Araştırma Makalesi
BibTex RIS Kaynak Göster

SERBEST VE RİJİT BAŞLI AÇIK DENİZ TEKİL KAZIK TEMELLERİNİN TEKRARLI YATAY YÜKLER ETKİSİ ALTINDAKİ DAVRANIŞI

Yıl 2017, Cilt: 22 Sayı: 1, 219 - 234, 08.05.2017
https://doi.org/10.17482/uumfd.310966

Öz

Açık deniz tekil kazık temelleri rüzgar ve dalga kaynaklı
ağır tekrarlı yatay yüklere maruz kalmaktadır. Bu yükler nedeniyle kalıcı zemin
deplasmanları ve suya doygun zeminde aşırı boşluk suyu basıncı birikimi
gerçekleşebilmektedir. Çalışmada serbest ve rijit başlı tekil kazık
temellerinin tekrarlı yatay yükler altındaki davranışı sonlu elemanlar yöntemi
ile zeminde aşırı boşluk suyu basıncı gelişimi ve deplasman birikimi dikkate
alınarak incelenmiştir. Üç boyutlu sonlu elemanlar analizlerinde, zeminde aşırı
boşluk suyu basıncı gelişiminin belirlenmesi amacıyla iki fazlı modele dayanan
üç boyutlu elemanlar geliştirilmiştir. Böylelikle kazığın çevresindeki zeminde
boşluk suyu basıncı gelişiminin elde edilmesi mümkün olmuştur. Kumlu zemin,
tekrarlı yükler altındaki davranışının modellenmesine uygun olan bir
hipoplastik malzeme modeli ile tanımlanmıştır. Nümerik analizlerde özellikle
kazık, suya doygun zemin ve boşluk suyu basıncı etkileşimi üzerine
odaklanmıştır. Analiz sonuçları, tekrarlı yatay yük etkisindeki serbest ve
rijit başlı kazıkların deplasmanlarının
tahmininde, suya doygun
zeminde aşırı boşluk suyu basıncı gelişimini dikkate almayan mevcut modellerin
yetersiz kaldığı göstermiştir.

