Research Article
BibTex RIS Cite

FAZ TESPİTİNE DAYALI YÜZEY PLAZMON RESONANS TABANLI ALGILAMANIN KIZILÖTESİ BANTTA ANALİZİ

Year 2018, Volume: 23 Issue: 3, 117 - 132, 31.12.2018
https://doi.org/10.17482/uumfd.408901

Abstract

Yüzey Plazmon Rezonansı (YPR) tabanlı algılamada
geleneksel olarak kullanılan ışık şiddeti tespiti yerine faz tespitine dayanan
bir yöntemin kullanılmasının önemli avantajları vardır. Bununla beraber ışık spektrumunun
görünür aralığının yerine silikon kullanımıyla kızılötesi aralığında YPR tabanlı
algılama yapılması da bazı umut verici avantajlara sahiptir. Bu çalışmada, faz
algılamaya dayalı SPR algılamanın kızılötesi aralıkta ışık kullanımıyla
birleştirilmesinin yaratacağı performans artışları matematiksel bir model ve
sayısal benzetim yöntemleri kullanılarak incelenmiştir. Elde edilen sonuçlar,
görünür banttaki benzetimlerden elde edilen sonuçlarla karşılaştırılmış ve
kızılötesi bantta faz ölçümü tabanlı yaklaşımın daha yüksek performans verdiği
gösterilmiştir.

