Research Article
BibTex RIS Cite

Structure–Mechanical Property Correlation in Ba(C2H3O2)2 added Bi-2212 Ceramics: Identifying Optimal Doping via Semi-Empirical Hardness Modeling

Year 2025, Volume: 17 Issue: 3, 577 - 589, 30.11.2025
https://doi.org/10.29137/ijerad.1764808

Abstract

This comprehensive study investigates the effect of barium acetate (Ba(C2H3O2)2) impurity ion addition, in the range of 0.00–0.12 mole-to-mole ratios, on the key mechanical performance, characteristics and true mechanical microhardness (Hv) in the plateau limit (PL) areas of bulk Bi2.1Sr2.0Ca1.1Cu2.0Oᵧ+(Ba(C2H3O2)2)x ceramic structures, using microhardness measurement tests under applied loads intervals 0.295 N to 2.940 N. A suite of semi-empirical mechanical modeling approaches, including elastic/plastic deformation (EPD), Meyer’s Law (ML), modified proportional sample resistance (MPSR), proportional sample resistance (PSR), and Hays–Kendall (HK) mechanical approaches is employed to evaluate changes in mechanical performance within the PL regions. The results show that the incorporation of Ba(C2H3O2)2 impurity ion addition progressively degrades intrinsic slip systems and mechanical durability. As a result, undoped Bi-2212 ceramic structure exhibits the lowest sensitivity to external loads, while the most heavily doped composition displays the highest susceptibility to applied loads. All Bi2.1Sr2.0Ca1.1Cu2.0Oᵧ+(Ba(C2H3O2)2)x ceramic structures ceramics exhibit the characteristic indentation size effect (ISE) performance. Among the mechanical investigation models examined, the HK approach yields hardness values in the plateau regions that most closely match the experimentally measured Hv parameters, confirming its superiority and reliability for the mechanical characterization of Bi-2212 systems containing barium acetate impurity ions.

