Araştırma Makalesi
BibTex RIS Kaynak Göster

ORTA FREKANS DOĞRU AKIM DİRENÇ NOKTA KAYNAK SİSTEMLERİ İÇİN AKIM ÖLÇÜM DEVRESİ TASARIMI VE GERÇEKLENMESİ

Yıl 2021, Cilt: 26 Sayı: 2, 401 - 420, 31.08.2021
https://doi.org/10.17482/uumfd.943314

Öz

Direnç nokta kaynağı (DNK), otomotiv, beyaz eşya, mobilya ve sac işleme endüstrilerinde yaygın olarak kullanılmaktadır. Orta frekans doğru akım (OFDA) ise DNK kalitesini arttıran, yenilikçi bir yöntemdir. Bu çalışmada, OFDA-DNK sistemlerinden kaynak akım bilgisini elde edebilen bir analog integratör devre önerilmiştir. OFDA-DNK sisteminin kontrolü için ihtiyaç duyulan bu akım bilgisi, Rogowski bobininden (RB) elde edilmiştir. Kaynak transformatörünün sekonderine bağlanan RB üzerinden, kaynak akımı ile ilgili gerilim bilgisi alınmıştır. Daha sonra önerilen integratör devre yardımıyla analog sayısal dönüştürücüye veri aktarımı gerçekleştirilmiştir. Önerilen devrenin başarımı, oluşturulan OFDA-DNK sisteminde test edilmiştir. Deneysel sonuçlara göre, önerilen devrenin yaklaşık 30 kA akıma kadar gerilim dönüşümünü hatasız bir şekilde yapabildiği görülmüştür. Ayrıca, önerilen devre için, OFDA-DNK uygulamalarında analog sayısal dönüştürücüye (ASD) doğrusal akım ölçüm verisi gönderebilecek potansiyele sahip olduğu söylenebilir.

Kaynakça

  • Abdi-Jalebi, E., McMahon, R. (2005) Simple and practical construction of high-performance, low-cost Rogowski transducers and accompanying circuitry for research applications, IMTC 2005 - Instrumentation and Measurement Technology Conference, Ottawa, Canada, 354–358.
  • Altun, Y., Özcan, M. (2015) Ütü masası üretiminde kullanılan elektrik direnç nokta kaynak makinesi tasarım parametrelerinin tespiti, Mühendislik Bilimleri ve Tasarım Dergisi, 3 (2), 85-90.
  • Azizoğlu, B.T, Karaca, H. (2017) Geniş bantlı akım algılayıcı için gerekli aktif entegratör devresi tasarım ve gerçeklemesi, Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 19(55), 45–51, doi: 10.21205/deufmd.2017195504
  • Brydak K., Szlachta, A. (2016) Measuring methods of welding process parameters, Measurement Automation Monitoring, 62(1), 26–29.
  • Deepati, A.K., Alhazmi, W., Benjeer, I. (2021) Mechanical characterization of AA5083 aluminum alloy welded using resistance spot welding for the lightweight automobile body fabrication, Materials Today: Proceedings, 1–10, doi: 10.1016/j.matpr.2021.01.646
  • Duan, B., Zhang, C., Guo, M., Zhang, G. (2014) A new digital control system based on the double closed-loop for the full-bridge inverter, The International Journal of Advanced Manufacturing Technology, 77(1–4), 241–248, doi: 10.1007/s00170-014-6463-6
  • Fiore, J.M. (2016) Operational amplifiers & linear integrated circuits: theory and application, Independently published, 1–589, ISBN13: 978–1796856897
  • Giaccone, L., Cirimele, V., Canova, A. (2020) Mitigation solutions for the magnetic field produced by MFDC spot welding guns, IEEE Transactions on Electromagnetic Compatibility, 62(1), 83–92, doi: 10.1109/temc.2018.2877805
  • Hofstötter, N., Krapp, J. (2018). Data sheet skyper 32pro r, Semikron, Erişim Adresi: https://www.semikron.com/dl/service-support/downloads/download/semikron-datasheet-skyper-32-pro-r-l6100202.pdf, (Erişim Tarihi: 07.05.2021)
  • Jenney, C.L., O’Brien, A. (2001) Welding handbook, Vol. 1: Welding Science and Technology (9th ed.), Woodhead Publishing Ltd., 1–985, ISBN–10: 0871716577
  • Jun, Y., Li, G., Liu, H., Yang, G., Ling, G. (2016) Design of a flexible rogowski coil with active integrator applied in lightning current collection. 33rd International Conference on Lightning Protection (ICLP), 1–7, doi: 10.1109/iclp.2016.7791472
  • Keller, P. (2013) Measuring magnetic field transients, Magn. Tech.Int., 57–60.
  • Klopcic, B., Stumberger, G., & Dolinar, D. (2007) Iron core saturation of a welding transformer in a medium frequency resistance spot welding system caused by the asymmetric output rectifier characteristics, 2007 IEEE Industry Applications Annual Meeting, 2319– 2326, doi: 10.1109/07ias.2007.350
  • Li, W., Feng, E., Cerjanec, D., Grzadzinski, G.A. (2004) Energy consumption in AC and MFDC resistance spot welding, Sheet Metal Welding Conference XI, Sterling Heights, MI, 1–12.
  • Liu, Y., Lin, F., Zhang, Q., Zhong, H. (2011) Design and construction of a Rogowski coil for measuring wide pulsed current. IEEE Sensors Journal, 11(1), 123–130, doi: 10.1109/jsen.2010.2052034
  • Lund, S.H.J., Billeschou, P., Larsen, L.B. (2019) High-bandwidth active impedance control of the proprioceptive actuator design in dynamic compliant robotics, Actuators, 8(4), 71–103, doi: 10.3390/act8040071
  • Ramboz, J.D. (1995) Machinable Rogowski coil, design and calibration, Proceedings of 1995 IEEE Instrumentation and Measurement Technology Conference - IMTC ’95, 329–334, doi: 10.1109/imtc.1995.515151
  • Ray, W.F., Hewson, C.R. (2000) High performance Rogowski coil current tranducers, IEEE Industry Applications Conference, 5, 3083–3090.
  • Rezaee, M., Heydari, H. (2010) Design modification of Rogowski coil for current measurement in low frequency, Iranian Journal of Electrical & Electronic Engineering, Vol. 6, No. 4, 232–238.
  • Semikron (2013). Skm200gb12t4 Fast IGBT Module Data Sheet, Erişim Adresi: https://www.semikron.com/dl/service-support/downloads/download/semikron-datasheet-skm200gb12t4-22892060.pdf (Erişim Tarihi: 07.05.2021)
  • Tapashetti, P., Gupta, A., Mithlesh, C., Umesh, A.S. (2012) Design and simulation of op amp integrator and its applications, International Journal of Engineering and Advanced Technology (IJEAT), ISSN: 2249 – 8958, Volume-1, Issue-3, 12–19.
  • Texas Instruments (2019). TMS320x2806x Technical Reference Manual, Erişim Adresi: https://www.ti.com/lit/ug/spruh18h/spruh18h.pdf (Erişim Tarihi: 07.05.2021)
  • Wang, X., Zhou, K., Shen, S. (2021) Intelligent parameters measurement of electrical structure of medium frequency DC resistance spot welding system, Measurement, 171, 108795–108806, doi: 10.1016/j.measurement.2020.108795
  • Ward, D.A., Exon, J.L.T. (1993) Using Rogowski coils for transient current measurements, Engineering Science and Education Journal, 2(3), 105–113, doi: 10.1049/esej:19930034
  • Xia, Y. J., Zhang, Z. D., Xia, Z. X., Zhu, S. L., & Zhang, R. (2015) A precision analogue integrator system for heavy current measurement in MFDC resistance spot welding, Measurement Science and Technology, 27(2), 025104–025114, doi: 10.1088/0957-0233/27/2/025104
  • Zhang, Y., Liu, J., Bai, G., & Feng, J. (2012) Analysis of damping resistor’s effects on pulse response of self-integrating Rogowski coil with magnetic core, Measurement, 45(5), 1277–1285, doi: 10.1016/j.measurement.2012.01.009
  • Zhou K., Cai, L. (2011) Improvement in control system for the medium frequency direct current resistance spot welding system, Proceedings of the 2011 American Control Conference, 2657–2663, doi: 10.1109/acc.2011.5990827
  • Zhou, K., Li, H. (2020) A comparative study of single-phase AC and medium frequency DC resistance spot welding using finite element modeling, IEEE Access, 8, 107260–107271, doi: 10.1109/access.2020.3000794
  • Zhou, K., Yao, P. (2017) Review of application of the electrical structure in resistance spot welding, IEEE Access, 5, 25741–25749, doi: 10.1109/access.2017.2771310

