Loading [a11y]/accessibility-menu.js
Research Article
BibTex RIS Cite

Çam Ahşapların Birleştirilmesinde Kullanılabilecek Epoksi Yapıştırıcılarına Ait Bazı Fiziksel ve Mekanik Özelliklerin Belirlenmesi

Year 2024, Volume: 16 Issue: 2, 791 - 797, 30.06.2024
https://doi.org/10.29137/umagd.1441394

Abstract

Ahşap yapılarda; duvar, döşeme ve çatı gibi yapı elemanları, uygun büyüklükteki ahşap parçalarının birleştirilmesiyle oluşturulmaktadır. Yapı elemanlarının birleşim bölgelerindeki bağlantılarının mukavemeti; yapıştırıcıların adezyon kuvvetine, neme karşı dayanım direncine ve yük aktarımına bağlıdır. Epoksi yapıştırıcılar, yapı elemanlarının birleşim bölgelerine, güçlü ve hızlı bir şekilde nüfuz etmesi, kısa kürlenme süresi ve korozyona karşı dayanımı nedeniyle, inşaat sektöründe yapı malzemelerinin birleştirilmesinde önem kazanmıştır. Ahşapların karakteristik özellikleri, türlerine göre farklı davranışlar gösterdiğinden, ahşapların birleştirilmesinde kullanılacak yapıştırıcıların, bağlantı bölgelerindeki davranışlarının incelenmesi gerekmektedir. Bu çalışmada, çam ahşapların birleştirilmesinde kullanılabilecek epoksi yapıştırıcılarına ait bazı fiziksel ve mekanik özelliklerin belirlenmesi amaçlanmıştır. Çam ahşapların birleştirilmesi için açılan delik, epoksi reçine ile doldurularak örnekler hazırlanmış, bu örneklere; su emme, görünür yoğunluk, açık gözeneklilik ve basınç testleri uygulanmıştır. Bu testler, epoksi reçine doldurulmamış çam ahşaplar üzerinde de uygulanarak epoksi yapıştırıcıların, ahşapların birleşim bölgesindeki fiziksel ve mekanik özelliklerine olan etkileri incelenmiştir. Deney sonuçlarına göre, çam ahşapların birleştirilmesinde kullanılabilecek epoksi yapıştırıcıların, ahşapların su emme oranında % 36 azalma ve mekanik direncinde % 4 artış belirlenmiştir. Çam ahşapların birleştirilmesinde, epoksi yapıştırıcıların neme karşı dayanımı ve uygulanan yüzeyin yük taşıma gücünü arttırması sayesinde, ahşaptan yapılan yapı elemanlarının çevresel koşullara bağlı oluşabilecek zararların azaltılmasını sağlamak için kullanılabileceği sonucuna varılmıştır.

