Research Article
BibTex RIS Cite

S32205 Dubleks Paslanmaz Çeliğin TIG Kaynağında Soğuma Hızının Mikroyapısal Özelliklere Etkileri

Year 2015, Volume: 7 Issue: 4, 28 - 36, 15.12.2015
https://doi.org/10.29137/umagd.379795

Abstract

Dubleks paslanmaz çeliklerin kaynağı artan uygulama alanlarından dolayı
belirgin şekilde ilgi kaynağı olmaktadır. Bu çeliklerin kaynaklı
bağlantılarında oluşabilecek delta-ferrit, östenit ve diğer önemli
metaller-arası fazların uygun olmayan dağılımları ile ilgili problemler önem
kazanmaktadır. Kaynak işlemlerinde tatminkar korozyon ve mekanik özellikleri
elde edebilmek için optimum delta ferrit oranları hacimce yaklaşık olarak
%35-60 aralığında olması gerekmektedir.


Bu çalışmada 3 mm kalınlığındaki 2205 dubleks paslanmaz çelik numuneler saf
argon koruyucu gazı kullanılarak TIG kaynak yöntemi ile birleştirilmiştir.
Farklı kaynak soğuma koşullarının mikroyapısal değişikliklere etkileri
incelenmiştir.


 

References

  • [1] J. Lippold and D. Kotecki: Welding Metallurgy and Weldability of Stainless Steels, Wiley Interscience Publications, New Jersey (2005)
  • [2] Gunn N. Robert: Duplex Stainless Steels, Microstructures, Properties and Applications, Abington Publishing, Cambridge, England (2003)
  • [3] Pierre R. Roberge, Handbook of corrosion engineering, Materials Selection, Chapter 8, McGrawhill Publications, (2000)
  • [4] David N.Noble, Microstructural Development, Duplex Stainless Steels, ASM Handbook Volume 6. Welding Brazing and Soldering ASM International, USA, p.1218, (1993).
  • [5] ASM Handbook Volume 13-B. Corrosion. Corrosion of Duplex stainless steel weldments, ASM International, p.813, (1992)
  • [6] Topbaş M. A. Endüstri Fırınları. Cilt I. Kurtiş Yayıncılık. İstanbul, (1991), 157.
  • [7] Bayazıtoğlu Y. Özışık M. N. (1988). Elements of Heat Transfer. McGraw-Hill Book Company, USA, 419.
  • [8] E. Dwight: American Institute of Physics Handbook 3rd Edition, McGraw Hill Pubs, (1972)
  • [9] ASTM C680, Standard Practice for Estimate of the Heat Gain or Loss and the Surface Temperatures of Insulated Flat, Cylindrical, and Spherical Systems by Use of Computer Programs (2014),
  • [10] Chon L. Tsai Chin M. Heat flow in Welding. Ohio State University. ASM Handbook Volume 6. Welding Brazing and Soldering ASM International, USA, 7-17, (1993).
  • [11] Weisman C. AWS Welding Handbook. 7th Edition. Heat flow in welding, 81, (1981).
  • [12] ASTM A 923-08 ‘Standart Test Methods for Detecting Detrimental Intermetallic Phase in Duplex Stainless Steels, USA, (2008)
  • [13] ASTM E-562-11, Standard Test Method for Determining Volume Fraction by Systematic Manual Point Count, (2011)
  • [14] ASTM E 1245-03, Standard Practice for determining the Inclusion or Second Phase Constituent Content of Metals by Automatic Image Analysis (Re-approved 2008)
  • [15] EN ISO 17655. (2003). Destructive tests on welds in metallic materials-method for taking samples for delta ferrite measurement. European Standard, Brussels.
  • [16] EN ISO 8249. (2000). Welding-determination of ferrite number (FN) in austenitic and duplex ferritic-austenitic Cr-Ni stainless steel weld metals, European standard, Brussels.
  • [17] Metallography and Microstructures of Stainless Steels and Maraging Steels, ASM Handbook Vol.9 ASM International, (2004)
  • [18] Zhang W. Debroy T. Palmer T. A. Elmer J. W. Modeling of ferrite formation in a duplex stainless steel weld considering non-uniform starting microstructure, USA, Actamaterialia Journals. (2005).
  • [19] Santos T. F. A. Marmho R. R. Paes M. T. P. Ramirez A. J. Microstructure evaluation of UNS S 32205 duplex stainless steel friction stir welds, Brazil.
  • [20] Palmer T. A. Elmer J. W. Babu S. S. (2004). Observations of ferrite/austenite transformations in the heat affected zone of 2205 duplex stainless steel spot welds using time resolved X-ray diffraction, Materials Science and Engineering.