References

  • A. V. Kabashin, P. I. Nikitin, “Interferometer based on a surface-plasmon resonance for sensor applications,” Quan. Elec. 27, 653-654 (1997). doi: 10.1070/QE1997v027n07ABEH001013.
  • A. V. Kabashin, P. I. Nikitin, “Surface plasmon resonance interferometer for bio- and chemical-sensors,” Opt. Commun. 150, 5-8 (1998). doi: 10.1016/S0030-4018(97)00726-8.
  • B. Liedberg, C. Nylander, and I. Lundstrom, “Surface plasmons resonance for gas detection and biosensing,” Sens. Actuators 4, 299-304 (1983). doi: 10.1016/0250-6874(83)85036-7.
  • B. Ran and S. G. Lipson, “Comparison between sensitivities of phase and intensity detection in surface plasmon resonance,” Opt. Express 14, 5641-5650 (2006). doi: 10.1364/OE.14.005641.
  • C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmons resonance,” Sens. Actuators 3, 79-88 (1982). doi: 10.1016/0250-6874(82)80008-5.
  • C. Wu and M. Pao, “Sensitivity-tunable optical sensors based on surface plasmon resonance and phase detection,” Opt. Express 12, 3509-3514 (2004). doi: 10.1364/OPEX.12.003509.
  • D. R. Lide eds. “Handbook of Chemistry and Pyhsics,” 72nd Ed., CRC Press, 1991-1992.
  • E. Hecht, Optics, 2nd ed. Addison-Wesley, 1987.
  • E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. 23A, 2135-2136 (1968). doi: 10.1515/zna-1968-1247.
  • H. H. Nguyen, J. Park, S. Kang, and M. Kim, “Surface plasmon resonance: a versatile technique for biosensor applications”, Sensors (Basel) 15, (10481–10510) 2015. doi: 10.3390/s150510481.
  • H. N. Daghestani and B. W. Day, “Theory and Applications of Surface Plasmon Resonance, Resonant Mirror, Resonant Waveguide Grating, and Dual Polarization Interferometry Biosensors”, Sensors (Basel, Switzerland). 2010; 10(11):9630-9646. doi: 10.3390/s101109630.
  • H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).
  • J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377, 528-539 (2003). doi. 10.1007/s00216-003-2101-0.
  • J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensors and Actuators B 54, 3-15 (1999). doi: 10.1016/S0925-4005(98)00321-9.
  • J. W. Cleary, G. Medhi, R. E. Peale, and W. R. Buchwald, “Long-wave infrared surface plasmon grating coupler,” Appl. Opt. 49, 3102-3110 (2010). doi: 10.1364/AO.49.003102.
  • J. W. Cleary, G. Medhi, R. E. Peale, W. R. Buchwald, O. Edwards, and I. Oladeji, “Infrared surface plasmon resonance biosensor,” Proc. SPIE 767306 (2010). doi: 10.1117/12.852576.
  • J. W. Cleary, R. E. Peale, D. J. Shelton, G. D. Boreman, C. W. Smith, M. Ishigami, R. Soref, A. Drehman, and W.R. Buchwald, “IR permittivities for silicides and doped silicon,” J. Opt. Soc. Am. B27, 730-734, (2010). doi: 10.1364/JOSAB.27.000730.
  • M. M. B. Vidal, R. Lopez, S. Aleggret, J. AlonsoChamarro, I. Garces, J. Mateo, “Determination of probable alcohol yield in musts by means of an SPR optical sensor,” Sens. Actuators B 11, 455-459 (1993). doi: 10.1016/0925-4005(93)85287-K.
  • Optical Properties of Silicon, Virginia Semiconductor, Inc. www.virginiasemi.com.
  • R. Soref, R. E. Peale and W. Buchwald, “Longwave plasmonics on doped silicon and silicides,” Opt. Express 16, 6507-6514 (2008). doi: 10.1364/OE.16.006507.
  • S. Patskovsky, A. V. Kabashin, M. Meunier, and J. H. T. Luong, “Near-infrared surface plasmon resonance sensing on a silicon platform,” Sens. Actuators B 97, 409-414 (2004). doi: 10.1016/j.snb.2003.09.023.
  • S. Patskovsky, A. V. Kabashin, M. Meunier, and J. H. T. Luong, “Properties and sensing characteristics of surface-plasmon resonance in infrared light,” J. Opt. Soc. Am. A 20, 1644-1650 (2003). doi: 10.1364/JOSAA.20.001644.
  • S. Patskovsky, A. V. Kabashin, M. Meunier, and J. H. T. Luong, “Silicon-based surface plasmon resonance sensing with two surface plasmon polariton modes,” Appl. Opt. 42, 6905-6909 (2003). doi: 10.1364/AO.42.006905.
  • S. Y. Wu, H. P. Ho, W. C. Law, L. Chinlon, and S. K. Kong, “Highly sensitive differential phase-sensitive surface plasmon resonance biosensor based on the MachZehnder configuration,” Opt. Lett. 29, 2378-2380 (2004). doi: 10.1364/OL.29.002378.
  • V. E. Kochergin, A. A. Beloglazov, M. V. Valeiko, P. I. Nikitin, “Phase properties of a surface-plasmon resonance from the viewpoint of sensor applications,” Quan. Elec. 28, 444-448 (1998). doi: 10.1070/QE1998v028n05ABEH001245.
  • V. Lirtsman, M. Golosovsky, and D. Davidov, “Infrared surface plasmon resonance technique for biological studies”, Journal of Applied Physics 103, 014702 (2008). doi: 10.1063/1.2828162.
  • Y. Tang, X. Zeng, and J. Liang, “Surface Plasmon Resonance: An Introduction to a Surface Spectroscopy Technique”, Journal of chemical education. 2010; 87(7):742-746. doi: 10.1021/ed100186y.

Analysis of Surface Plasmon Resonance Sensing Based on Phase-Detection in the Infrared Range

Year 2018, Volume: 23 Issue: 3, 117 - 132, 31.12.2018
https://doi.org/10.17482/uumfd.408901

Abstract

Using phase detection in Surface Plasmon Resonance (SPR) sensing
has potential improvements to the conventional intensity detection based SPR. Other
than the phase detection and intensity detection based SPR in the visible range
of the spectrum, employing SPR sensing principles in the infrared range by the
use of silicon has also some promising advantages. Combining these two, in this
paper, phase detection-based SPR sensing in the infrared range is studied using
a mathematical model and numerical simulations. The results are compared with
the results obtained by the simulations in the visible range. Performance
improvements are noted by the use phase detection in the infrared range.

