BibTex RIS Cite

DALGAKILAVUZU ILE BESLENEN BIR REZONATÖRDE MALZEME KONUMUNUN VE BÜYÜKLÜĞÜNÜN ANALIZI

Year 2016, Volume: 21 Issue: 1, 163 - 176, 13.05.2016

Abstract

Bir mikrodalga rezonatöründe elektrik alan dağılımını dolayısıyla ısı dağılımını etkileyen temel faktörler, rezonatörün boyutları, ısıtma frekansı, ısıtılacak malzemenin şekli ve dielektrik özellikleri, ısıtılacak malzemenin fırın içindeki konumu, besleme kılavuzunun rezonatör üzerindeki konumu şeklinde sıralanabilir. Bu çalışmada ısıtmaya direk etki eden bu faktörlerden malzeme kalınlığı incelenmiştir. Çalışmanın amacı yansıma katsayısını minimize edecek malzeme kalınlığının bulunmasıdır. Mod denkleştirme yöntemiyle bulunan sonuçların doğruluğu Ansoft HFSS ile elde edilen sonuçlarla karşılaştırılarak ispatlanmıştır.

 

References

  • REFERENCES
  • Dibben, D.C. and Metaxas, A.C. (1996) Time domain finite element analysis of multimode microwave applicators loaded with low and high loss materials, IEEE Microwave and Guided Letters, 32, 945-948.
  • Hallac A. and Metaxas A.C. (2003) Finite element time domain analysis of microwave heating applicators using higher order vector finite elements, International Conference on Microwave and High Frequency Heating, UK, 21-25.
  • Iskander, M.F., Smith, R.L., Octavio, A., Andrade, M., Kimrey, H. and Walsh, L.M. (1994) FDTD simulation of microwave sintering of ceramics in multimode cavities, IEEE Transactions on Microwave Theory and Tecniques, 42(5), 1686-1689.
  • doi: 10.1109/22.293527
  • Jia, X. (1993) Experimental and numerical study of microwave power distributions in a microwave heating applicator, Journal of Microwave Power and Elecromagnetic Energy, 28 (1), 25-31.
  • Liu, F., Turner I. and Bialkowski, M. A. (1994) A Finite difference time domain simulation of power density distribution in a dielectric loaded microwave cavity, Journal of Microwave Power and Electromagnetic Energy, 29(3), 138-148.
  • Liu, F., Turner, I., Siores, E. and Groombridge, P. (1996) A numerical and experimental investigation of the microwave heating of polymer materials inside a ridge waveguide, Journal of Microwave Power and Electromagnetic Energy, 31(2), 71-82.
  • Monzo-Cabrera, J., Diaz-Morcillo, A., Pedreno-Molina, J. L. and Sanchez-Hernandez, D. (2004) A new method for load matching in multimode-microwave heating applicators based on the use of dielectric-layer superposition, Microwave and Optıcal Technology Letters, 40(4), 318-322.
  • doi: 10.1002/mop.11367
  • Monzo-Cabrera, J., Escalante, J., Dıaz-Morcillo, A., Martınez-Gonzalez, A. and Sanchez-Hernandez, D. (2004) Load matching in multimode microwave-heating applicators based on the use of dielectric layer moulding with commercial materials, Microwave and Optical Technology Letters, 41(5), 414-417.
  • doi: 10.1002/mop.20156
  • Pedreno-Molina, J. L., Monzo-Cabrera, J. and Catala–Civera, J. M. (2006) Sample movement optimization for uniform heating in microwave heating ovens, International Journal of RF and Microwave Computer-Aided Engineering, 142-152.
  • doi: 10.1002/mmce.20208
  • Plaza-González, P., Monzó-Cabrera, J., Catalá-Civera, J. M. and Sánchez-Hernández, D. (2004) New approach for the prediction of the electric field distribution in multimode microwave-heating applicators with mode stirrers, IEEE Transactions on Magnetics, 40(3), 1672-1678. doi:10.1109/TMAG.2003.821560
  • Plaza-González, P., Monzó-Cabrera, J., Catalá-Civera, J. M., and Sánchez-Hernández, D. (2005) Effect of mode-stirrer configurations on dielectric heating performance in multimode microwave applicators, IEEE Transactions on Microwave Theory and Techniques, 53(5), 1699-1706.
  • doi:10.1109/TMTT.2005.847066
  • Reader, H.C. and Chow Ting Chan, T.V. (1998) Experimental and numerical field studies in loaded multimode and single mode cavities, Journal of Microwave Power and Elecromagnetic Energy, 33(2), 256-263.
  • Requena-Perez, M. E., Pedreno-Molina, J. L., Pinzolas-Prado, M., Monzo-Cabrera, J., Diaz-Morcillo, A. and Sanchez-Hernandez, D. (2004) Load matching in multimode microwave-heating applicators by load location optimization, 34" European Microwave Conference, Amsterdam, Holland.
  • Süle, O. and Kent, S. (2010) Analysis of microwave cavity loaded with lossy dielectric slab by means of mode matching method and optimization of load location’, PIER M, 14, 71-83. doi:10.2528/PIERM10061707
  • Sunberg, M., Risman, P.O., Kildal, P.S. and Ohlsson, T. (1996) Analysis and design of industrial microwave ovens using the finite difference time domain method, Journal of Microwave Power and Elecromagnetic Energy, 31(3), 142-157.
  • Terril, N. D. (1998) Field simulation for the microwave heating of thin ceramic fibers. MSc. thesis, State University.
  • Zhao, H. and Turner, I.W. (1996) An analysis of the finite difference time domain method for modelling the microwave heating of dielectric materials within a three dimensional cavity system, Journal of Microwave Power and Electromagnetic Energy, 31(4), 199-214.

