Research Article
BibTex RIS Cite

Kollajen/Jelatin/Bal Esaslı Çift Katmanlı Doku İskelesi Üretimi ve Karakterizasyonu

Year 2022, Volume: 14 Issue: 2, 619 - 631, 31.07.2022
https://doi.org/10.29137/umagd.1079714

Abstract

Bu projede, doğal, biyouyumlu ve biyobozunur polimerler olan kollajen/jelatin karışımından liyofilizasyon yoluyla gözenekli bir doku iskelesi üretilmiş, daha sonra bu katman üstüne elektro-eğirme yöntemi ile jelatin/polietilen oksit (PEO)/bal karışımıyla nanofibröz bir tabaka biriktirilmiştir. Doku iskelesi, gluteraldehit buharı ile muamele edilip sonrasında EDC/NHS kimyasallarıyla çapraz bağlanmıştır. Karakterizasyon için; Fourier Dönüşümlü Kızılötesi (FTIR) spektroskopisi, Termogravimetrik analiz (TGA), Taramalı Elektron Mikroskopisi (SEM), gözenek boyut dağılımı testi ve sulu ortamda degredasyon testleri yapılmıştır. Liyofilize katman, 1:1 (w/w) kollajen/jelatin karışımıyla üretilip, üst tabaka ise jelatin/PEO/bal karışımlarının en uygun oranı (2:2:2 w/w, %6 w/v toplam malzeme) seçilerek elektro-eğirme yöntemiyle bu katman üstüne toplanmıştır. İskelenin liyofilize katmanı 5−200 µm arasında geniş bir gözenek boyut dağılımına sahiptir. Çapraz bağlamadan sonra, gözenek boyut dağılımı (30−40 µm civarında yoğunlaşarak) daha homojen hale gelmiştir. SEM analizine göre, düzenli bir fiber boyut dağılımı (Dort = 423 ± 85 nm) elde edilmiş ve çapraz bağlama ve yıkama işlemlerinden sonra az miktarda fiber kaynaşması meydana gelmiştir. TGA ve degredasyon sonuçlarına göre, çapraz bağlama sonrasında iskele sağlamlığı artmıştır. Sonuç olarak, geliştirilen doku iskelesi, sahip olduğu sağlam, gözenekli ve fiberli yapısıyla farklı doku mühendisliği uygulamaları için uygun bir aday olabilir.

Supporting Institution

Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK)

Project Number

Başvuru No: 1919B011901535

Thanks

Bu proje, TÜBİTAK 2209-A Üniversite Ögrencileri Arastırma Projeleri Destekleme Programı kapsamında desteklenmiştir. Projedeki yardımlarından ötürü Raziye Koraş ve Baraa Mehyo'ya teşekkürlerimizi sunarız.