Kaynakça

  • Achmus, M., Kuo, Y.-S. and Abdel-Rahman, K. (2009) Behavior of monopile foundations under cyclic lateral load, Computers and Geotechnics, 36, 725–735. DOI: doi.org/10.1016/j.compgeo.2008.12.003
  • API (2014) American Petroleum Institute, Recommended Practice 2A-WSD Planning, Designing, and Constructing Fixed Offshore Platforms - Working Stress Design.
  • Ashour, M. and Norris, G. (2000) Modeling lateral soil-pile response based on soil-pile interaction, Journal of Geotechnical and Geoenvironmental Engineering, 126(5), 420–428. DOI: dx.doi.org/10.1061/(ASCE)1090-0241(2000)126:5(420)
  • Bathe, K.-J. (1996) Finite element procedures, New Jersey: Prentice Hall.
  • Bauer, E. (1996) Calibration of a comprehensive hypoplastic model for granular materials, Soils and Foundations, 36(1), 13–26, 1996. DOI: doi.org/10.3208/sandf.36.13
  • Byrne, B.W., McAdam, R., Burd, H.J., Houlsby, G.T., Martin, C.M., Zdravković, L., Taborda, D.M.G., Potts, D.M., Jardine, R.J., Sideri, M., Schroeder, F.C., Gavin, K., Doherty, P., Igoe, D., Muir Wood, A., Kallehave, D. and Skov Gretlund, J. (2015) New design methods for large diameter piles under lateral loading for offshore wind applications, Proceedings of the Third International Symposium of Frontiers in Offshore Geotechnics (ISFOG2015), Norway.
  • Carswell, W., Fontana, C., Arwade, S.R., DeGroot, D.J. and Myers, A.T. (2015) Comparison of cyclic p-y methods for offshore wind turbine monopiles subjected to extreme storm loading, Proceedings of the ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering (OMAE 2015), Volume 9: Ocean Renewable Energy, Canada. DOI: 10.1115/OMAE2015-41312
  • Cox, W.R., Reese, L.C. and Grubbs, B.R. (1974) Field testing of laterally loaded piles in sand, Proceedings of the Sixth Offshore Technology Conference, OTC 2079, Houston, 459–472. DOI: doi.org/10.4043/2079-MS
  • Cuéllar, P. (2011) Pile Foundations for Offshore Wind Turbines: Numerical and Experimental Investigations on the Behaviour under Short-Term and Long-Term Cyclic Loading, Doctoral Thesis, TU Berlin. DOI: dx.doi.org/10.14279/depositonce-2760
  • Cuéllar, P., Mira, P., Pastor, M., Merodo, J.A.F.M., Baeßler, M. and Rücker, W. (2014) A numerical model for the transient analysis of offshore foundations under cyclic loading, Computers and Geotechnics, 59(6), 75–86. DOI:10.1016/j.compgeo.2014.02.005
  • DNV (2014) Det Norske Veritas, Offshore Standard DNV–OS–J101, Design for Offshore Wind Turbine Structures.
  • Dührkop, J. (2009) Zum Einfluss von Aufweitungen und zyklischen Lasten auf das Verformungsverhalten lateral beanspruchter Pfähle in Sand, Veröffentlichungen des Institutes für Geotechnik und Baubetrieb der Technischen Universität Hamburg-Harburg, Heft 20.
  • Heidari, M., El Naggar, H., Jahanandish, M. and Ghahramani, A. (2014) Generalized cyclic p y curve modeling for analysis of laterally loaded pile, Soil Dynamics and Earthquake Engineering, 63, 138–49. DOI: 10.1016/j.soildyn.2014.04.001
  • Herle, I. (1997) Hypoplastizität und Granulometrie einfacher Korngerüste, Veröffentlichung des Institutes für Bodenmechanik und Felsmechanik der Universität Fridericana in Karlsruhe, Heft 142.
  • Jamiolkowski, M. and Garassino, A. (1977), Soil modulus for laterally loaded piles, Proceedings of the 9th International Conference of Soil Mechanics and Foundation Engineering, Tokyo, 43–58.
  • Kolymbas, D. (1988) Eine konstitutive Theorie für Böden und andere körnige Stoffe, Veröffentlichung des Institutes für Bodenmechanik und Felsmechanik der Universität Fridericana in Karlsruhe, Heft 109.
  • Martin, G.R., Lam, I. and Tsai, C.-F. (1980) Pore-pressure dissipation during offshore cyclic loading, Journal of the Geotechnical Engineering Division, 106(9), 981–996.
  • Masud, A. and Hughes, T.J.R (2002) A stabilized mixed finite element method for Darcy flow, Computer Methods in Applied Mechanics and Engineering, 191, 4341–4370. DOI: doi.org/10.1016/S0045-7825(02)00371-7
  • Niemunis, A. and Herle, I. (1997) Hypoplastic model for cohesionless soils with elastic strain range, Mechanics of Cohesion-Fractional Materials, 2(4), 279–299. DOI: 10.1002/(SICI)1099-1484(199710)2:4<279::AID-CFM29>3.0.CO;2-8
  • Pastor, M., Li, T. and Merodo, J.A.F. (1997) Stabilized finite elements for harmonic soil dynamics problems near the undrained-incompressible limit, Soil Dynamics and Earthquake Engineering, 16, 161–171. DOI: doi.org/10.1016/S0267-7261(97)00046-8
  • Potts, D.M. and Zdravković, L. (1999) Finite element analysis in geotechnical engineering - theory. London: Thomas Telford.
  • Rackwitz, F., Savidis, S. and Taşan, H.E. (2012) New design approach for large diameter offshore monopiles based on physical and numerical modelling, In: Hryciw, R.D., Athanasopoulos-Zekkos, A. and Yesiller, N. (eds.): Geotechnical Special Publication GSP No. 225 Geo-Congress 2012, State of the Art and Practice in Geotechnical Engineering, Proc. GeoCongress 2012, March 25-29, Oakland, CA, ASCE, 356–365. ISBN: 978-0-7844-1212-1
  • Reese, L.C., Cox, W.R. and Koop, F.D. (1974) Analysis of Laterally Loaded Piles in Sand, Proceedings of the Sixth Offshore Technology Conference, OTC 2080, Houston, 2, 473–483. DOI: doi.org/10.4043/2080-MS.
  • Rondón, H.A., Wichtmann, T., Triantafyllidis, Th. and Lizcano, A. (2007) Hypoplastic material constants for a well-graded granular material (UGM) for base and subbase layers of flexible pavements, Acta Geotechnica, 1(2), 113–126. DOI: 10.1007/s11440-007-0030-3
  • Tașan, H.E., Rackwitz, F. and Savidis, S. (2010) Behaviour of cyclic laterally loaded large diameter monopiles in saturated sand, Proceedings of the 7th European Conference on Numerical Methods in Geotechnical Engineering, NUMGE, Trondheim, Norway, 889–894.
  • Tașan, H.E. (2012) Prognose der Verschiebungen von zyklisch lateral belasteten Monopiles in geschichteten Böden, Bauingenieur, 87(6), 297–305.
  • Von Wolffersdorff, P.-A. (1996) A hypoplastic relation for granular materials with a predefined limit state surface, Mechanics of Cohesive-Frictional Materials, 1(3), 251–271. DOI: 10.1002/(SICI)1099-1484(199607)1:3<251::AID-CFM13>3.0.CO;2-3
  • Zienkiewicz, O.C., Chang, C.T. and Bettes, P. (1980) Drained, undrained, consolidating dynamic behaviour assumptions in soils. Géotechnique, 30(4), 385–395. DOI: 10.1680/geot.1980.30.4.385
  • Zienkiewicz, O.C. and Shiomi, T. (1984) Dynamic behaviour of saturated porous media; the generalized Biot formulation and its numerical solution, International Journal of Numerical Analytical Methods in Geomechanics, 8(1), 71–96. DOI: 10.1002/nag.1610080106
  • Zienkiewicz, O.C. (1986) The patch test for mixed formulations, International Journal for Numerical Methods in Engineering, 23(10), 1873–1883. DOI: 10.1002/nme.1620231007