S32205 Dubleks Paslanmaz Çeliğin TIG Kaynağında Soğuma Hızının Mikroyapısal Özelliklere Etkileri

Year 2015, Volume: 7 Issue: 4, 28 - 36, 15.12.2015
https://doi.org/10.29137/umagd.379795

Abstract



Welding of duplex
stainless steels gains interest, significantly due to their increasing
application fields. The problems come into question about the weldments of
these steels improper distribution of important phases like delta-ferrite,
austenite and other intermetallics. In order to maintain sufficient corrosion
and mechanical properties in welding, the optimum delta-ferrite phase ratios
must be kept within approximately %35-65 by volume.




In this study; thicknesses
of 3mm S32205 (2205) duplex stainless steel plates were TIG welded by pure
argon shielding gas. The effects of various welding cooling circumstances on
microstructural developments were examined.




 




References

  • [1] J. Lippold and D. Kotecki: Welding Metallurgy and Weldability of Stainless Steels, Wiley Interscience Publications, New Jersey (2005)
  • [2] Gunn N. Robert: Duplex Stainless Steels, Microstructures, Properties and Applications, Abington Publishing, Cambridge, England (2003)
  • [3] Pierre R. Roberge, Handbook of corrosion engineering, Materials Selection, Chapter 8, McGrawhill Publications, (2000)
  • [4] David N.Noble, Microstructural Development, Duplex Stainless Steels, ASM Handbook Volume 6. Welding Brazing and Soldering ASM International, USA, p.1218, (1993).
  • [5] ASM Handbook Volume 13-B. Corrosion. Corrosion of Duplex stainless steel weldments, ASM International, p.813, (1992)
  • [6] Topbaş M. A. Endüstri Fırınları. Cilt I. Kurtiş Yayıncılık. İstanbul, (1991), 157.
  • [7] Bayazıtoğlu Y. Özışık M. N. (1988). Elements of Heat Transfer. McGraw-Hill Book Company, USA, 419.
  • [8] E. Dwight: American Institute of Physics Handbook 3rd Edition, McGraw Hill Pubs, (1972)
  • [9] ASTM C680, Standard Practice for Estimate of the Heat Gain or Loss and the Surface Temperatures of Insulated Flat, Cylindrical, and Spherical Systems by Use of Computer Programs (2014),
  • [10] Chon L. Tsai Chin M. Heat flow in Welding. Ohio State University. ASM Handbook Volume 6. Welding Brazing and Soldering ASM International, USA, 7-17, (1993).
  • [11] Weisman C. AWS Welding Handbook. 7th Edition. Heat flow in welding, 81, (1981).
  • [12] ASTM A 923-08 ‘Standart Test Methods for Detecting Detrimental Intermetallic Phase in Duplex Stainless Steels, USA, (2008)
  • [13] ASTM E-562-11, Standard Test Method for Determining Volume Fraction by Systematic Manual Point Count, (2011)
  • [14] ASTM E 1245-03, Standard Practice for determining the Inclusion or Second Phase Constituent Content of Metals by Automatic Image Analysis (Re-approved 2008)
  • [15] EN ISO 17655. (2003). Destructive tests on welds in metallic materials-method for taking samples for delta ferrite measurement. European Standard, Brussels.
  • [16] EN ISO 8249. (2000). Welding-determination of ferrite number (FN) in austenitic and duplex ferritic-austenitic Cr-Ni stainless steel weld metals, European standard, Brussels.
  • [17] Metallography and Microstructures of Stainless Steels and Maraging Steels, ASM Handbook Vol.9 ASM International, (2004)
  • [18] Zhang W. Debroy T. Palmer T. A. Elmer J. W. Modeling of ferrite formation in a duplex stainless steel weld considering non-uniform starting microstructure, USA, Actamaterialia Journals. (2005).
  • [19] Santos T. F. A. Marmho R. R. Paes M. T. P. Ramirez A. J. Microstructure evaluation of UNS S 32205 duplex stainless steel friction stir welds, Brazil.
  • [20] Palmer T. A. Elmer J. W. Babu S. S. (2004). Observations of ferrite/austenite transformations in the heat affected zone of 2205 duplex stainless steel spot welds using time resolved X-ray diffraction, Materials Science and Engineering.
There are 20 citations in total.

Details

Journal Section Articles
Authors

Aziz Barış Başyiğit

Adem Kurt

Publication Date December 15, 2015
Submission Date September 1, 2015
Published in Issue Year 2015 Volume: 7 Issue: 4

Cite

APA Başyiğit, A. B., & Kurt, A. (2015). S32205 Dubleks Paslanmaz Çeliğin TIG Kaynağında Soğuma Hızının Mikroyapısal Özelliklere Etkileri. International Journal of Engineering Research and Development, 7(4), 28-36. https://doi.org/10.29137/umagd.379795

All Rights Reserved. Kırıkkale University, Faculty of Engineering and Natural Science.