-505;
  • [6] Z. Bai, Y. Zhang, The existence of solutions for a fractional multi-point boundary value problem, Computers and Mathematics with Applications 2010, 69, 2364-2372;
  • [7] P. Chen, X. He, X.H. Tang, Infinitely many solutions for a class of Hamiltonian systems via critical point theory, Math. Meth. Appl. Sci. 2016, 39, 1005-1019;
  • [8] Y. Li, B. Dai, Existence and multiplicity of nontrivial solutions for Liouville-Weyl fractional nonlinear Schr ¨ odinger equation, RA SAM (2017);
  • [9] W. Jiang, The existence of solutions for boundary value problems of fractional differential equations at resonance, Nonlinear Analysis (2011), 74, 1987-1994;
  • [10] F. Jiao, Y. Zhou, Existence results for fractional boundary value problem via critical point theory, Intern. Journal of Bif. and Chaos, 22, No. 4 (2012), 1-17;
  • [11] R. Hiffer, Applications of fractional calculus in physics, World Science, Singapore, 2000;
  • [12] S. G. Samko, A.A Kilbas, O.I. Marichev, Fractional integrals and derivatives, Theory and applications, Gordon and Breach, Switzerland 1993;
  • [13] A.A. Kilbas, H.M. Srivastawa, J.J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematical Studies; Vol. 204, Singapore 2006;
  • [14] S. Liang, J. Zhang, Positive solutions for boundary value problems of nonlinear fractional differential equations, Nonlinear Analysis, 2009, 71, 5545-5550;
  • [15] J. Mawhin, M. Willem, Critical point theory and Hamiltonian systems, Applied Mathematical Sciences, Springer, Berlin, 1989;
  • [16] A. M`endez, C. Torres, Multiplicity of solutions for fractional Hamiltonian systems with Liouville-Weyl fractional derivative, arXiv: 1409.0765v1[mathph] 2 Sep. 2014;
  • [17] K. Miller, B. Ross, An introduction to differential equations, Wiley and Sons, New York, 1993;
  • [18] I. Pollubny, Fractional differential equations, Academic Press, 1999;
  • [19] P.H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS Reg. Conf. Ser. in Math., Vol. 65, American Mathematical Society, Providence, RI, 1986;
  • [20] K. Tang, Multiple homoclinic solutions for a class of fractional Hamiltonian systems, Progr. Fract. DIff. Appl. 2, , No. 4 (2016), 265-276;
  • [21] C. Torres, Existence of solutions for fractional Hamiltonian systems, Electr. J. DIff. Eq., Vol. 2013 (2013), No. 259, 1-12;
  • [22] C. Torres Ledesma, Existence of solutions for fractional Hamiltonian systems with nonlinear derivative dependence in R, J. Fractional Calculus and Applications; Vol. 7 (2) (2016) 74-87;
  • [23] X. Wu, Z. Zhang, Solutions for perturbed fractional Hamiltonian systems without coercive conditions, Boundary Value Problems (2015) 2015: 149, 1-12;
  • [24] S. Zhang, Existence of solutions for the fractional equations with nonlinear boundary conditions, Computers and Mathematics with Applications (2011), 61, 1202-1208;
  • [25] S. Zhang, Existence of solutions for a boundary value problems of fractional differential equations at resonance, Nonlinear Analysis (2011): 74, 1987-1994;
  • [26] Z. Zhang, R. Yuan, Existence of solutions to fractional Hamiltonian systems with combined nonlinearities, Electr. J. Diff. Eq., Vol. 2016 (2016) No. 40, 1-13;
  • [27] Z. Zhang, R. Yuan, Solutions for subquadratic fractional Hamiltonian systems without coercive conditions, Math. Meth. Appl. Sci. (2014) 37, 2934-2945;
  • [28] Z. Zhang, R. Yuan, Variational approach to solutions for a class of fractional Hamiltonian systems, Math. Meth. Appl. Sci. (2014) 37, 1873-1883;

Multiple solutions for a class of superquadratic fractional Hamiltonian systems

Year 2018, Volume: 1 Issue: 3, 186 - 195, 30.09.2018
https://doi.org/10.32323/ujma.388067