References

  • Abdelrazek, E. M., Abdelghany, A. M., Badr, S. I., & Morsi, M. A. (2018). Structural, optical, morphological and thermal properties of PEO/PVP blend containing different concentrations of biosynthesized Au nanoparticles. Journal of Materials Research and Technology, 7(4), 419–431. doi: 10.1016/j.jmrt.2017.06.009 Akturk, O., & Keskin, D. (2016). Collagen/PEO/gold nanofibrous matrices for skin tissue engineering. Turkish Journal of Biology, 40, 380–398. doi: 10.3906/biy-1502-49
  • Akturk, O., Kismet, K., Yasti, A. C., Kuru, S., Duymus, M. E., Kaya, F., Caydere, M., Hucumenoglu, S., & Keskin D. (2016). Collagen/gold nanoparticle nanocomposites: A potential skin wound healing biomaterial. Journal of Biomaterials Applications, 31(2), 283–301. doi: 10.1177/0885328216644536
  • Aliakbarshirazi, S., & Talebian, A. (2017). Electrospun gelatine nanofibrous scaffolds for cartilage tissue engineering. Materials Today: Proceedings, 4(7), 70597064. doi: 10.1016/j.matpr.2017.07.038
  • Arafat, M. T., Tronci, G., Yin, J., Wood, D. J., & Russell, S. J. (2015). Biomimetic wet-stable fibres via wet spinning and diacid-based crosslinking of collagen triple helices. Polymer, 77, 102–112. doi: 10.1016/j.polymer.2015.09.037
  • Campiglio, C. E., Contessi Negrini, N., Farè, S., & Draghi, L. (2019). Cross-linking strategies for electrospun gelatin scaffolds. Materials (Basel),12(15), 2476. doi: 10.3390/ma12152476
  • Dias, J. R., Baptista-Silva, S., de Oliveira, C. M. T., Sousa, A., Oliveira, A. L., Bártolo, P. J., & Granja, P. L. (2017). In situ crosslinked electrospun gelatin nanofibers for skin regeneration. European Polymer Journal, 95, 161–173. doi: 10.1016/j.eurpolymj.2017.08.015
  • Dong, C., & Lv, Y. (2016). Application of collagen scaffold in tissue engineering: Recent advances and new perspectives. Polymers (Basel), 8(2), 42. doi: 10.3390/polym8020042
  • El-Kased, R. F., Amer, R. I., Attia, D., & Elmazar, M. M. (2017). Honey-based hydrogel: in vitro and comparative in vivo evaluation for burn wound healing. Scientific Reports, 7, 9692. doi: 10.1038/s41598-017-08771-8
  • Eskandarinia, A., Kefayat, A., Agheb, M., Rafienia, M., Baghbadorani, M. A., Navid, S., Ebrahimpour, K., Khodabakhshi, D., & Ghahremani, F. (2020). A novel bilayer wound dressing composed of a dense polyurethane/propolis membrane and a biodegradable polycaprolactone/gelatin nanofibrous scaffold. Scientific Reports, 10, 3063. doi: 10.1038/s41598-020-59931-2 Gautam, S., Chou, C. F., Dinda, A. K., Potdar, P. D., & Mishra, N. C. (2014). Surface modification of nanofibrous polycaprolactone/gelatin composite scaffold by collagen type I grafting for skin tissue engineering. Materials Science and Engineering: C, 34, 402-409. doi: 10.1016/j.msec.2013.09.043.
  • Gok, S., Severcan, M., Goormaghtigh, E., Kandemir, I., & Severcan, F. (2015). Differentiation of Anatolian honey samples from different botanical origins by ATR-FTIR spectroscopy using multivariate analysis. Food Chemistry, 170, 234–240. doi: 10.1016/j.foodchem.2014.08.040
  • Gomes, S., Rodrigues, G., Martins, G., Henriques, C., & Silva, J.C. (2017). Evaluation of nanofibrous scaffolds obtained from blends of chitosan, gelatin and polycaprolactone for skin tissue engineering. International Journal of Biological Macromolecules, 102, 1174–1185. doi: 10.1016/j.ijbiomac.2017.05.004
  • Han, F., Dong, Y., Su, Z., Yin, R., Song, A., & Li, S. (2014). Preparation, characteristics and assessment of a novel gelatin-chitosan sponge scaffold as skin tissue engineering material. International Journal of Pharmaceutics, 476(1-2), 124–133. doi: 10.1016/j.ijpharm.2014.09.036
  • Heidari, M., Bahrami, S. H., Ranjbar-Mohammadi, M., & Milan, P. B. (2019). Smart electrospun nanofibers containing PCL/gelatine/graphene oxide for application in nerve tissue engineering. Materials science and Engineering: C, 103, 109768. doi: 10.1016/j.msec.2019.109768
  • Hixon, K. R., Lu, T., McBride-Gagyi, S. H., Janowiak, B. E., & Sell, S. A. (2017a). A comparison of tissue engineering scaffolds incorporated with manuka honey of varying UMF. BioMed Research International, 2017, 4843065. doi: 10.1155/2017/4843065