Analysis of Material Position and Size in a Waveguide Fed Resonator

Year 2016, Volume: 21 Issue: 1, 163 - 176, 13.05.2016

Abstract

The main factors that affect electric field distribution, and therefore heat distribution, are the dimensions of the resonator, heating frequency, shape and dielectric properties of the material to be heated, position of the material to be heated within the resonator and the position of the feed guide on the resonator. From among these factors that directly affect heating, this work examined the material thickness. The purpose of this study was to determine the material thickness that will minimise the reflection coefficient. The accuracy of the results obtained by means of the mode matching method was demonstrated by comparing those results with the results obtained through Ansoft’s High Frequency Structure Simulator.

 

 

References

  • REFERENCES
  • Dibben, D.C. and Metaxas, A.C. (1996) Time domain finite element analysis of multimode microwave applicators loaded with low and high loss materials, IEEE Microwave and Guided Letters, 32, 945-948.
  • Hallac A. and Metaxas A.C. (2003) Finite element time domain analysis of microwave heating applicators using higher order vector finite elements, International Conference on Microwave and High Frequency Heating, UK, 21-25.
  • Iskander, M.F., Smith, R.L., Octavio, A., Andrade, M., Kimrey, H. and Walsh, L.M. (1994) FDTD simulation of microwave sintering of ceramics in multimode cavities, IEEE Transactions on Microwave Theory and Tecniques, 42(5), 1686-1689.
  • doi: 10.1109/22.293527
  • Jia, X. (1993) Experimental and numerical study of microwave power distributions in a microwave heating applicator, Journal of Microwave Power and Elecromagnetic Energy, 28 (1), 25-31.
  • Liu, F., Turner I. and Bialkowski, M. A. (1994) A Finite difference time domain simulation of power density distribution in a dielectric loaded microwave cavity, Journal of Microwave Power and Electromagnetic Energy, 29(3), 138-148.
  • Liu, F., Turner, I., Siores, E. and Groombridge, P. (1996) A numerical and experimental investigation of the microwave heating of polymer materials inside a ridge waveguide, Journal of Microwave Power and Electromagnetic Energy, 31(2), 71-82.
  • Monzo-Cabrera, J., Diaz-Morcillo, A., Pedreno-Molina, J. L. and Sanchez-Hernandez, D. (2004) A new method for load matching in multimode-microwave heating applicators based on the use of dielectric-layer superposition, Microwave and Optıcal Technology Letters, 40(4), 318-322.
  • doi: 10.1002/mop.11367
  • Monzo-Cabrera, J., Escalante, J., Dıaz-Morcillo, A., Martınez-Gonzalez, A. and Sanchez-Hernandez, D. (2004) Load matching in multimode microwave-heating applicators based on the use of dielectric layer moulding with commercial materials, Microwave and Optical Technology Letters, 41(5), 414-417.
  • doi: 10.1002/mop.20156
  • Pedreno-Molina, J. L., Monzo-Cabrera, J. and Catala–Civera, J. M. (2006) Sample movement optimization for uniform heating in microwave heating ovens, International Journal of RF and Microwave Computer-Aided Engineering, 142-152.
  • doi: 10.1002/mmce.20208
  • Plaza-González, P., Monzó-Cabrera, J., Catalá-Civera, J. M. and Sánchez-Hernández, D. (2004) New approach for the prediction of the electric field distribution in multimode microwave-heating applicators with mode stirrers, IEEE Transactions on Magnetics, 40(3), 1672-1678. doi:10.1109/TMAG.2003.821560