References

  • Abdelhaleem, S., Alziyadi, M. O., Alruwaili, A., Alawi, M. J., Alkabsh, A., & Shalaby, M. S. (2025). BSCCO high Tc-superconductor materials: Strategies toward critical current density enhancement and future opportunities. Applied Physics A, 131(2), 151.
  • Askeland, D. R., Fulay, P. P., & Wright, W. J. (2010). The science and engineering of materials. Cengage Learning.
  • Callister, W. D., Jr., & Rethwisch, D. G. (2010). Materials science and engineering: An introduction. Wiley.
  • Chang, J., Yang, F., Zhang, S., Cao, H., Zhang, Y., Liu, G., Liu, J., Li, C., Li, J., & Zhang, P. (2025). Effects of La doping on the structure and superconducting properties of Bi-2212. Journal of Materials Science: Materials in Electronics, 36, 817.
  • Chattopadhyay, R. (2001). Surface wear: Analysis, treatment, and prevention. ASM International.
  • Dogruer, M., Motoki, T., Semba, M., Nakamura, S., & Shimoyama, J. (2024). Mechanical properties of Ag-added DyBa₂Cu₃Oy superconducting melt-textured bulks prepared by the single-direction melt growth method. Materials Today Communications, 39, 108605.
  • Elmustafa, A. A., & Stone, D. S. (2003). Nanoindentation and the indentation size effect: Kinetics of deformation and strain gradient plasticity. Journal of the Mechanics and Physics of Solids, 5, 357–381.
  • Erdem, U., Yildirim, G., Türköz, M. B., Ulgen, A. T., & Mercan, A. (2023). Change in transition balance between durable tetragonal phase and stress-induced phase of cobalt surface-layered in Bi-2212 materials by semi-empirical mechanical models. Physica Scripta, 98(7), 075702.
  • Erden, M. A., Tasliyan, M. F., & Akgul, Y. (2021). Effect of TiC, TiN, and TiCN on microstructural, mechanical and tribological properties of PM steels. Science of Sintering, 53(4), 497–508.
  • Fallah-Arani, H., Sedghi, A., Baghshahi, S., Moakhar, R. S., Riahi-Noori, N., & Nodoushan, N. J. (2022). Bi-2223 superconductor ceramics added with cubic-shaped TiO₂ nanoparticles: Structural, microstructural, magnetic, and vortex pinning studies. Journal of Alloys and Compounds, 900, 163201.
  • Fröhlich, F., Grau, P., & Grellmann, W. (1977). Performance and analysis of recording microhardness tests. physica status solidi (a), 42, 79.
  • Hannachi, E., Slimani, Y., Ekicibil, A., Manikandan, A., & Azzouz, F. B. (2019). Magneto-resistivity and magnetization investigations of YBCO superconductor added by nano-wires and nano-particles of titanium oxide. Journal of Materials Science: Materials in Electronics, 30, 8805–8813.
  • Harabor, A., Rotaru, P., Harabor, N. A., Nozar, P., & Rotaru, A. (2023). Structural, thermal and superconducting properties of Ag₂Odoped YBa₂Cu₃O₇−x composite materials. Ceramics International, 49(9), 14904–14916.
  • Hassan, M. S., Mohamed, I. E., Matar, M., Abou-Aly, A. I., Awad, R., & Anas, M. (2023). Effect of hard magnetic ferrite (Ba₀.₅Sr₀.₅Fe₁₂O₁₉) nanoparticles on the mechanical properties of the (Bi, Pb)-2223 phase. Applied Physics A, 129(5), 333.
  • Hays, C., & Kendall, E. G. (1973). An analysis of Knoop microhardness. Metallography, 6, 275–282.
  • Jeong, S. H., Song, J. B., Choi, Y. H., Kim, S. G., Go, B. S., Park, M., & Lee, H. (2016). Effect of micro-ceramic fillers in epoxy composites on thermal and electrical stabilities of GdBCO coils. Composites Part B: Engineering, 94, 190–196.
  • Kara, E., Özkurt, P., & Özkurt, B. (2022). Effects of different dwell-times under low pelletization pressure on the physical properties of the Bi-2212 ceramics. Journal of Materials Science: Materials in Electronics, 33(18), 14951–14960.
  • Khalil, S. M. (2001). Enhancement of superconducting and mechanical properties in BSCCO with Pb additions. Journal of Physics and Chemistry of Solids, 62, 457–466.
  • Ling, H. C., & Yan, M. F. (1988). Microhardness measurements on dopant-modified superconducting YBa₂Cu₃O₇ ceramics. Journal of Applied Physics, 64, 1307.
  • Michels, B. D., & Frischat, G. H. (1982). Microhardness of chalcogenide glasses of the system Se–Ge–As. Journal of Materials Science, 17, 329–334.
  • Mohammed, N. H., Abou-Aly, A. I., Ibrahim, I. H., Awad, R., & Rekaby, M. (2009). Mechanical properties of (Cu₀.₅Tl₀.₅)-1223 added by nano-SnO₂. Journal of Alloys and Compounds, 486, 733–737.