  • Hixon, K. R., Lu, T., Carletta, M. N., McBride-Gagyi, S. H., Janowiak, B. E., & Sell, S. A. (2017b). A preliminary in vitro evaluation of the bioactive potential of cryogel scaffolds incorporated with Manuka honey for the treatment of chronic bone infections. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 106(5),1918–1933. doi: 10.1002/jbm.b.34002
  • Hoon Lee, D., Arisaka, Y., Tonegawa, A., Woong Kang, T., Tamura, A., & Yui, N. (2019). Cellular orientation on repeatedly stretching gelatin hydrogels with supramolecular cross-linkers. Polymers, 11(12), 2095. doi: 10.3390/polym11122095
  • Kozłowicz, K., Różyło, R., Gładyszewska, B., Matwijczuk, A., Gładyszewski, G., Chocyk, D., Samborska, K., Piekut, J., & Smolewska, M. (2020). Identification of sugars and phenolic compounds in honey powders with the use of GC-MS, FTIR spectroscopy, and X-ray diffraction. Scientific Reports, 10(1), 16269. doi: 10.1038/s41598-020-73306-7
  • Lee, M., Hwang, J. H., & Lim, K. M. (2017). Alternatives to in vivo Draize rabbit eye and skin irritation tests with a focus on 3D reconstructed human cornea-like epithelium and epidermis models. Toxicological research, 33(3), 191–203. doi: 10.5487/TR.2017.33.3.191
  • Liu, H., Fan, H., Cui, Y., Chen, Y., Yao, K., & Goh, J. C. (2007). Effects of the controlled-released basic fibroblast growth factor from chitosan− gelatin microspheres on human fibroblasts cultured on a chitosan− gelatin scaffold. Biomacromolecules, 8(5), 1446–1455. doi: 10.1021/bm061025e
  • Liu, T., & Wang, Z. (2013). Collagen crosslinking of porcine sclera using genipin. Acta Ophthalmologica, 91(4), e253–e257. doi: 10.1111/aos.12172
  • Loh, Q. L., & Choong, C. (2013). Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Engineering Part B: Reviews, 19(6), 485–502. doi: 10.1089/ten.TEB.2012.0437
  • Maleki, H., Gharehaghaji, A. A., & Dijkstra, P. J. (2013). A novel honey-based nanofibrous scaffold for wound dressing application. Journal of Applied Polymer Science, 127(5), 4086–4092. doi: 10.1002/app.37601
  • Martinotti, S., & Ranzato, E. (2018). Honey, wound repair and regenerative medicine. Journal of Functional Biomaterials, 9(2), 34. doi: 10.3390/jfb9020034
  • Martinotti, S., Calabrese, G., & Ranzato, E. (2015). Honey and wound healing: New solutions from an old remedy. In Wound Healing: Cellular Mechanisms, Alternative Therapies and Clinical Outcomes, Wade, L. E. (ed). Nova Publishers Inc.: Hauppauge, NY, USA.
  • Maslennikova, A., Kochueva, M., Ignatieva, N., Vitkin, A., Zakharkina, O., Kamensky, V., Sergeeva, E., Kiseleva, E., & Bagratashvili, V. (2015). Effects of gamma irradiation on collagen damage and remodeling. International Journal of Radiation Biology, 91(3), 240–247. doi: 10.3109/09553002.2014.969848
  • McCarty, S. M., & Percival, S. L. (2013). Proteases and delayed wound healing. Advances in Wound Care, 2(8), 438–447. doi: 10.1089/wound.2012.0370
  • Minden-Birkenmaier, B. A., Neuhalfen, R. M., Janowiak, B. E., & Sell, S. A. (2015). Preliminary investigation and characterization of electrospun polycaprolactone and manuka honey scaffolds for dermal repair. Journal of Engineered Fibers and Fabrics, 10(4), 126–138. doi: 10.1177/155892501501000406
  • Nagaoka, H., Nagaoka, H., Walter, R., Boushell, L. W., Miguez, P. A., Burton, A., Ritter, A. V., & Yamauchi, M. (2014). Characterization of genipin-modified dentin collagen. BioMed Research International, 2014, 702821. doi: 10.1155/2014/702821
  • Nazeri, S., Ardakani, E.M., Babavalian, H., & Latifi, A. M. (2015). Evaluation of effectiveness of honey-based alginate hydrogel on wound healing in rat model. Journal of Applied Biotechnology Reports, 2(3), 293–297.
  • Nguyen, H. T. L., Katopo, L., Pang, E., Mantri, N., & Kasapis, S. (2019). Structural variation in gelatin networks from low to highsolid systems effected by honey addition. Food Research International, 121, 319–325. doi: 10.1016/j.foodres.2019.03.048
  • Nguyen, T., Ventura, R., Min, Y., & Lee, B. (2016) Genipin cross-linked polyvinyl alcohol-gelatin hydrogel for bone regeneration. Journal of Biomedical Science and Engineering, 9, 419-429. doi: 10.4236/jbise.2016.99037
  • Nuvoli, L., Conte, P., Fadda, C., Reglero Ruiz, J. A., García Pérez, J. M., Baldino, S., & Mannu, A. (2020). Structural, thermal, and mechanical properties of gelatin-based films integrated with tara gum. Polymer, 214, 123244. doi: 10.1016/j.polymer.2020.123244
