Aydınlatma, nesnelerin olduğu gibi görünmesini sağlayan doğal veya yapay kaynaklardır. Özellikle görüntü işleme uygulamalarında yakalanan görüntüdeki nesne bilgisinin eksiksiz ve doğru şekilde alınabilmesi için aydınlatmanın kullanılması bir gerekliliktir. Ancak aydınlatma kaynağının tür, parlaklık ve konumunun değişimi; nesnenin görüntüsü, rengi, gölgesi veya boyutunun da değişmesine ve nesnenin farklı olarak algılanmasına sebep olmaktadır. Bu sebeple görüntülerin ayırt edilmesinde güçlü bir yapay zeka tekniğinin kullanılması, sınıfların ayırt edilmesini kolaylaştıracaktır. Bir yapay zeka yöntemi olan Evrişimsel Sinir Ağları (ESA), otomatik olarak özellikleri çıkarabilen ve ağ eğitilirken öğrenme sağlandığı için bariz özellikleri kolaylıkla belirleyen bir algoritmadır. Çalışmada ALOI-COL veriseti kullanılmıştır. ALOI-COL, 12 farklı renk sıcaklığıyla elde edilmiş 1000 sınıftan oluşan bir verisetidir. ALOI-COL verisetindeki 29 sınıftan oluşan meyve görüntüleri, ESA mimarilerinden AlexNet, VGG16 ve VGG19 kullanılarak sınıflandırılmıştır. Verisetindeki görüntüler, görüntü işleme teknikleriyle zenginleştirilmiş ve her sınıftan 51 adet görüntü elde edilmiştir. Çalışma; %80-20 ve %60-40 eğitim-test olmak üzere iki yapıda incelenmiştir. 50 devir çalıştırılması sonucunda test verileri, AlexNet (%80-20) ve VGG16 (%60-40) mimarilerinde %100, VGG19 (%80-20) mimarisinde ise %86.49 doğrulukla sınıflandırılmıştır.
Aydınlatma Derin Öğrenme Mimarileri Görüntü İşleme Meyve Sınıflandırma Evrişimsel Sinir Ağları
Illumination is a natural or artificial source and it allows objects to be seen. Especially use of illumination for necessary in image processing applications for correct and complete object information captured from images. However type, brightness and position of lighting source change, it also changes the image, color, shadow or size of the object and it causes to appear differently on the object. Therefore, the use of a strong artificial intelligence technique to distinguish images will ease the differentiation of classes. Convolutional Neural Networks (CNN), an artificial intelligence method, is an algorithm that can automatically extract features and easily identify obvious features as learning is provided while training network. In the study ALOI-COL dataset used. ALOI-COL consists of 1000 classes such as food and toys obtained with 12 different color temperatures. Fruit images of 29 classes in the dataset were classified using the CNN architectures AlexNet, VGG16 and VGG19. The images in the dataset were increased with image processing techniques and 51 images of each class created. The study 80-20% and 60-40% training-test examined in two structures. As a result of 50 epochs in the test data classified accuracy as 100% by using AlexNet (80-20%) and VGG16 (60-40%) architectures and 86.49% in VGG19 (80-20%) architecture.
Illumination Deep Learning Architecture Image Processing Fruit Classification Convolutional Neural Networks
Primary Language | Turkish |
---|---|
Subjects | Artificial Intelligence |
Journal Section | Research Articles |
Authors | |
Publication Date | April 30, 2020 |
Submission Date | October 2, 2019 |
Acceptance Date | March 2, 2020 |
Published in Issue | Year 2020 Volume: 25 Issue: 1 |
Announcements:
30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.