  • Müller, P., Ustinov, A. V., & Schmidt, V. V. (1997). The physics of superconductors: Introduction to fundamentals and applications. Springer.
  • Plakida, N. (2010). High temperature cuprate superconductors. Springer.
  • Saxena, A. K. (2012). High-temperature superconductors (Vol. 125). Springer Science & Business Media.
  • Sheahen, T. P. (2002). Introduction to high-temperature superconductivity (1st ed.). Kluwer Academic Publishers.
  • Slimani, Y., Almessiere, M. A., Hannachi, E., Baykal, A., Manikandan, A., Mumtaz, M., & Azzouz, F. B. (2019). Influence of WO₃ nanowires on structural, morphological and flux pinning ability of YBa₂Cu₃Oy superconductor. Ceramics International, 45(2), 2621–2628.
  • Smith, W. F. (2001). Principles of materials science and engineering. McGraw-Hill.
  • Takayama-Muromachi, E. (1998). High-pressure synthesis of homologous series of high critical temperature (Tc) superconductors. Chemistry of Materials, 10(10), 2686–2698.
  • Tancret, F., Monot, I., & Osterstock, F. (2001). Toughness and thermal shock resistance of YBa₂Cu₃O₇−x composite superconductors containing Y₂BaCuO₅ or Ag particles. Materials Science and Engineering: A, 298, 268–283.
  • Tarkanian, M. L., Neumann, J. P., & Raymond, L. (1973). The science of hardness testing and its research application. American Society for Metals.
  • Turkoz, M. B., Zalaoglu, Y., Turgay, T., Ozturk, O., & Yildirim, G. (2019). Effect of homovalent Bi/Ga substitution on propagations of flaws, dislocations and crack in Bi-2212 superconducting ceramics: Evaluation of new operable slip systems with substitution. Ceramics International, 45, 22912–22919.
  • Ulgen, A. T., Yildirim, G., & Erdem, U. (2025a). Alteration of electrical features of Bi-2212 crystal structure with barium acetate. In Proceedings of the II. International Future Engineering Conference (IFEC 2025) (pp. 480–488).
  • Ulgen, A. T., Yildirim, G., & Erdem, U. (2025b). Role of barium acetate impurity on superconducting transition properties of Bi-2212 cuprates. In Proceedings of the II. International Future Engineering Conference (IFEC 2025) (pp. 489–498).
  • Xu, A., Jiang, J., Tarantini, C., Kametani, F., Hellstrom, E., & Larbalestier, D. C. (2024). Flux pinning enhancement of Bi-2212 tapes by increasing Sr content. IEEE Transactions on Applied Superconductivity, 34(3), 1–5.
  • Zagura, P., Kim, I., Follows, F., Barker, C., Melhem, Z., Twin, A., Ball, S., Grovenor, C., Speller, S., & Mousavi, T. (2024). Development of persistent joints for superconducting Bi-2212 coils. Superconductor Science and Technology, 37, 055003.
  • Zalaoglu, Y., Akkurt, B., Oz, M., & Yildirim, G. (2017). Transgranular region preference of crack propagation along Bi-2212 crystal structure due to Au nanoparticle diffusion and modeling of new systems. Journal of Materials Science: Materials in Electronics, 28, 12839–12850.
  • Zalaoglu, Y., Turgay, T., Ulgen, A. T., Erdem, U., Turkoz, M. B., & Yildirim, G. (2020). A novel research on the subject of the loadindependent microhardness performances of Sr/Ti partial displacement in Bi-2212 ceramics. Journal of Materials Science: Materials in Electronics, 31(24), 22239–22251.
  • Zhao, X., Tian, H., Qi, Y., Lu, X., Ma, Y., Li, H., ... & Wang, T. (2024). A novel method to enhance the superconducting properties of Bi₂Sr₂CaCu₂O₈+δ superconducting thin films by self-assembly NiO nanorods. Ceramics International, 50(19), 35388–35396.
There are 38 citations in total.

Details

Primary Language English
Subjects Solid Mechanics
Journal Section Research Article
Authors

Ali Serol Ertürk 0000-0001-5352-7939

Mustafa Burak Türköz 0000-0002-4127-7650

Ümit Erdem 0000-0002-0480-8176

Gürcan Yıldırım 0000-0003-4495-3674

Early Pub Date November 23, 2025
Publication Date November 30, 2025
Submission Date August 14, 2025
Acceptance Date October 12, 2025
Published in Issue Year 2025 Volume: 17 Issue: 3

Cite

APA Ertürk, A. S., Türköz, M. B., Erdem, Ü., Yıldırım, G. (2025). Structure–Mechanical Property Correlation in Ba(C2H3O2)2 added Bi-2212 Ceramics: Identifying Optimal Doping via Semi-Empirical Hardness Modeling. International Journal of Engineering Research and Development, 17(3), 577-589. https://doi.org/10.29137/ijerad.1764808

Kırıkkale University, Faculty of Engineering and Natural Science, 71450 Yahşihan / Kırıkkale, Türkiye.

ijerad@kku.edu.tr