References

  • ASTM-D695-10. (2010). Standard Test Method for Compressive Properties of Polymer Matrix Composite Materials. American Society for Testing and Materials. West Conshohocken, PA.
  • Broughton, J. G., & Hutchinson, A. R. (2001). Effect of timber moisture content on bonded-in rods. Construction and building materials, 15(1), 17-25.
  • Carroll, C. T., Leichti, R. J., & Clauson, M. (2010). Wood materials, nails, and sheathing connections from early 20th century residential buildings. Journal of Materials in Civil Engineering, 22(11), 1122-1128.
  • Custódio, J., Broughton, J., & Cruz, H. (2009). A review of factors influencing the durability of structural bonded timber joints. International Journal of Adhesion and Adhesives, 29(2), 173-185.
  • Çalışkan, Ö., Meriç, E., & Yüncüler, M. (2019). Ahşap ve ahşap yapıların dünü, bugünü ve yarını. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 6(1), 109-118.
  • Davis, T. J., & Claisse, P. A. (2001). Resin-injected dowel joints in glulam and structural timber composites. Construction and Building Materials, 15(4), 157-167.
  • Frihart, C. R. (2009). Adhesive groups and how they relate to the durability of bonded wood. Journal of Adhesion Science and Technology, 23(4), 601-617.
  • Gindl, W., & Gupta, H. (2002). Cell-wall hardness and Young's modulus of melamine-modified spruce wood by nano-indentation. Composites Part A: Applied Science and Manufacturing, 33(8), 1141-1145.
  • Guan, Z., Komatsu, K., Jung, K., & Kitamori, A. (2010). Structural characteristics of beam-column connections using compressed wood dowels and plates. In: WCTE 2010–World Conference on Timber Engineering, Trentino, Italy.
  • Jung, K., Kitamori, A., & Komatsu, K. (2008). Evaluation on structural performance of compressed wood as shear dowel. Holzforschung, 62(4), 461–467.
  • Liu, W., Zheng, Y., Hu, X., Han, X., & Chen, Y. (2019). Interfacial bonding enhancement on the epoxy adhesive joint between engineered bamboo and steel substrates with resin pre-coating surface treatment. Wood science and technology, 53, 785-799.
  • Nakata, K., Sugimoto, H., Inoue, M., & Kawai, S. (1997). Development of compressed wood fasteners for timber construction I (in Japanese). Mokuzai Gakkaishi, 43, 38–45.
  • Nishiuchi, M., & Mori, T. (2003). High-performance bamboo nail (in Japanese). Summ Tech Pap Annu Meet Archit Inst Jpn, 9, 43–44.
  • Raftery, G. M., Harte, A. M., & Rodd, P. D. (2009). Bonding of FRP materials to wood using thin epoxy gluelines. International Journal of Adhesion and Adhesives, 29(5), 580-588.
  • Sousa, J. M., Correia, J. R., & Cabral-Fonseca, S. (2018). Durability of an epoxy adhesive used in civil structural applications. Construction and Building Materials, 161, 618-633.
  • Stoeckel, F., Konnerth, J., & Gindl-Altmutter, W. (2013). Mechanical properties of adhesives for bonding wood—A review. International Journal of Adhesion and Adhesives, 45, 32-41.
  • Tannert, T., Vallée, T., & Hehl, S. (2012). Experimental and numerical investigations on adhesively bonded timber joints. Wood science and technology, 46, 579-590.
  • TS-155. (1978). Çiviler. Türk standartları enstitüsü, Ankara.
  • TS-EN-1936. (2010). Doğal Taşlar-Deney Metotları, Gerçek Yoğunluk, Görünür Yoğunluk, Toplam ve Açık Gözeneklilik. TSE, Ankara, 1-12.
  • Wheeler, A. S., & Hutchinson, A. (1998). Resin repairs to timber structures. International Journal of Adhesion and Adhesives, 18(1), 1-13.
  • Zhou, K., Li, A., Xie, L., Wang, C.-C., Wang, P., & Wang, X. (2020). Mechanism and effect of alkoxysilanes on the restoration of decayed wood used in historic buildings. Journal of Cultural Heritage, 43, 64-72.

Determination of Some Physical and Mechanical Properties of Epoxy Adhesives That Can Be Used in Joining Pine Woods

Year 2024, Volume: 16 Issue: 2, 791 - 797, 30.06.2024
https://doi.org/10.29137/umagd.1441394

Abstract

In wooden structures; building elements such as walls, floors and roofs are formed by combining wooden pieces of fit size. The strength of connections in the connection areas of structural elements; it depends on adhesion strength of adhesives, their resistance to moisture and load transfer. Epoxy adhesives have gained importance in joining building materials in the construction industry due to their strong and rapid penetration into the joints of building elements, short curing time and resistance to corrosion. Since the characteristics of woods show different behaviors depending on their types, behavior of adhesives to be used in joining woods in connection areas should be examined. In this study, it was aimed to determine some physical and mechanical properties of epoxy adhesives that can be used in joining pine woods. Samples were prepared by filling hole opened for joining pine woods with epoxy resin. These samples included; water absorption, apparent density, open porosity and compression tests were applied. These tests were also applied on pine woods that weren’t filled with epoxy resin, and effects of epoxy adhesives on the physical and mechanical properties of woods in the joint area were examined. According to the test results, it was determined that epoxy adhesives used in joining pine woods decreased water absorption rate of woods 36% and increased its mechanical resistance 4%. It has been concluded that in joining pine woods, epoxy adhesives can be used to reduce damages that may occur due to environmental conditions of structural elements made of woods, thanks to its resistance to moisture and increasing load-bearing power of applied surface.