  • Parin, F. N., Terzioğlu, P., Sicak, Y., Yildirim, K., & Öztürk, M. (2021). Pine honey–loaded electrospun poly (vinyl alcohol)/gelatin nanofibers with antioxidant properties, The Journal of The Textile Institute, 112(4), 628–635, doi: 10.1080/00405000.2020.1773199
  • Pataca, L. C. M., Neto, W. B., Marcucci, M. C., & Poppi, R. J. (2007). Determination of apparent reducing sugars, moisture and acidity in honey by attenuated total reflectance-Fourier transform infrared spectrometry. Talanta, 71(5), 1926–1931. doi: 10.1016/j.talanta.2006.08.028
  • Rajput, M., Bhandaru, N., Barui, A., Chaudhary, A., Paul, R.R., Mukherjee, R., & Chatterjee, J. (2014). Nano-patterned honey incorporated silk fibroin membranes for improving cellular compatibility. RSC Advances, 4, 44674–44688. doi: 10.1039/C4RA05799F
  • Ranzato, E., & Martinotti, S. (2016). The secrets of honey: Why this old remedy is still useful. In Honey: Geographical Origins, Bioactive Properties and Health Benefits, Ramirez, R. (ed.). Nova Publishers Inc.: Hauppauge, NY, USA.
  • Rose, J. B., Sidney, L. E., Patient, J., White, L. J., Dua, H. S., El Haj, A. J., Hopkinson, A., & Rose, F. R. A. J. (2019). In vitro evaluation of electrospun blends of gelatin and PCL for application as a partial thickness corneal graft. Journal of Biomedical Materials Research Part A, 107(4), 828–838. doi: 10.1002/jbm.a.36598
  • Sarhan, W.A., Azzazy, H. M. E, & El-Sherbiny, I. M. (2016). The effect of increasing honey concentration on the properties of the honey/polyvinyl alcohol/chitosan nanofibers. Materials Science and Engineering: C, 67, 276–284. doi: 10.1016/j.msec.2016.05.006
  • Sarkar, R., Ghosh, A., Barui, A., & Datta, P. (2018). Repositing honey incorporated electrospun nanofiber membranes to provide anti-oxidant, anti-bacterial and anti-inflammatory microenvironment for wound regeneration. Journal of Materials Science: Materials in Medicine, 29(3), 31. doi: 10.1007/s10856-018-6038-4
  • Skopinska-Wisniewska, J., Tuszynska, M., & Olewnik-Kruszkowska, E. (2021). Comparative study of gelatin hydrogels modified by various cross-linking agents. Materials (Basel), 14(2), 396. doi: 10.3390/ma14020396
  • Takitoh, T., Bessho, M., Hirose, M., Ohgushi, H., Mori, H., & Hara, M. (2015). Gamma-cross-linked nonfibrillar collagen gel as a scaffold for osteogenic differentiation of mesenchymal stem cells. Journal of Bioscience and Bioengineering, 119(2), 217–225. doi: 10.1016/j.jbiosc.2014.07.008
  • Tang, Y., Lan, X., Liang, C., Zhong, Z., Xie, R., Zhou, Y., Miao, X., Wang, H., & Wang, W. (2019). Honey loaded alginate/PVA nanofibrous membrane as potential bioactive wound dressing. Carbohydrate Polymers, 219, 113–120. doi: 10.1016/j.carbpol.2019.05.004
  • Topuz, F., & Uyar, T. (2017). Electrospinning of gelatin with tunable fiber morphology from round to flat/ribbon. Materials Science and Engineering C, 80, 371–378. doi: 10.1016/j.msec.2017.06.001
  • Torras, N., García-Díaz, M., Fernández-Majada, V., & Martínez, E. (2018). Mimicking epithelial tissues in three-dimensional cell culture models. Frontiers in Bioengineering and bBiotechnology, 6, 197. doi: 10.3389/fbioe.2018.00197
  • Vrana, N. E., Builles, N., Kocak, H., Gulay, P., Justin, V., Malbouyres, M., Ruggiero, F., Damour, O., Hasirci, V. (2007). EDC/NHS cross-linked collagen foams as scaffolds for artificial corneal stroma. Journal of Biomaterials Science, Polymer Edition, 2007, 18(12), 1527–1545. doi: 10.1163/156856207794761961
  • Wang, T., Zhu, X. K., Xue, X. T., & Wu, D. Y. (2012). Hydrogel sheets of chitosan, honey and gelatin as burn wound dressings. Carbohydrate Polymers, 88(1), 75–83. doi: 10.1016/j.carbpol.2011.11.069
  • Wang, W., Zhang, Y., Ye, R., & Ni, Y. (2015). Physical crosslinkings of edible collagen casing. International Journal of Biological Macromolecules, 81, 920–925. doi: 10.1016/j.ijbiomac.2015.09.032
  • Yoshioka, S. A., & Goissis, G. (2008). Thermal and spectrophotometric studies of new crosslinking method for collagen matrix with glutaraldehyde acetals. Journal of Materials Science: Materials in Medicine, 19(3), 1215–1223. doi: 10.1007/s10856-007-0151-0