Behaviour of Free and Fixed-Head Offshore Piles Under Cyclic Lateral Loads

Yıl 2017, Cilt: 22 Sayı: 1, 219 - 234, 08.05.2017
https://doi.org/10.17482/uumfd.310966

Öz

Offshore
piles are subjected to cyclic lateral loads due to environmental loads, such as
wind and waves. These loads can lead to an accumulation of permanent soil
deformations and excess pore water pressures in saturated soils. Finite element
analyses are performed to investigate the behaviour of cyclic laterally loaded free-head
and fixed piles embedded in sandy saturated soil while considering such
accumulation effects. A three-dimensional fully coupled two-phase finite
element is developed and implemented on the basis of a two-phase model to
consider the pore water pressure development in saturated soil. In addition, a
hypoplastic constitutive model is used to describe the material behaviour of
sandy soil under cyclic loading. In the numerical analyses, special attention
is dedicated to interactions between the pile, the saturated soil and the pore
water. The results have shown that the pile displacements caused by cyclic
lateral loads are significantly underestimated for both pile head conditions by
approaches which do not take into account the impact of the pore water pressure
development in saturated sandy soil of the pile response.

Kaynakça

  • Achmus, M., Kuo, Y.-S. and Abdel-Rahman, K. (2009) Behavior of monopile foundations under cyclic lateral load, Computers and Geotechnics, 36, 725–735. DOI: doi.org/10.1016/j.compgeo.2008.12.003
  • API (2014) American Petroleum Institute, Recommended Practice 2A-WSD Planning, Designing, and Constructing Fixed Offshore Platforms - Working Stress Design.
  • Ashour, M. and Norris, G. (2000) Modeling lateral soil-pile response based on soil-pile interaction, Journal of Geotechnical and Geoenvironmental Engineering, 126(5), 420–428. DOI: dx.doi.org/10.1061/(ASCE)1090-0241(2000)126:5(420)
  • Bathe, K.-J. (1996) Finite element procedures, New Jersey: Prentice Hall.
  • Bauer, E. (1996) Calibration of a comprehensive hypoplastic model for granular materials, Soils and Foundations, 36(1), 13–26, 1996. DOI: doi.org/10.3208/sandf.36.13
  • Byrne, B.W., McAdam, R., Burd, H.J., Houlsby, G.T., Martin, C.M., Zdravković, L., Taborda, D.M.G., Potts, D.M., Jardine, R.J., Sideri, M., Schroeder, F.C., Gavin, K., Doherty, P., Igoe, D., Muir Wood, A., Kallehave, D. and Skov Gretlund, J. (2015) New design methods for large diameter piles under lateral loading for offshore wind applications, Proceedings of the Third International Symposium of Frontiers in Offshore Geotechnics (ISFOG2015), Norway.
  • Carswell, W., Fontana, C., Arwade, S.R., DeGroot, D.J. and Myers, A.T. (2015) Comparison of cyclic p-y methods for offshore wind turbine monopiles subjected to extreme storm loading, Proceedings of the ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering (OMAE 2015), Volume 9: Ocean Renewable Energy, Canada. DOI: 10.1115/OMAE2015-41312
  • Cox, W.R., Reese, L.C. and Grubbs, B.R. (1974) Field testing of laterally loaded piles in sand, Proceedings of the Sixth Offshore Technology Conference, OTC 2079, Houston, 459–472. DOI: doi.org/10.4043/2079-MS
  • Cuéllar, P. (2011) Pile Foundations for Offshore Wind Turbines: Numerical and Experimental Investigations on the Behaviour under Short-Term and Long-Term Cyclic Loading, Doctoral Thesis, TU Berlin. DOI: dx.doi.org/10.14279/depositonce-2760
  • Cuéllar, P., Mira, P., Pastor, M., Merodo, J.A.F.M., Baeßler, M. and Rücker, W. (2014) A numerical model for the transient analysis of offshore foundations under cyclic loading, Computers and Geotechnics, 59(6), 75–86. DOI:10.1016/j.compgeo.2014.02.005
  • DNV (2014) Det Norske Veritas, Offshore Standard DNV–OS–J101, Design for Offshore Wind Turbine Structures.
  • Dührkop, J. (2009) Zum Einfluss von Aufweitungen und zyklischen Lasten auf das Verformungsverhalten lateral beanspruchter Pfähle in Sand, Veröffentlichungen des Institutes für Geotechnik und Baubetrieb der Technischen Universität Hamburg-Harburg, Heft 20.