Abstract

In this paper, we are concerned with the existence of solutions for a class of fractional Hamiltonian systems \[\left\{ \begin{array}{l} _{t}D_{\infty}^{\alpha}(_{-\infty}D_{t}^{\alpha}u)(t)+L(t)u(t)=\nabla W(t,u(t)),\ t\in\mathbb{R}\\ u\in H^{\alpha}(\mathbb{R},\ \mathbb{R}^{N}), \end{array}\right. \] where $_{t}D_{\infty}^{\alpha}$ and $_{-\infty}D^{\alpha}_{t}$ are the Liouville-Weyl fractional derivatives of order $\frac{1}{2}<\alpha<1$, $L\in C(\mathbb{R},\mathbb{R}^{N^{2}})$ is a symmetric matrix-valued function and $W(t,x)\in C^{1}(\mathbb{R}\times\mathbb{R}^{N},\mathbb{R})$. Applying a Symmetric Mountain Pass Theorem, we prove the existence of infinitely many solutions for (1) when $L$ is not required to be either uniformly positive definite or coercive and $W(t,x)$ satisfies some weaker superquadratic conditions at infinity in the second variable but does not satisfy the well-known Ambrosetti-Rabinowitz superquadratic growth condition.

References

  • [1] O. Agrawal, J. Tenreiro Machado, J. Sabatier, Fractional derivatives and their applications, Springer-Verlag, Berlin, 2004;
  • [2] T. Bartolo, V. Benci, D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with strong resonance at infinity, Nonlinear Analysis, Vol. 7 , No. 9 (1983) 981-1012;
  • [3] N. Nyamoradi, A. Alsaedi, B. Ahmad, Y. Zou, Multiplicity of homoclinic solutions for fractional Hamiltonian systems with subquadratic potential, Entropy 2017, 19,50,1-24;
  • [4] N. Nyamoradi, A. Alsaedi, B. Ahmad, Y. Zou, Variational approach to homoclinic solutions for fractional Hamiltonian systems, J. Optim. Theory Appl. 2017;
  • [5] Z. Bai, H. L ¨ u, Positive solutions for boundary value problem of nonlinear fractional differential equation, J. Math. Anal. Appl. (2005), 311, 495-505;
  • [6] Z. Bai, Y. Zhang, The existence of solutions for a fractional multi-point boundary value problem, Computers and Mathematics with Applications 2010, 69, 2364-2372;
  • [7] P. Chen, X. He, X.H. Tang, Infinitely many solutions for a class of Hamiltonian systems via critical point theory, Math. Meth. Appl. Sci. 2016, 39, 1005-1019;
  • [8] Y. Li, B. Dai, Existence and multiplicity of nontrivial solutions for Liouville-Weyl fractional nonlinear Schr ¨ odinger equation, RA SAM (2017);
  • [9] W. Jiang, The existence of solutions for boundary value problems of fractional differential equations at resonance, Nonlinear Analysis (2011), 74, 1987-1994;
  • [10] F. Jiao, Y. Zhou, Existence results for fractional boundary value problem via critical point theory, Intern. Journal of Bif. and Chaos, 22, No. 4 (2012), 1-17;
  • [11] R. Hiffer, Applications of fractional calculus in physics, World Science, Singapore, 2000;
  • [12] S. G. Samko, A.A Kilbas, O.I. Marichev, Fractional integrals and derivatives, Theory and applications, Gordon and Breach, Switzerland 1993;
  • [13] A.A. Kilbas, H.M. Srivastawa, J.J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematical Studies; Vol. 204, Singapore 2006;
  • [14] S. Liang, J. Zhang, Positive solutions for boundary value problems of nonlinear fractional differential equations, Nonlinear Analysis, 2009, 71, 5545-5550;
  • [15] J. Mawhin, M. Willem, Critical point theory and Hamiltonian systems, Applied Mathematical Sciences, Springer, Berlin, 1989;
  • [16] A. M`endez, C. Torres, Multiplicity of solutions for fractional Hamiltonian systems with Liouville-Weyl fractional derivative, arXiv: 1409.0765v1[mathph] 2 Sep. 2014;
  • [17] K. Miller, B. Ross, An introduction to differential equations, Wiley and Sons, New York, 1993;
  • [18] I. Pollubny, Fractional differential equations, Academic Press, 1999;
  • [19] P.H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS Reg. Conf. Ser. in Math., Vol. 65, American Mathematical Society, Providence, RI, 1986;
  • [20] K. Tang, Multiple homoclinic solutions for a class of fractional Hamiltonian systems, Progr. Fract. DIff. Appl. 2, , No. 4 (2016), 265-276;
  • [21] C. Torres, Existence of solutions for fractional Hamiltonian systems, Electr. J. DIff. Eq., Vol. 2013 (2013), No. 259, 1-12;
  • [22] C. Torres Ledesma, Existence of solutions for fractional Hamiltonian systems with nonlinear derivative dependence in R, J. Fractional Calculus and Applications; Vol. 7 (2) (2016) 74-87;
  • [23] X. Wu, Z. Zhang, Solutions for perturbed fractional Hamiltonian systems without coercive conditions, Boundary Value Problems (2015) 2015: 149, 1-12;
  • [24] S. Zhang, Existence of solutions for the fractional equations with nonlinear boundary conditions, Computers and Mathematics with Applications (2011), 61, 1202-1208;
  • [25] S. Zhang, Existence of solutions for a boundary value problems of fractional differential equations at resonance, Nonlinear Analysis (2011): 74, 1987-1994;
  • [26] Z. Zhang, R. Yuan, Existence of solutions to fractional Hamiltonian systems with combined nonlinearities, Electr. J. Diff. Eq., Vol. 2016 (2016) No. 40, 1-13;
  • [27] Z. Zhang, R. Yuan, Solutions for subquadratic fractional Hamiltonian systems without coercive conditions, Math. Meth. Appl. Sci. (2014) 37, 2934-2945;
  • [28] Z. Zhang, R. Yuan, Variational approach to solutions for a class of fractional Hamiltonian systems, Math. Meth. Appl. Sci. (2014) 37, 1873-1883;
There are 28 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Mohsen Timoumi

