Research Article
BibTex RIS Cite

Metilen Mavisi Boyar Maddesinin Sulu Çözeltilerden Doğal Limonitik Laterit ile Uzaklaştırılması

Year 2024, Volume: 16 Issue: 1, 141 - 149, 31.01.2024
https://doi.org/10.29137/umagd.1372506

Abstract

Bu çalışmanın amacı doğal limonitik laterit kullanılarak atık sulardan metilen mavisinin giderimi araştırmaktır. Bu amaçla adsorpsiyon yöntemi ile metilen mavisi sulu çözeltiden ayırmayı etkileyen faktörler incelenmiştir. Sonuçlar göstermiştir ki kontak süresinin artması ile adsorpsiyon kapasitesi yavaşça artmış, adsorbent dozajının artması ile adsorpsiyon kapasitesi azalmış ve metilen mavisinin başlangıç derişiminin artması sonucu limonitik lateritin adsorpsiyon kapasitesi artmıştır. Langmuir izoterm, Freundlich izoterm ve Dubinin-Radushkevich izoterm modeli deneysel verilere uygulanmıştır. Metilen mavisinin doğal limonitik laterit üzerine adsorpsiyonuna en iyi uyan Dubinin-Radushkevich izoterm modeli olduğu bulunmuştur. Metilen mavisinin doğal limonitik laterit üzerine adsorpsiyonu fiziksel adsorpsiyon olduğu Dubinin-Radushkevich izoterminden belirlenmiştir.