  • Heidari, M., El Naggar, H., Jahanandish, M. and Ghahramani, A. (2014) Generalized cyclic p y curve modeling for analysis of laterally loaded pile, Soil Dynamics and Earthquake Engineering, 63, 138–49. DOI: 10.1016/j.soildyn.2014.04.001
  • Herle, I. (1997) Hypoplastizität und Granulometrie einfacher Korngerüste, Veröffentlichung des Institutes für Bodenmechanik und Felsmechanik der Universität Fridericana in Karlsruhe, Heft 142.
  • Jamiolkowski, M. and Garassino, A. (1977), Soil modulus for laterally loaded piles, Proceedings of the 9th International Conference of Soil Mechanics and Foundation Engineering, Tokyo, 43–58.
  • Kolymbas, D. (1988) Eine konstitutive Theorie für Böden und andere körnige Stoffe, Veröffentlichung des Institutes für Bodenmechanik und Felsmechanik der Universität Fridericana in Karlsruhe, Heft 109.
  • Martin, G.R., Lam, I. and Tsai, C.-F. (1980) Pore-pressure dissipation during offshore cyclic loading, Journal of the Geotechnical Engineering Division, 106(9), 981–996.
  • Masud, A. and Hughes, T.J.R (2002) A stabilized mixed finite element method for Darcy flow, Computer Methods in Applied Mechanics and Engineering, 191, 4341–4370. DOI: doi.org/10.1016/S0045-7825(02)00371-7
  • Niemunis, A. and Herle, I. (1997) Hypoplastic model for cohesionless soils with elastic strain range, Mechanics of Cohesion-Fractional Materials, 2(4), 279–299. DOI: 10.1002/(SICI)1099-1484(199710)2:4<279::AID-CFM29>3.0.CO;2-8
  • Pastor, M., Li, T. and Merodo, J.A.F. (1997) Stabilized finite elements for harmonic soil dynamics problems near the undrained-incompressible limit, Soil Dynamics and Earthquake Engineering, 16, 161–171. DOI: doi.org/10.1016/S0267-7261(97)00046-8
  • Potts, D.M. and Zdravković, L. (1999) Finite element analysis in geotechnical engineering - theory. London: Thomas Telford.
  • Rackwitz, F., Savidis, S. and Taşan, H.E. (2012) New design approach for large diameter offshore monopiles based on physical and numerical modelling, In: Hryciw, R.D., Athanasopoulos-Zekkos, A. and Yesiller, N. (eds.): Geotechnical Special Publication GSP No. 225 Geo-Congress 2012, State of the Art and Practice in Geotechnical Engineering, Proc. GeoCongress 2012, March 25-29, Oakland, CA, ASCE, 356–365. ISBN: 978-0-7844-1212-1
  • Reese, L.C., Cox, W.R. and Koop, F.D. (1974) Analysis of Laterally Loaded Piles in Sand, Proceedings of the Sixth Offshore Technology Conference, OTC 2080, Houston, 2, 473–483. DOI: doi.org/10.4043/2080-MS.
  • Rondón, H.A., Wichtmann, T., Triantafyllidis, Th. and Lizcano, A. (2007) Hypoplastic material constants for a well-graded granular material (UGM) for base and subbase layers of flexible pavements, Acta Geotechnica, 1(2), 113–126. DOI: 10.1007/s11440-007-0030-3
  • Tașan, H.E., Rackwitz, F. and Savidis, S. (2010) Behaviour of cyclic laterally loaded large diameter monopiles in saturated sand, Proceedings of the 7th European Conference on Numerical Methods in Geotechnical Engineering, NUMGE, Trondheim, Norway, 889–894.
  • Tașan, H.E. (2012) Prognose der Verschiebungen von zyklisch lateral belasteten Monopiles in geschichteten Böden, Bauingenieur, 87(6), 297–305.
  • Von Wolffersdorff, P.-A. (1996) A hypoplastic relation for granular materials with a predefined limit state surface, Mechanics of Cohesive-Frictional Materials, 1(3), 251–271. DOI: 10.1002/(SICI)1099-1484(199607)1:3<251::AID-CFM13>3.0.CO;2-3
  • Zienkiewicz, O.C., Chang, C.T. and Bettes, P. (1980) Drained, undrained, consolidating dynamic behaviour assumptions in soils. Géotechnique, 30(4), 385–395. DOI: 10.1680/geot.1980.30.4.385
  • Zienkiewicz, O.C. and Shiomi, T. (1984) Dynamic behaviour of saturated porous media; the generalized Biot formulation and its numerical solution, International Journal of Numerical Analytical Methods in Geomechanics, 8(1), 71–96. DOI: 10.1002/nag.1610080106
  • Zienkiewicz, O.C. (1986) The patch test for mixed formulations, International Journal for Numerical Methods in Engineering, 23(10), 1873–1883. DOI: 10.1002/nme.1620231007
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Konular Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