Publication Date September 30, 2018
Submission Date February 1, 2018
Acceptance Date April 3, 2018
Published in Issue Year 2018 Volume: 1 Issue: 3

Cite

APA Timoumi, M. (2018). Multiple solutions for a class of superquadratic fractional Hamiltonian systems. Universal Journal of Mathematics and Applications, 1(3), 186-195. https://doi.org/10.32323/ujma.388067
AMA Timoumi M. Multiple solutions for a class of superquadratic fractional Hamiltonian systems. Univ. J. Math. Appl. September 2018;1(3):186-195. doi:10.32323/ujma.388067
Chicago Timoumi, Mohsen. “Multiple Solutions for a Class of Superquadratic Fractional Hamiltonian Systems”. Universal Journal of Mathematics and Applications 1, no. 3 (September 2018): 186-95. https://doi.org/10.32323/ujma.388067.
EndNote Timoumi M (September 1, 2018) Multiple solutions for a class of superquadratic fractional Hamiltonian systems. Universal Journal of Mathematics and Applications 1 3 186–195.
IEEE M. Timoumi, “Multiple solutions for a class of superquadratic fractional Hamiltonian systems”, Univ. J. Math. Appl., vol. 1, no. 3, pp. 186–195, 2018, doi: 10.32323/ujma.388067.
ISNAD Timoumi, Mohsen. “Multiple Solutions for a Class of Superquadratic Fractional Hamiltonian Systems”. Universal Journal of Mathematics and Applications 1/3 (September 2018), 186-195. https://doi.org/10.32323/ujma.388067.
JAMA Timoumi M. Multiple solutions for a class of superquadratic fractional Hamiltonian systems. Univ. J. Math. Appl. 2018;1:186–195.
MLA Timoumi, Mohsen. “Multiple Solutions for a Class of Superquadratic Fractional Hamiltonian Systems”. Universal Journal of Mathematics and Applications, vol. 1, no. 3, 2018, pp. 186-95, doi:10.32323/ujma.388067.
Vancouver Timoumi M. Multiple solutions for a class of superquadratic fractional Hamiltonian systems. Univ. J. Math. Appl. 2018;1(3):186-95.

 23181

Universal Journal of Mathematics and Applications 

29207              

Creative Commons License  The published articles in UJMA are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.