References

  • Afroze, S., Sen, T. K., Ang, M., & Nishioka, H. (2016). Adsorption of methylene blue dye from aqueous solution by novel biomass Eucalyptus sheathiana bark: equilibrium, kinetics, thermodynamics and mechanism. Desalination and water treatment, 57(13), 5858-5878.
  • Al-Ghouti, M. A., Khraisheh, M. A. M., Allen, S. J., & Ahmad, M. N. (2003). The removal of dyes from textile wastewater: a study of the physical characteristics and adsorption mechanisms of diatomaceous earth. Journal of environmental management, 69(3), 229-238.
  • Almeida, C. A. P., Debacher, N. A., Downs, A. J., Cottet, L., & Mello, C. A. D. (2009). Removal of methylene blue from colored effluents by adsorption on montmorillonite clay. Journal of colloid and interface science, 332(1), 46-53.
  • Bagane, M., & Guiza, S. (2000). Removal of a dye from textile effluents by adsorption. In Annales de Chimie-Science des Materiaux, 25(8), 615-625.
  • Bounaas, M., Bouguettoucha, A., Chebli, D., Gatica, J. M., & Vidal, H. (2021). Role of the wild carob as biosorbent and as precursor of a new high-surface-area activated carbon for the adsorption of methylene blue. Arabian journal for science and engineering, 46, 325-341.
  • Çetintaş, S. (2021). An alternative application for reuse of leaching residues: Determination of adsorption behaviour for methylene blue and process optimization. Sustainable Chemistry and Pharmacy, 23, 100504.
  • Chang, M. Y., & Juang, R. S. (2004). Adsorption of tannic acid, humic acid, and dyes from water using the composite of chitosan and activated clay. Journal of colloid and interface science, 278(1), 18-25.
  • Do, T. H., Dung, N. Q., Chu, M. N., Van Kiet, D., Ngan, T. T. K., & Van Tan, L. (2021). Study on methylene blue adsorption of activated carbon made from Moringa oleifera leaf. Materials Today: Proceedings, 38, 3405-3413.
  • Doğan, M., Alkan, M., & Onganer, Y. (2000). Adsorption of methylene blue from aqueous solution onto perlite. Water, Air, and Soil Pollution, 120, 229-248.
  • Eltaweil, A. S., Elgarhy, G. S., El-Subruiti, G. M., & Omer, A. M. (2020). Carboxymethyl cellulose/carboxylated graphene oxide composite microbeads for efficient adsorption of cationic methylene blue dye. International journal of biological macromolecules, 154, 307-318.
  • Hameed, B. H., Din, A. M., & Ahmad, A. L. (2007). Adsorption of methylene blue onto bamboo-based activated carbon: kinetics and equilibrium studies. Journal of hazardous materials, 141(3), 819-825.
  • Han, X., Niu, X., & Ma, X. (2012). Adsorption characteristics of methylene blue on poplar leaf in batch mode: Equilibrium, kinetics and thermodynamics. Korean Journal of Chemical Engineering, 29, 494-502.
  • He, F., Ma, B., Wang, C., Chen, Y., & Hu, X. (2023). Adsorption of Pb (II) and Cd (II) hydrates via inexpensive limonitic laterite: Adsorption characteristics and mechanisms. Separation and Purification Technology, 310, 123234.
  • Kalam, S., Abu-Khamsin, S. A., Kamal, M. S., & Patil, S. (2021). Surfactant adsorption isotherms: A review. ACS omega, 6(48), 32342-32348.
  • Khan, T. A., & Nazir, M. (2015). Enhanced adsorptive removal of a model acid dye bromothymol blue from aqueous solution using magnetic chitosan‐bamboo sawdust composite: Batch and column studies. Environmental Progress & Sustainable Energy, 34(5), 1444-1454.
  • Kumar, K. V., Ramamurthi, V., & Sivanesan, S. (2005). Modeling the mechanism involved during the sorption of methylene blue onto fly ash. Journal of colloid and interface science, 284(1), 14-21.
  • Ma, B., Wang, C., Yang, W., Yang, B., & Zhang, Y. (2013). Selective pressure leaching of Fe (II)-rich limonitic laterite ores from Indonesia using nitric acid. Minerals Engineering, 45, 151-158.
  • Maiti, A., Basu, J. K., & De, S. (2012). Experimental and kinetic modeling of As (V) and As (III) adsorption on treated laterite using synthetic and contaminated groundwater: Effects of phosphate, silicate and carbonate ions. Chemical Engineering Journal, 191, 1-12.
  • Munir, M., Nazar, M. F., Zafar, M. N., Zubair, M., Ashfaq, M., Hosseini-Bandegharaei, A., Khan, S., Ahmad, A. (2020). Effective adsorptive removal of methylene blue from water by didodecyldimethylammonium bromide-modified Brown clay. ACS omega, 5(27), 16711-16721.
  • Noorimotlagh, Z., Soltani, R. D. C., Khataee, A. R., Shahriyar, S., & Nourmoradi, H. (2014). Adsorption of a textile dye in aqueous phase using mesoporous activated carbon prepared from Iranian milk vetch. Journal of the Taiwan Institute of Chemical Engineers, 45(4), 1783-1791.
  • Nwodika, C., & Onukwuli, D. O. (2017). Adsorption study of kinetics and equilibrium of basic dye on kola nut pod carbon. Gazi University Journal of Science, 30(4), 86-102.
  • Patil, A. K., & Shrivastava, V. S. (2010). Alternanthera bettzichiana plant powder as low cost adsorbent for removal of Congo red from aqueous solution. International Journal of ChemTech Research, 2(2), 842-850.
  • Rafatullah, M., Sulaiman, O., Hashim, R., & Ahmad, A. (2010). Adsorption of methylene blue on low-cost adsorbents: a review. Journal of hazardous materials, 177(1-3), 70-80.
  • Rehman, M. S. U., Kim, I., & Han, J. I. (2012). Adsorption of methylene blue dye from aqueous solution by sugar extracted spent rice biomass. Carbohydrate polymers, 90(3), 1314-1322.
  • Sen, T. K. (2012). Agricultural by-product biomass for removal of pollutants from aqueous solution by adsorption. Journal of Environmental Research and Development, 6(3), 523-533.
  • Tara, N., Siddiqui, S. I., Rathi, G., Chaudhry, S. A., & Asiri, A. M. (2020). Nano-engineered adsorbent for the removal of dyes from water: A review. Current Analytical Chemistry, 16(1), 14-40.
  • Tran, T. H., Le, A. H., Pham, T. H., Nguyen, D. T., Chang, S. W., Chung, W. J., & Nguyen, D. D. (2020). Adsorption isotherms and kinetic modeling of methylene blue dye onto a carbonaceous hydrochar adsorbent derived from coffee husk waste. Science of the Total Environment, 725, 138325.
  • Wang, S., Boyjoo, Y., & Choueib, A. (2005). A comparative study of dye removal using fly ash treated by different methods. Chemosphere, 60(10), 1401-1407.
  • Yagub, M. T., Sen, T. K., Afroze, S., & Ang, H. M. (2014). Dye and its removal from aqueous solution by adsorption: a review. Advances in colloid and interface science, 209, 172-184.
  • Yildiz, S., & Sevinç, S. (2018). Heavy metal adsorption by dewatered iron-containing waste sludge. Ecological Chemistry and Engineering S, 25(3), 431-456.