H. Ercan Taşan Bu kişi benim

Yayımlanma Tarihi 8 Mayıs 2017
Gönderilme Tarihi 14 Haziran 2016
Kabul Tarihi 28 Nisan 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 22 Sayı: 1

Kaynak Göster

APA Taşan, H. E. (2017). SERBEST VE RİJİT BAŞLI AÇIK DENİZ TEKİL KAZIK TEMELLERİNİN TEKRARLI YATAY YÜKLER ETKİSİ ALTINDAKİ DAVRANIŞI. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 22(1), 219-234. https://doi.org/10.17482/uumfd.310966
AMA Taşan HE. SERBEST VE RİJİT BAŞLI AÇIK DENİZ TEKİL KAZIK TEMELLERİNİN TEKRARLI YATAY YÜKLER ETKİSİ ALTINDAKİ DAVRANIŞI. UUJFE. Nisan 2017;22(1):219-234. doi:10.17482/uumfd.310966
Chicago Taşan, H. Ercan. “SERBEST VE RİJİT BAŞLI AÇIK DENİZ TEKİL KAZIK TEMELLERİNİN TEKRARLI YATAY YÜKLER ETKİSİ ALTINDAKİ DAVRANIŞI”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 22, sy. 1 (Nisan 2017): 219-34. https://doi.org/10.17482/uumfd.310966.
EndNote Taşan HE (01 Nisan 2017) SERBEST VE RİJİT BAŞLI AÇIK DENİZ TEKİL KAZIK TEMELLERİNİN TEKRARLI YATAY YÜKLER ETKİSİ ALTINDAKİ DAVRANIŞI. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 22 1 219–234.
IEEE H. E. Taşan, “SERBEST VE RİJİT BAŞLI AÇIK DENİZ TEKİL KAZIK TEMELLERİNİN TEKRARLI YATAY YÜKLER ETKİSİ ALTINDAKİ DAVRANIŞI”, UUJFE, c. 22, sy. 1, ss. 219–234, 2017, doi: 10.17482/uumfd.310966.
ISNAD Taşan, H. Ercan. “SERBEST VE RİJİT BAŞLI AÇIK DENİZ TEKİL KAZIK TEMELLERİNİN TEKRARLI YATAY YÜKLER ETKİSİ ALTINDAKİ DAVRANIŞI”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 22/1 (Nisan 2017), 219-234. https://doi.org/10.17482/uumfd.310966.
JAMA Taşan HE. SERBEST VE RİJİT BAŞLI AÇIK DENİZ TEKİL KAZIK TEMELLERİNİN TEKRARLI YATAY YÜKLER ETKİSİ ALTINDAKİ DAVRANIŞI. UUJFE. 2017;22:219–234.
MLA Taşan, H. Ercan. “SERBEST VE RİJİT BAŞLI AÇIK DENİZ TEKİL KAZIK TEMELLERİNİN TEKRARLI YATAY YÜKLER ETKİSİ ALTINDAKİ DAVRANIŞI”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 22, sy. 1, 2017, ss. 219-34, doi:10.17482/uumfd.310966.
Vancouver Taşan HE. SERBEST VE RİJİT BAŞLI AÇIK DENİZ TEKİL KAZIK TEMELLERİNİN TEKRARLI YATAY YÜKLER ETKİSİ ALTINDAKİ DAVRANIŞI. UUJFE. 2017;22(1):219-34.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr