Synchrophasor Estimation Based on Quadrature Amplitude Modulation Using Artificial Ecosystem Optimization
Year 2025,
Volume: 17 Issue: 3, 509 - 524, 30.11.2025
Alperen Sengül
,
Çağrı Altıntaşı
Abstract
The necessity of controlling and observing the grid's power quality and detecting possible faults has arisen due to the generation diversity and increasing loads which causes demand and supply gaps. Synchrophasor measurements are performed to detect these problems and monitor the system's stability. For this purpose, the Quadrature Amplitude Modulation (QAM) method is proposed for synchrophasor measurement in this study. First, the frequency value of the power signal is estimated using the Artificial Ecosystem algorithm (AEO). This estimated value is assigned as the reference value for the QAM method, and the power signal is decomposed into negative and positive parts at this frequency value. These components are then filtered using a moving average filter, which is a low-pass filter that eliminates high-frequency components to obtain components with the frequency estimated by the AEO. Consequently, the necessary frequency component's amplitude and phase information are acquired. The effectiveness of this suggested approach is examined for the IEEE Std. C37.118.1 standard's M and P classes. According to the obtained results, the proposed method performs phasor estimation below the error levels specified in IEEE Std. C37.118.1.
References
-
Begovic, M. M., Djuric, P. M., Dunlap, S., & Phadke, A. G. (1993). Frequency tracking in power networks in the presence of harmonics. IEEE Transactions on Power Delivery, 8(2), 480-486.
-
Belega, D., & Dallet, D. (2009). Multifrequency signal analysis by interpolated DFT method with maximum sidelobe decay windows. Measurement, 42(3), 420-426.
-
Belega, D., & Petri, D. (2013). Accuracy analysis of the multicycle synchrophasor estimator provided by the interpolated DFT algorithm. IEEE Transactions on Instrumentation and Measurement, 62(5), 942-953.
-
Belega, D., Fontanelli, D., & Petri, D. (2015). Low-complexity least-squares dynamic synchrophasor estimation based on the discrete Fourier transform. IEEE Transactions on instrumentation and Measurement, 64(12), 3284-3296.
-
Belega, D., Fontanelli, D., & Petri, D. (2015). Dynamic phasor and frequency measurements by an improved Taylor weighted least squares algorithm. IEEE Transactions on Instrumentation and Measurement, 64(8), 2165-2178.
-
Benmouyal, G., Schweitzer, E. O., & Guzman, A., Synchronized phasor measurement in protective relays for protection, control, and analysis of electric power systems, 57th Annual Conference for Protective Relay Engineers, 2004, USA, 2004, pp. 419-450.
-
Das, S., & Sidhu, T. (2013). A simple synchrophasor estimation algorithm considering IEEE standard C37. 118.1-2011 and protection requirements. IEEE Transactions on Instrumentation and Measurement, 62(10), 2704-2715.
-
De la O Serna, J. A. (2007). Dynamic phasor estimates for power system oscillations. IEEE Transactions on Instrumentation and Measurement, 56(5), 1648-1657.
-
De la O Serna, J. A., & Rodriguez-Maldonado, J. (2011). Instantaneous Oscillating Phasor Estimates With Taylor $^ K $-Kalman Filters. IEEE Transactions on Power Systems, 26(4), 2336-2344.
-
De la O Serna, J. A. (2014). Synchrophasor measurement with polynomial phase-locked-loop Taylor–Fourier filters. IEEE Transactions on Instrumentation and Measurement, 64(2), 328-337.
-
De Sa, J. P., & Pedro, L. (1991). Modal Kalman filtering based impedance relaying. IEEE transactions on power delivery, 6(1), 78-84.
-
Derviškadić, A., Romano, P., & Paolone, M. (2017). Iterative-interpolated DFT for synchrophasor estimation: A single algorithm for P-and M-class compliant PMUs. IEEE Transactions on Instrumentation and Measurement, 67(3), 547-558.
-
Drummond, Z. D., Claytor, K. E., Allee, D. R., & Hull, D. M. (2020). An optimized subspace-based approach to synchrophasor estimation. IEEE Transactions on Instrumentation and Measurement, 70, 1-13.
-
Ferrero, R., Pegoraro, P. A., & Toscani, S. (2016). Dynamic fundamental and harmonic synchrophasor estimation by Extended Kalman filter. In 2016 IEEE International Workshop on Applied Measurements for Power Systems (AMPS) (pp. 1-6).
-
Fu, L., Yu, L., Xiong, S., He, Z., Mai, R., & Li, X. (2021). A dynamic synchrophasor estimation algorithm considering out-of-band interference. IEEE Transactions on Power Delivery, 37(2), 1193-1202.