References

  • A. V. Kabashin, P. I. Nikitin, “Interferometer based on a surface-plasmon resonance for sensor applications,” Quan. Elec. 27, 653-654 (1997). doi: 10.1070/QE1997v027n07ABEH001013.
  • A. V. Kabashin, P. I. Nikitin, “Surface plasmon resonance interferometer for bio- and chemical-sensors,” Opt. Commun. 150, 5-8 (1998). doi: 10.1016/S0030-4018(97)00726-8.
  • B. Liedberg, C. Nylander, and I. Lundstrom, “Surface plasmons resonance for gas detection and biosensing,” Sens. Actuators 4, 299-304 (1983). doi: 10.1016/0250-6874(83)85036-7.
  • B. Ran and S. G. Lipson, “Comparison between sensitivities of phase and intensity detection in surface plasmon resonance,” Opt. Express 14, 5641-5650 (2006). doi: 10.1364/OE.14.005641.
  • C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmons resonance,” Sens. Actuators 3, 79-88 (1982). doi: 10.1016/0250-6874(82)80008-5.
  • C. Wu and M. Pao, “Sensitivity-tunable optical sensors based on surface plasmon resonance and phase detection,” Opt. Express 12, 3509-3514 (2004). doi: 10.1364/OPEX.12.003509.
  • D. R. Lide eds. “Handbook of Chemistry and Pyhsics,” 72nd Ed., CRC Press, 1991-1992.
  • E. Hecht, Optics, 2nd ed. Addison-Wesley, 1987.
  • E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. 23A, 2135-2136 (1968). doi: 10.1515/zna-1968-1247.
  • H. H. Nguyen, J. Park, S. Kang, and M. Kim, “Surface plasmon resonance: a versatile technique for biosensor applications”, Sensors (Basel) 15, (10481–10510) 2015. doi: 10.3390/s150510481.
  • H. N. Daghestani and B. W. Day, “Theory and Applications of Surface Plasmon Resonance, Resonant Mirror, Resonant Waveguide Grating, and Dual Polarization Interferometry Biosensors”, Sensors (Basel, Switzerland). 2010; 10(11):9630-9646. doi: 10.3390/s101109630.
  • H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).
  • J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377, 528-539 (2003). doi. 10.1007/s00216-003-2101-0.
  • J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensors and Actuators B 54, 3-15 (1999). doi: 10.1016/S0925-4005(98)00321-9.
  • J. W. Cleary, G. Medhi, R. E. Peale, and W. R. Buchwald, “Long-wave infrared surface plasmon grating coupler,” Appl. Opt. 49, 3102-3110 (2010). doi: 10.1364/AO.49.003102.
  • J. W. Cleary, G. Medhi, R. E. Peale, W. R. Buchwald, O. Edwards, and I. Oladeji, “Infrared surface plasmon resonance biosensor,” Proc. SPIE 767306 (2010). doi: 10.1117/12.852576.
  • J. W. Cleary, R. E. Peale, D. J. Shelton, G. D. Boreman, C. W. Smith, M. Ishigami, R. Soref, A. Drehman, and W.R. Buchwald, “IR permittivities for silicides and doped silicon,” J. Opt. Soc. Am. B27, 730-734, (2010). doi: 10.1364/JOSAB.27.000730.
  • M. M. B. Vidal, R. Lopez, S. Aleggret, J. AlonsoChamarro, I. Garces, J. Mateo, “Determination of probable alcohol yield in musts by means of an SPR optical sensor,” Sens. Actuators B 11, 455-459 (1993). doi: 10.1016/0925-4005(93)85287-K.
  • Optical Properties of Silicon, Virginia Semiconductor, Inc. www.virginiasemi.com.
  • R. Soref, R. E. Peale and W. Buchwald, “Longwave plasmonics on doped silicon and silicides,” Opt. Express 16, 6507-6514 (2008). doi: 10.1364/OE.16.006507.
  • S. Patskovsky, A. V. Kabashin, M. Meunier, and J. H. T. Luong, “Near-infrared surface plasmon resonance sensing on a silicon platform,” Sens. Actuators B 97, 409-414 (2004). doi: 10.1016/j.snb.2003.09.023.
  • S. Patskovsky, A. V. Kabashin, M. Meunier, and J. H. T. Luong, “Properties and sensing characteristics of surface-plasmon resonance in infrared light,” J. Opt. Soc. Am. A 20, 1644-1650 (2003). doi: 10.1364/JOSAA.20.001644.
  • S. Patskovsky, A. V. Kabashin, M. Meunier, and J. H. T. Luong, “Silicon-based surface plasmon resonance sensing with two surface plasmon polariton modes,” Appl. Opt. 42, 6905-6909 (2003). doi: 10.1364/AO.42.006905.
  • S. Y. Wu, H. P. Ho, W. C. Law, L. Chinlon, and S. K. Kong, “Highly sensitive differential phase-sensitive surface plasmon resonance biosensor based on the MachZehnder configuration,” Opt. Lett. 29, 2378-2380 (2004). doi: 10.1364/OL.29.002378.
  • V. E. Kochergin, A. A. Beloglazov, M. V. Valeiko, P. I. Nikitin, “Phase properties of a surface-plasmon resonance from the viewpoint of sensor applications,” Quan. Elec. 28, 444-448 (1998). doi: 10.1070/QE1998v028n05ABEH001245.
  • V. Lirtsman, M. Golosovsky, and D. Davidov, “Infrared surface plasmon resonance technique for biological studies”, Journal of Applied Physics 103, 014702 (2008). doi: 10.1063/1.2828162.
  • Y. Tang, X. Zeng, and J. Liang, “Surface Plasmon Resonance: An Introduction to a Surface Spectroscopy Technique”, Journal of chemical education. 2010; 87(7):742-746. doi: 10.1021/ed100186y.
There are 27 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Aykut Koç