Fabrication of Double-layered Tissue Scaffolds with Collagen/Gelatin/Honey Blends and Its Characterization

Year 2022, Volume: 14 Issue: 2, 619 - 631, 31.07.2022
https://doi.org/10.29137/umagd.1079714

Abstract

In this project, a porous tissue scaffold composed of collagen/gelatin, which are natural, biocompatible, and biodegradable polymers, was fabricated by lyophilization, then a nanofibrous gelatin/polyethylene oxide (PEO)/honey blend was accumulated onto this layer via the electro-spinning process. The tissue scaffold was cross-linked by treating with glutaraldehyde vapor followed by EDC/NHS reagents. For the characterization, Fourier Transformed Infrared (FTIR) spectroscopy, Thermogravimetric Analysis (TGA), Scanning Electron Microscopy (SEM), pore size distribution analysis, and aqueous degradation tests were performed. While the lyophilized layer was fabricated by 1:1 (w/w) collagen/gelatin mixture, the top layer was electro-spun onto this layer by selecting the most appropriate blend ratio (2:2:2 w/w, %6 w/v total material). The lyophilized scaffold layer had a wide pore size distribution in the 5−200 µm range. After the cross-linking, pore size distribution became more homogenous (concentrating around 30−40 µm). According to SEM analysis, a uniform fiber size distribution (Dave = 423 ± 85 nm) was obtained and after the cross-linking and rinsing processes a slight fiber fusion occurred. Regarding the TGA and degradation results, the scaffold robustness increased after the cross-linking. Overall, the developed tissue scaffold with its stable, porous and fibrous form could be a suitable candidate for different tissue engineering applications.