References

  • ASTM-D695-10. (2010). Standard Test Method for Compressive Properties of Polymer Matrix Composite Materials. American Society for Testing and Materials. West Conshohocken, PA.
  • Broughton, J. G., & Hutchinson, A. R. (2001). Effect of timber moisture content on bonded-in rods. Construction and building materials, 15(1), 17-25.
  • Carroll, C. T., Leichti, R. J., & Clauson, M. (2010). Wood materials, nails, and sheathing connections from early 20th century residential buildings. Journal of Materials in Civil Engineering, 22(11), 1122-1128.
  • Custódio, J., Broughton, J., & Cruz, H. (2009). A review of factors influencing the durability of structural bonded timber joints. International Journal of Adhesion and Adhesives, 29(2), 173-185.
  • Çalışkan, Ö., Meriç, E., & Yüncüler, M. (2019). Ahşap ve ahşap yapıların dünü, bugünü ve yarını. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 6(1), 109-118.
  • Davis, T. J., & Claisse, P. A. (2001). Resin-injected dowel joints in glulam and structural timber composites. Construction and Building Materials, 15(4), 157-167.
  • Frihart, C. R. (2009). Adhesive groups and how they relate to the durability of bonded wood. Journal of Adhesion Science and Technology, 23(4), 601-617.
  • Gindl, W., & Gupta, H. (2002). Cell-wall hardness and Young's modulus of melamine-modified spruce wood by nano-indentation. Composites Part A: Applied Science and Manufacturing, 33(8), 1141-1145.
  • Guan, Z., Komatsu, K., Jung, K., & Kitamori, A. (2010). Structural characteristics of beam-column connections using compressed wood dowels and plates. In: WCTE 2010–World Conference on Timber Engineering, Trentino, Italy.
  • Jung, K., Kitamori, A., & Komatsu, K. (2008). Evaluation on structural performance of compressed wood as shear dowel. Holzforschung, 62(4), 461–467.
  • Liu, W., Zheng, Y., Hu, X., Han, X., & Chen, Y. (2019). Interfacial bonding enhancement on the epoxy adhesive joint between engineered bamboo and steel substrates with resin pre-coating surface treatment. Wood science and technology, 53, 785-799.
  • Nakata, K., Sugimoto, H., Inoue, M., & Kawai, S. (1997). Development of compressed wood fasteners for timber construction I (in Japanese). Mokuzai Gakkaishi, 43, 38–45.
  • Nishiuchi, M., & Mori, T. (2003). High-performance bamboo nail (in Japanese). Summ Tech Pap Annu Meet Archit Inst Jpn, 9, 43–44.
  • Raftery, G. M., Harte, A. M., & Rodd, P. D. (2009). Bonding of FRP materials to wood using thin epoxy gluelines. International Journal of Adhesion and Adhesives, 29(5), 580-588.
  • Sousa, J. M., Correia, J. R., & Cabral-Fonseca, S. (2018). Durability of an epoxy adhesive used in civil structural applications. Construction and Building Materials, 161, 618-633.
  • Stoeckel, F., Konnerth, J., & Gindl-Altmutter, W. (2013). Mechanical properties of adhesives for bonding wood—A review. International Journal of Adhesion and Adhesives, 45, 32-41.
  • Tannert, T., Vallée, T., & Hehl, S. (2012). Experimental and numerical investigations on adhesively bonded timber joints. Wood science and technology, 46, 579-590.
  • TS-155. (1978). Çiviler. Türk standartları enstitüsü, Ankara.
  • TS-EN-1936. (2010). Doğal Taşlar-Deney Metotları, Gerçek Yoğunluk, Görünür Yoğunluk, Toplam ve Açık Gözeneklilik. TSE, Ankara, 1-12.
  • Wheeler, A. S., & Hutchinson, A. (1998). Resin repairs to timber structures. International Journal of Adhesion and Adhesives, 18(1), 1-13.
  • Zhou, K., Li, A., Xie, L., Wang, C.-C., Wang, P., & Wang, X. (2020). Mechanism and effect of alkoxysilanes on the restoration of decayed wood used in historic buildings. Journal of Cultural Heritage, 43, 64-72.
There are 21 citations in total.

Details

Primary Language Turkish
Subjects Architectural Engineering, Construction Materials
Journal Section Articles
Authors

Ahmet Cihat Arı 0000-0002-4690-8968

Early Pub Date June 30, 2024
Publication Date June 30, 2024
Submission Date February 22, 2024
Acceptance Date May 20, 2024
Published in Issue Year 2024 Volume: 16 Issue: 2

Cite

APA Arı, A. C. (2024). Çam Ahşapların Birleştirilmesinde Kullanılabilecek Epoksi Yapıştırıcılarına Ait Bazı Fiziksel ve Mekanik Özelliklerin Belirlenmesi. International Journal of Engineering Research and Development, 16(2), 791-797. https://doi.org/10.29137/umagd.1441394

All Rights Reserved. Kırıkkale University, Faculty of Engineering and Natural Science.