Removal of methylene blue dye from aqueous solutions with natural limonitic laterite

Year 2024, Volume: 16 Issue: 1, 141 - 149, 31.01.2024
https://doi.org/10.29137/umagd.1372506

Abstract

The aim of this study is to investigate the removal of methylene blue from wastewater using natural limonitic laterite. For this purpose, the factors affecting the separation of methylene blue from aqueous solution by the adsorption method were examined. The results showed that the adsorption capacity increased slowly with the increase of contact time, the adsorption capacity decreased with the increase of the adsorbent dosage, and the adsorption capacity of limonitic laterite increased as a result of the increase in the initial concentration of methylene blue. Langmuir isotherm, Freundlich isotherm and Dubinin-Radushkevich isotherm model were applied to experimental data. It was found that the Dubinin-Radushkevich isotherm model best fits the adsorption of methylene blue onto natural limonitic laterite. The adsorption of methylene blue onto natural limonitic laterite was determined to be physical adsorption from the Dubinin-Radushkevich isotherm.

References

  • Afroze, S., Sen, T. K., Ang, M., & Nishioka, H. (2016). Adsorption of methylene blue dye from aqueous solution by novel biomass Eucalyptus sheathiana bark: equilibrium, kinetics, thermodynamics and mechanism. Desalination and water treatment, 57(13), 5858-5878.
  • Al-Ghouti, M. A., Khraisheh, M. A. M., Allen, S. J., & Ahmad, M. N. (2003). The removal of dyes from textile wastewater: a study of the physical characteristics and adsorption mechanisms of diatomaceous earth. Journal of environmental management, 69(3), 229-238.
  • Almeida, C. A. P., Debacher, N. A., Downs, A. J., Cottet, L., & Mello, C. A. D. (2009). Removal of methylene blue from colored effluents by adsorption on montmorillonite clay. Journal of colloid and interface science, 332(1), 46-53.
  • Bagane, M., & Guiza, S. (2000). Removal of a dye from textile effluents by adsorption. In Annales de Chimie-Science des Materiaux, 25(8), 615-625.
  • Bounaas, M., Bouguettoucha, A., Chebli, D., Gatica, J. M., & Vidal, H. (2021). Role of the wild carob as biosorbent and as precursor of a new high-surface-area activated carbon for the adsorption of methylene blue. Arabian journal for science and engineering, 46, 325-341.
  • Çetintaş, S. (2021). An alternative application for reuse of leaching residues: Determination of adsorption behaviour for methylene blue and process optimization. Sustainable Chemistry and Pharmacy, 23, 100504.
  • Chang, M. Y., & Juang, R. S. (2004). Adsorption of tannic acid, humic acid, and dyes from water using the composite of chitosan and activated clay. Journal of colloid and interface science, 278(1), 18-25.
  • Do, T. H., Dung, N. Q., Chu, M. N., Van Kiet, D., Ngan, T. T. K., & Van Tan, L. (2021). Study on methylene blue adsorption of activated carbon made from Moringa oleifera leaf. Materials Today: Proceedings, 38, 3405-3413.
  • Doğan, M., Alkan, M., & Onganer, Y. (2000). Adsorption of methylene blue from aqueous solution onto perlite. Water, Air, and Soil Pollution, 120, 229-248.
  • Eltaweil, A. S., Elgarhy, G. S., El-Subruiti, G. M., & Omer, A. M. (2020). Carboxymethyl cellulose/carboxylated graphene oxide composite microbeads for efficient adsorption of cationic methylene blue dye. International journal of biological macromolecules, 154, 307-318.
  • Hameed, B. H., Din, A. M., & Ahmad, A. L. (2007). Adsorption of methylene blue onto bamboo-based activated carbon: kinetics and equilibrium studies. Journal of hazardous materials, 141(3), 819-825.
  • Han, X., Niu, X., & Ma, X. (2012). Adsorption characteristics of methylene blue on poplar leaf in batch mode: Equilibrium, kinetics and thermodynamics. Korean Journal of Chemical Engineering, 29, 494-502.
  • He, F., Ma, B., Wang, C., Chen, Y., & Hu, X. (2023). Adsorption of Pb (II) and Cd (II) hydrates via inexpensive limonitic laterite: Adsorption characteristics and mechanisms. Separation and Purification Technology, 310, 123234.