Project Number

Başvuru No: 1919B011901535

References

  • Abdelrazek, E. M., Abdelghany, A. M., Badr, S. I., & Morsi, M. A. (2018). Structural, optical, morphological and thermal properties of PEO/PVP blend containing different concentrations of biosynthesized Au nanoparticles. Journal of Materials Research and Technology, 7(4), 419–431. doi: 10.1016/j.jmrt.2017.06.009 Akturk, O., & Keskin, D. (2016). Collagen/PEO/gold nanofibrous matrices for skin tissue engineering. Turkish Journal of Biology, 40, 380–398. doi: 10.3906/biy-1502-49
  • Akturk, O., Kismet, K., Yasti, A. C., Kuru, S., Duymus, M. E., Kaya, F., Caydere, M., Hucumenoglu, S., & Keskin D. (2016). Collagen/gold nanoparticle nanocomposites: A potential skin wound healing biomaterial. Journal of Biomaterials Applications, 31(2), 283–301. doi: 10.1177/0885328216644536
  • Aliakbarshirazi, S., & Talebian, A. (2017). Electrospun gelatine nanofibrous scaffolds for cartilage tissue engineering. Materials Today: Proceedings, 4(7), 70597064. doi: 10.1016/j.matpr.2017.07.038
  • Arafat, M. T., Tronci, G., Yin, J., Wood, D. J., & Russell, S. J. (2015). Biomimetic wet-stable fibres via wet spinning and diacid-based crosslinking of collagen triple helices. Polymer, 77, 102–112. doi: 10.1016/j.polymer.2015.09.037
  • Campiglio, C. E., Contessi Negrini, N., Farè, S., & Draghi, L. (2019). Cross-linking strategies for electrospun gelatin scaffolds. Materials (Basel),12(15), 2476. doi: 10.3390/ma12152476
  • Dias, J. R., Baptista-Silva, S., de Oliveira, C. M. T., Sousa, A., Oliveira, A. L., Bártolo, P. J., & Granja, P. L. (2017). In situ crosslinked electrospun gelatin nanofibers for skin regeneration. European Polymer Journal, 95, 161–173. doi: 10.1016/j.eurpolymj.2017.08.015
  • Dong, C., & Lv, Y. (2016). Application of collagen scaffold in tissue engineering: Recent advances and new perspectives. Polymers (Basel), 8(2), 42. doi: 10.3390/polym8020042
  • El-Kased, R. F., Amer, R. I., Attia, D., & Elmazar, M. M. (2017). Honey-based hydrogel: in vitro and comparative in vivo evaluation for burn wound healing. Scientific Reports, 7, 9692. doi: 10.1038/s41598-017-08771-8
  • Eskandarinia, A., Kefayat, A., Agheb, M., Rafienia, M., Baghbadorani, M. A., Navid, S., Ebrahimpour, K., Khodabakhshi, D., & Ghahremani, F. (2020). A novel bilayer wound dressing composed of a dense polyurethane/propolis membrane and a biodegradable polycaprolactone/gelatin nanofibrous scaffold. Scientific Reports, 10, 3063. doi: 10.1038/s41598-020-59931-2 Gautam, S., Chou, C. F., Dinda, A. K., Potdar, P. D., & Mishra, N. C. (2014). Surface modification of nanofibrous polycaprolactone/gelatin composite scaffold by collagen type I grafting for skin tissue engineering. Materials Science and Engineering: C, 34, 402-409. doi: 10.1016/j.msec.2013.09.043.
  • Gok, S., Severcan, M., Goormaghtigh, E., Kandemir, I., & Severcan, F. (2015). Differentiation of Anatolian honey samples from different botanical origins by ATR-FTIR spectroscopy using multivariate analysis. Food Chemistry, 170, 234–240. doi: 10.1016/j.foodchem.2014.08.040
  • Gomes, S., Rodrigues, G., Martins, G., Henriques, C., & Silva, J.C. (2017). Evaluation of nanofibrous scaffolds obtained from blends of chitosan, gelatin and polycaprolactone for skin tissue engineering. International Journal of Biological Macromolecules, 102, 1174–1185. doi: 10.1016/j.ijbiomac.2017.05.004
  • Han, F., Dong, Y., Su, Z., Yin, R., Song, A., & Li, S. (2014). Preparation, characteristics and assessment of a novel gelatin-chitosan sponge scaffold as skin tissue engineering material. International Journal of Pharmaceutics, 476(1-2), 124–133. doi: 10.1016/j.ijpharm.2014.09.036
  • Heidari, M., Bahrami, S. H., Ranjbar-Mohammadi, M., & Milan, P. B. (2019). Smart electrospun nanofibers containing PCL/gelatine/graphene oxide for application in nerve tissue engineering. Materials science and Engineering: C, 103, 109768. doi: 10.1016/j.msec.2019.109768
  • Hixon, K. R., Lu, T., McBride-Gagyi, S. H., Janowiak, B. E., & Sell, S. A. (2017a). A comparison of tissue engineering scaffolds incorporated with manuka honey of varying UMF. BioMed Research International, 2017, 4843065. doi: 10.1155/2017/4843065
  • Hixon, K. R., Lu, T., Carletta, M. N., McBride-Gagyi, S. H., Janowiak, B. E., & Sell, S. A. (2017b). A preliminary in vitro evaluation of the bioactive potential of cryogel scaffolds incorporated with Manuka honey for the treatment of chronic bone infections. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 106(5),1918–1933. doi: 10.1002/jbm.b.34002