-
Gökoğlu, A. (2019) Dördün genlik modülasyonu kullanarak senkrofazör ölçüm yöntemi (Master's thesis, Gazi Üniversitesi, Fen Bilimleri Enstitüsü).
-
Gurusinghe, D. R., Rajapakse, A. D., & Narendra, K. (2012, October). Evaluation of steady-state and dynamic performance of a synchronized phasor measurement unit. In 2012 IEEE Electrical Power and Energy Conference (pp. 57-62). IEEE.
-
Ipek, M. A. M. (2008) Elektrik güç sistemlerinde geniş alan ölçüm sistemi ve fazör ölçüm birimlerinin yerleştirilmesinin incelenmesi (Doctoral dissertation, Istanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü).
-
Jin, T., & Zhang, W. (2020). A novel interpolated DFT synchrophasor estimation algorithm with an optimized combined cosine selfconvolution window. IEEE Transactions on Instrumentation and Measurement, 70, 1-10.
-
Liu, J., Ni, F., Pegoraro, P. A., Ponci, F., Monti, A., & Muscas, C. (2012, September). Fundamental and harmonic synchrophasors estimation using modified Taylor-Kalman filter. In 2012 IEEE International Workshop on Applied Measurements for Power Systems (AMPS) Proceedings (pp. 1-6).
-
Macii, D., Petri, D., & Zorat, A. (2012). Accuracy analysis and enhancement of DFT-based synchrophasor estimators in off-nominal conditions. IEEE transactions on Instrumentation and Measurement, 61(10), 2653-2664.
-
Moore, P. J., Carranza, R. D., & Johns, A. T. (1996). Model system tests on a new numeric method of power system frequency measurement. IEEE Transactions on Power Delivery, 11(2), 696-701.
-
Orallo, C. M., Carugati, I., Maestri, S., Donato, P. G., Carrica, D., & Benedetti, M. (2013). Harmonics measurement with a modulated sliding discrete Fourier transform algorithm. IEEE Transactions on Instrumentation and Measurement, 63(4), 781-793.
-
Premerlani, W., Kasztenny, B., & Adamiak, M. (2007). Development and implementation of a synchrophasor estimator capable of measurements under dynamic conditions. IEEE Transactions on Power Delivery, 23(1), 109-123.
-
Ren, J., & Kezunovic, M. (2011). Real-time power system frequency and phasors estimation using recursive wavelet transform. IEEE Transactions on Power Delivery, 26(3), 1392-1402.
-
Robbins, H.A, (2012). Circuit Analysis: Theory and Practice (5th ed.). Cengage Learning. p. 536. ISBN 978-1-285-40192-8.
-
Romano, P., & Paolone, M. (2014). Enhanced interpolated-DFT for synchrophasor estimation in FPGAs: Theory, implementation, and validation of a PMU prototype. IEEE Transactions on instrumentation and measurement, 63(12), 2824-2836.
-
Schweitzer, E. O., Whitehead, D., Zweigle, G., & Ravikumar, K. G. (2010, March). Synchrophasor-based power system protection and control applications. In 2010 63rd Annual Conference for Protective Relay Engineers (pp. 1-10).
-
Shan, X., Macii, D., Petri, D., & Wen, H. (2023). Enhanced ipd2ft-based synchrophasor estimation for m class pmus through adaptive narrowband interferers detection and compensation. IEEE Transactions on Instrumentation and Measurement, 73, 1-14.
-
Song, J., Zhang, J., Kuang, H., & Wen, H. (2022). Dynamic Synchrophasor Estimation Based on Weighted Real-Valued Sinc Interpolation Method. IEEE Sensors Journal, 23(1), 588-598.
-
Wood, H. C., Johnson, N. G., & Sachdev, M. S. (1985). Kalman filtering applied to power system measurements relaying. IEEE Transactions on Power Apparatus and Systems, (12), 3565-3573.
-
Zamora-Mendez, A., Paternina, M. R. A., Vázquez, E., Ramirez, J. M., & de Serna, J. A. L. O. (2015). Distance relays based on the Taylor–Kalman-Fourier filter. IEEE Transactions on Power Delivery, 31(3), 928-935.
-
Zhan, L., Liu, Y., & Liu, Y. (2016). A Clarke transformation-based DFT phasor and frequency algorithm for wide frequency range. IEEE Transactions on Smart Grid, 9(1), 67-77.
-
Zhang, P., Chen, J., & Shao, M. (2007). Phasor measurement unit (PMU) implementation and applications. Electr. Power Res. Inst. EPRI, Rep. Final 2007.
-
Zhao, W., Wang, L., & Zhang, Z. (2020). Artificial ecosystem-based optimization: a novel nature-inspired meta-heuristic algorithm. Neural Computing and Applications, 32(13), 9383-9425.