  • Kalam, S., Abu-Khamsin, S. A., Kamal, M. S., & Patil, S. (2021). Surfactant adsorption isotherms: A review. ACS omega, 6(48), 32342-32348.
  • Khan, T. A., & Nazir, M. (2015). Enhanced adsorptive removal of a model acid dye bromothymol blue from aqueous solution using magnetic chitosan‐bamboo sawdust composite: Batch and column studies. Environmental Progress & Sustainable Energy, 34(5), 1444-1454.
  • Kumar, K. V., Ramamurthi, V., & Sivanesan, S. (2005). Modeling the mechanism involved during the sorption of methylene blue onto fly ash. Journal of colloid and interface science, 284(1), 14-21.
  • Ma, B., Wang, C., Yang, W., Yang, B., & Zhang, Y. (2013). Selective pressure leaching of Fe (II)-rich limonitic laterite ores from Indonesia using nitric acid. Minerals Engineering, 45, 151-158.
  • Maiti, A., Basu, J. K., & De, S. (2012). Experimental and kinetic modeling of As (V) and As (III) adsorption on treated laterite using synthetic and contaminated groundwater: Effects of phosphate, silicate and carbonate ions. Chemical Engineering Journal, 191, 1-12.
  • Munir, M., Nazar, M. F., Zafar, M. N., Zubair, M., Ashfaq, M., Hosseini-Bandegharaei, A., Khan, S., Ahmad, A. (2020). Effective adsorptive removal of methylene blue from water by didodecyldimethylammonium bromide-modified Brown clay. ACS omega, 5(27), 16711-16721.
  • Noorimotlagh, Z., Soltani, R. D. C., Khataee, A. R., Shahriyar, S., & Nourmoradi, H. (2014). Adsorption of a textile dye in aqueous phase using mesoporous activated carbon prepared from Iranian milk vetch. Journal of the Taiwan Institute of Chemical Engineers, 45(4), 1783-1791.
  • Nwodika, C., & Onukwuli, D. O. (2017). Adsorption study of kinetics and equilibrium of basic dye on kola nut pod carbon. Gazi University Journal of Science, 30(4), 86-102.
  • Patil, A. K., & Shrivastava, V. S. (2010). Alternanthera bettzichiana plant powder as low cost adsorbent for removal of Congo red from aqueous solution. International Journal of ChemTech Research, 2(2), 842-850.
  • Rafatullah, M., Sulaiman, O., Hashim, R., & Ahmad, A. (2010). Adsorption of methylene blue on low-cost adsorbents: a review. Journal of hazardous materials, 177(1-3), 70-80.
  • Rehman, M. S. U., Kim, I., & Han, J. I. (2012). Adsorption of methylene blue dye from aqueous solution by sugar extracted spent rice biomass. Carbohydrate polymers, 90(3), 1314-1322.
  • Sen, T. K. (2012). Agricultural by-product biomass for removal of pollutants from aqueous solution by adsorption. Journal of Environmental Research and Development, 6(3), 523-533.
  • Tara, N., Siddiqui, S. I., Rathi, G., Chaudhry, S. A., & Asiri, A. M. (2020). Nano-engineered adsorbent for the removal of dyes from water: A review. Current Analytical Chemistry, 16(1), 14-40.
  • Tran, T. H., Le, A. H., Pham, T. H., Nguyen, D. T., Chang, S. W., Chung, W. J., & Nguyen, D. D. (2020). Adsorption isotherms and kinetic modeling of methylene blue dye onto a carbonaceous hydrochar adsorbent derived from coffee husk waste. Science of the Total Environment, 725, 138325.
  • Wang, S., Boyjoo, Y., & Choueib, A. (2005). A comparative study of dye removal using fly ash treated by different methods. Chemosphere, 60(10), 1401-1407.
  • Yagub, M. T., Sen, T. K., Afroze, S., & Ang, H. M. (2014). Dye and its removal from aqueous solution by adsorption: a review. Advances in colloid and interface science, 209, 172-184.
  • Yildiz, S., & Sevinç, S. (2018). Heavy metal adsorption by dewatered iron-containing waste sludge. Ecological Chemistry and Engineering S, 25(3), 431-456.
There are 30 citations in total.

Details

Primary Language Turkish
Subjects Materials Engineering (Other)
Journal Section Articles
Authors

Feray Bayça 0000-0003-4013-8576

Publication Date January 31, 2024
Submission Date October 12, 2023
Acceptance Date November 28, 2023
Published in Issue Year 2024 Volume: 16 Issue: 1

Cite

APA Bayça, F. (2024). Metilen Mavisi Boyar Maddesinin Sulu Çözeltilerden Doğal Limonitik Laterit ile Uzaklaştırılması. International Journal of Engineering Research and Development, 16(1), 141-149. https://doi.org/10.29137/umagd.1372506

All Rights Reserved. Kırıkkale University, Faculty of Engineering and Natural Science.