  • Hoon Lee, D., Arisaka, Y., Tonegawa, A., Woong Kang, T., Tamura, A., & Yui, N. (2019). Cellular orientation on repeatedly stretching gelatin hydrogels with supramolecular cross-linkers. Polymers, 11(12), 2095. doi: 10.3390/polym11122095
  • Kozłowicz, K., Różyło, R., Gładyszewska, B., Matwijczuk, A., Gładyszewski, G., Chocyk, D., Samborska, K., Piekut, J., & Smolewska, M. (2020). Identification of sugars and phenolic compounds in honey powders with the use of GC-MS, FTIR spectroscopy, and X-ray diffraction. Scientific Reports, 10(1), 16269. doi: 10.1038/s41598-020-73306-7
  • Lee, M., Hwang, J. H., & Lim, K. M. (2017). Alternatives to in vivo Draize rabbit eye and skin irritation tests with a focus on 3D reconstructed human cornea-like epithelium and epidermis models. Toxicological research, 33(3), 191–203. doi: 10.5487/TR.2017.33.3.191
  • Liu, H., Fan, H., Cui, Y., Chen, Y., Yao, K., & Goh, J. C. (2007). Effects of the controlled-released basic fibroblast growth factor from chitosan− gelatin microspheres on human fibroblasts cultured on a chitosan− gelatin scaffold. Biomacromolecules, 8(5), 1446–1455. doi: 10.1021/bm061025e
  • Liu, T., & Wang, Z. (2013). Collagen crosslinking of porcine sclera using genipin. Acta Ophthalmologica, 91(4), e253–e257. doi: 10.1111/aos.12172
  • Loh, Q. L., & Choong, C. (2013). Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Engineering Part B: Reviews, 19(6), 485–502. doi: 10.1089/ten.TEB.2012.0437
  • Maleki, H., Gharehaghaji, A. A., & Dijkstra, P. J. (2013). A novel honey-based nanofibrous scaffold for wound dressing application. Journal of Applied Polymer Science, 127(5), 4086–4092. doi: 10.1002/app.37601
  • Martinotti, S., & Ranzato, E. (2018). Honey, wound repair and regenerative medicine. Journal of Functional Biomaterials, 9(2), 34. doi: 10.3390/jfb9020034
  • Martinotti, S., Calabrese, G., & Ranzato, E. (2015). Honey and wound healing: New solutions from an old remedy. In Wound Healing: Cellular Mechanisms, Alternative Therapies and Clinical Outcomes, Wade, L. E. (ed). Nova Publishers Inc.: Hauppauge, NY, USA.
  • Maslennikova, A., Kochueva, M., Ignatieva, N., Vitkin, A., Zakharkina, O., Kamensky, V., Sergeeva, E., Kiseleva, E., & Bagratashvili, V. (2015). Effects of gamma irradiation on collagen damage and remodeling. International Journal of Radiation Biology, 91(3), 240–247. doi: 10.3109/09553002.2014.969848
  • McCarty, S. M., & Percival, S. L. (2013). Proteases and delayed wound healing. Advances in Wound Care, 2(8), 438–447. doi: 10.1089/wound.2012.0370
  • Minden-Birkenmaier, B. A., Neuhalfen, R. M., Janowiak, B. E., & Sell, S. A. (2015). Preliminary investigation and characterization of electrospun polycaprolactone and manuka honey scaffolds for dermal repair. Journal of Engineered Fibers and Fabrics, 10(4), 126–138. doi: 10.1177/155892501501000406
  • Nagaoka, H., Nagaoka, H., Walter, R., Boushell, L. W., Miguez, P. A., Burton, A., Ritter, A. V., & Yamauchi, M. (2014). Characterization of genipin-modified dentin collagen. BioMed Research International, 2014, 702821. doi: 10.1155/2014/702821
  • Nazeri, S., Ardakani, E.M., Babavalian, H., & Latifi, A. M. (2015). Evaluation of effectiveness of honey-based alginate hydrogel on wound healing in rat model. Journal of Applied Biotechnology Reports, 2(3), 293–297.
  • Nguyen, H. T. L., Katopo, L., Pang, E., Mantri, N., & Kasapis, S. (2019). Structural variation in gelatin networks from low to highsolid systems effected by honey addition. Food Research International, 121, 319–325. doi: 10.1016/j.foodres.2019.03.048
  • Nguyen, T., Ventura, R., Min, Y., & Lee, B. (2016) Genipin cross-linked polyvinyl alcohol-gelatin hydrogel for bone regeneration. Journal of Biomedical Science and Engineering, 9, 419-429. doi: 10.4236/jbise.2016.99037
  • Nuvoli, L., Conte, P., Fadda, C., Reglero Ruiz, J. A., García Pérez, J. M., Baldino, S., & Mannu, A. (2020). Structural, thermal, and mechanical properties of gelatin-based films integrated with tara gum. Polymer, 214, 123244. doi: 10.1016/j.polymer.2020.123244
  • Parin, F. N., Terzioğlu, P., Sicak, Y., Yildirim, K., & Öztürk, M. (2021). Pine honey–loaded electrospun poly (vinyl alcohol)/gelatin nanofibers with antioxidant properties, The Journal of The Textile Institute, 112(4), 628–635, doi: 10.1080/00405000.2020.1773199