Publication Date December 31, 2018
Submission Date March 22, 2018
Acceptance Date October 17, 2018
Published in Issue Year 2018 Volume: 23 Issue: 3

Cite

APA Koç, A. (2018). Analysis of Surface Plasmon Resonance Sensing Based on Phase-Detection in the Infrared Range. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 23(3), 117-132. https://doi.org/10.17482/uumfd.408901
AMA Koç A. Analysis of Surface Plasmon Resonance Sensing Based on Phase-Detection in the Infrared Range. UUJFE. December 2018;23(3):117-132. doi:10.17482/uumfd.408901
Chicago Koç, Aykut. “Analysis of Surface Plasmon Resonance Sensing Based on Phase-Detection in the Infrared Range”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 23, no. 3 (December 2018): 117-32. https://doi.org/10.17482/uumfd.408901.
EndNote Koç A (December 1, 2018) Analysis of Surface Plasmon Resonance Sensing Based on Phase-Detection in the Infrared Range. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 23 3 117–132.
IEEE A. Koç, “Analysis of Surface Plasmon Resonance Sensing Based on Phase-Detection in the Infrared Range”, UUJFE, vol. 23, no. 3, pp. 117–132, 2018, doi: 10.17482/uumfd.408901.
ISNAD Koç, Aykut. “Analysis of Surface Plasmon Resonance Sensing Based on Phase-Detection in the Infrared Range”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 23/3 (December 2018), 117-132. https://doi.org/10.17482/uumfd.408901.
JAMA Koç A. Analysis of Surface Plasmon Resonance Sensing Based on Phase-Detection in the Infrared Range. UUJFE. 2018;23:117–132.
MLA Koç, Aykut. “Analysis of Surface Plasmon Resonance Sensing Based on Phase-Detection in the Infrared Range”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 23, no. 3, 2018, pp. 117-32, doi:10.17482/uumfd.408901.
Vancouver Koç A. Analysis of Surface Plasmon Resonance Sensing Based on Phase-Detection in the Infrared Range. UUJFE. 2018;23(3):117-32.

Announcements:

30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.