  • Plaza-González, P., Monzó-Cabrera, J., Catalá-Civera, J. M., and Sánchez-Hernández, D. (2005) Effect of mode-stirrer configurations on dielectric heating performance in multimode microwave applicators, IEEE Transactions on Microwave Theory and Techniques, 53(5), 1699-1706.
  • doi:10.1109/TMTT.2005.847066
  • Reader, H.C. and Chow Ting Chan, T.V. (1998) Experimental and numerical field studies in loaded multimode and single mode cavities, Journal of Microwave Power and Elecromagnetic Energy, 33(2), 256-263.
  • Requena-Perez, M. E., Pedreno-Molina, J. L., Pinzolas-Prado, M., Monzo-Cabrera, J., Diaz-Morcillo, A. and Sanchez-Hernandez, D. (2004) Load matching in multimode microwave-heating applicators by load location optimization, 34" European Microwave Conference, Amsterdam, Holland.
  • Süle, O. and Kent, S. (2010) Analysis of microwave cavity loaded with lossy dielectric slab by means of mode matching method and optimization of load location’, PIER M, 14, 71-83. doi:10.2528/PIERM10061707
  • Sunberg, M., Risman, P.O., Kildal, P.S. and Ohlsson, T. (1996) Analysis and design of industrial microwave ovens using the finite difference time domain method, Journal of Microwave Power and Elecromagnetic Energy, 31(3), 142-157.
  • Terril, N. D. (1998) Field simulation for the microwave heating of thin ceramic fibers. MSc. thesis, State University.
  • Zhao, H. and Turner, I.W. (1996) An analysis of the finite difference time domain method for modelling the microwave heating of dielectric materials within a three dimensional cavity system, Journal of Microwave Power and Electromagnetic Energy, 31(4), 199-214.
There are 23 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Okan Süle

Sedef Kent

Publication Date May 13, 2016
Submission Date July 2, 2015
Published in Issue Year 2016 Volume: 21 Issue: 1

Cite

APA Süle, O., & Kent, S. (2016). Analysis of Material Position and Size in a Waveguide Fed Resonator. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 21(1), 163-176. https://doi.org/10.17482/uujfe.67205
AMA Süle O, Kent S. Analysis of Material Position and Size in a Waveguide Fed Resonator. UUJFE. April 2016;21(1):163-176. doi:10.17482/uujfe.67205
Chicago Süle, Okan, and Sedef Kent. “Analysis of Material Position and Size in a Waveguide Fed Resonator”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 21, no. 1 (April 2016): 163-76. https://doi.org/10.17482/uujfe.67205.
EndNote Süle O, Kent S (April 1, 2016) Analysis of Material Position and Size in a Waveguide Fed Resonator. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 21 1 163–176.
IEEE O. Süle and S. Kent, “Analysis of Material Position and Size in a Waveguide Fed Resonator”, UUJFE, vol. 21, no. 1, pp. 163–176, 2016, doi: 10.17482/uujfe.67205.
ISNAD Süle, Okan - Kent, Sedef. “Analysis of Material Position and Size in a Waveguide Fed Resonator”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 21/1 (April 2016), 163-176. https://doi.org/10.17482/uujfe.67205.
JAMA Süle O, Kent S. Analysis of Material Position and Size in a Waveguide Fed Resonator. UUJFE. 2016;21:163–176.
MLA Süle, Okan and Sedef Kent. “Analysis of Material Position and Size in a Waveguide Fed Resonator”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 21, no. 1, 2016, pp. 163-76, doi:10.17482/uujfe.67205.
Vancouver Süle O, Kent S. Analysis of Material Position and Size in a Waveguide Fed Resonator. UUJFE. 2016;21(1):163-76.

Announcements:

30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.