  • Pataca, L. C. M., Neto, W. B., Marcucci, M. C., & Poppi, R. J. (2007). Determination of apparent reducing sugars, moisture and acidity in honey by attenuated total reflectance-Fourier transform infrared spectrometry. Talanta, 71(5), 1926–1931. doi: 10.1016/j.talanta.2006.08.028
  • Rajput, M., Bhandaru, N., Barui, A., Chaudhary, A., Paul, R.R., Mukherjee, R., & Chatterjee, J. (2014). Nano-patterned honey incorporated silk fibroin membranes for improving cellular compatibility. RSC Advances, 4, 44674–44688. doi: 10.1039/C4RA05799F
  • Ranzato, E., & Martinotti, S. (2016). The secrets of honey: Why this old remedy is still useful. In Honey: Geographical Origins, Bioactive Properties and Health Benefits, Ramirez, R. (ed.). Nova Publishers Inc.: Hauppauge, NY, USA.
  • Rose, J. B., Sidney, L. E., Patient, J., White, L. J., Dua, H. S., El Haj, A. J., Hopkinson, A., & Rose, F. R. A. J. (2019). In vitro evaluation of electrospun blends of gelatin and PCL for application as a partial thickness corneal graft. Journal of Biomedical Materials Research Part A, 107(4), 828–838. doi: 10.1002/jbm.a.36598
  • Sarhan, W.A., Azzazy, H. M. E, & El-Sherbiny, I. M. (2016). The effect of increasing honey concentration on the properties of the honey/polyvinyl alcohol/chitosan nanofibers. Materials Science and Engineering: C, 67, 276–284. doi: 10.1016/j.msec.2016.05.006
  • Sarkar, R., Ghosh, A., Barui, A., & Datta, P. (2018). Repositing honey incorporated electrospun nanofiber membranes to provide anti-oxidant, anti-bacterial and anti-inflammatory microenvironment for wound regeneration. Journal of Materials Science: Materials in Medicine, 29(3), 31. doi: 10.1007/s10856-018-6038-4
  • Skopinska-Wisniewska, J., Tuszynska, M., & Olewnik-Kruszkowska, E. (2021). Comparative study of gelatin hydrogels modified by various cross-linking agents. Materials (Basel), 14(2), 396. doi: 10.3390/ma14020396
  • Takitoh, T., Bessho, M., Hirose, M., Ohgushi, H., Mori, H., & Hara, M. (2015). Gamma-cross-linked nonfibrillar collagen gel as a scaffold for osteogenic differentiation of mesenchymal stem cells. Journal of Bioscience and Bioengineering, 119(2), 217–225. doi: 10.1016/j.jbiosc.2014.07.008
  • Tang, Y., Lan, X., Liang, C., Zhong, Z., Xie, R., Zhou, Y., Miao, X., Wang, H., & Wang, W. (2019). Honey loaded alginate/PVA nanofibrous membrane as potential bioactive wound dressing. Carbohydrate Polymers, 219, 113–120. doi: 10.1016/j.carbpol.2019.05.004
  • Topuz, F., & Uyar, T. (2017). Electrospinning of gelatin with tunable fiber morphology from round to flat/ribbon. Materials Science and Engineering C, 80, 371–378. doi: 10.1016/j.msec.2017.06.001
  • Torras, N., García-Díaz, M., Fernández-Majada, V., & Martínez, E. (2018). Mimicking epithelial tissues in three-dimensional cell culture models. Frontiers in Bioengineering and bBiotechnology, 6, 197. doi: 10.3389/fbioe.2018.00197
  • Vrana, N. E., Builles, N., Kocak, H., Gulay, P., Justin, V., Malbouyres, M., Ruggiero, F., Damour, O., Hasirci, V. (2007). EDC/NHS cross-linked collagen foams as scaffolds for artificial corneal stroma. Journal of Biomaterials Science, Polymer Edition, 2007, 18(12), 1527–1545. doi: 10.1163/156856207794761961
  • Wang, T., Zhu, X. K., Xue, X. T., & Wu, D. Y. (2012). Hydrogel sheets of chitosan, honey and gelatin as burn wound dressings. Carbohydrate Polymers, 88(1), 75–83. doi: 10.1016/j.carbpol.2011.11.069
  • Wang, W., Zhang, Y., Ye, R., & Ni, Y. (2015). Physical crosslinkings of edible collagen casing. International Journal of Biological Macromolecules, 81, 920–925. doi: 10.1016/j.ijbiomac.2015.09.032
  • Yoshioka, S. A., & Goissis, G. (2008). Thermal and spectrophotometric studies of new crosslinking method for collagen matrix with glutaraldehyde acetals. Journal of Materials Science: Materials in Medicine, 19(3), 1215–1223. doi: 10.1007/s10856-007-0151-0
There are 48 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Yaren Erdem 0000-0002-1270-5855

Sahra Ezgi Süngü 0000-0003-1871-2279

Ömer Aktürk 0000-0002-0130-8803

Project Number Başvuru No: 1919B011901535
Publication Date July 31, 2022
Submission Date March 1, 2022
Published in Issue Year 2022 Volume: 14 Issue: 2

Cite

APA Erdem, Y., Süngü, S. E., & Aktürk, Ö. (2022). Kollajen/Jelatin/Bal Esaslı Çift Katmanlı Doku İskelesi Üretimi ve Karakterizasyonu. International Journal of Engineering Research and Development, 14(2), 619-631. https://doi.org/10.29137/umagd.1079714

All Rights Reserved. Kırıkkale University, Faculty of Engineering and Natural Science.