Design and Implementation of a Current Measurement Circuit for Medium Frequency Direct Current Resistance Spot Welding Systems

Yıl 2021, Cilt: 26 Sayı: 2, 401 - 420, 31.08.2021
https://doi.org/10.17482/uumfd.943314

Öz

Resistance spot welding (RSW) is widely used in the automotive, white goods, furniture and sheet metal processing industries. Medium frequency direct current (MFDC) is an innovative method that increases the quality of RSW. In this study, an analog integrator circuit that can obtain the welding current information from MFDC-RSW systems is proposed. This current information required for the control of the OFDA-DNK system was obtained from the Rogowski coil (RB). Voltage information regarding the welding current has been obtained through the RB connected to the secondary of the welding transformer. Then, data transfer to analog-digital converter (ADC) was carried out with the help of the proposed integrator circuit. The performance of the proposed circuit has been tested in the established MFDC-RSW system. According to the experimental results, it has been seen that the proposed circuit can perform the voltage conversion up to 30 kA without error. In addition, it can also be said that the proposed circuit has the potential to send linear current measurement data to ADC in MFDC-RSW applications.

Kaynakça

  • Abdi-Jalebi, E., McMahon, R. (2005) Simple and practical construction of high-performance, low-cost Rogowski transducers and accompanying circuitry for research applications, IMTC 2005 - Instrumentation and Measurement Technology Conference, Ottawa, Canada, 354–358.
  • Altun, Y., Özcan, M. (2015) Ütü masası üretiminde kullanılan elektrik direnç nokta kaynak makinesi tasarım parametrelerinin tespiti, Mühendislik Bilimleri ve Tasarım Dergisi, 3 (2), 85-90.
  • Azizoğlu, B.T, Karaca, H. (2017) Geniş bantlı akım algılayıcı için gerekli aktif entegratör devresi tasarım ve gerçeklemesi, Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 19(55), 45–51, doi: 10.21205/deufmd.2017195504
  • Brydak K., Szlachta, A. (2016) Measuring methods of welding process parameters, Measurement Automation Monitoring, 62(1), 26–29.
  • Deepati, A.K., Alhazmi, W., Benjeer, I. (2021) Mechanical characterization of AA5083 aluminum alloy welded using resistance spot welding for the lightweight automobile body fabrication, Materials Today: Proceedings, 1–10, doi: 10.1016/j.matpr.2021.01.646
  • Duan, B., Zhang, C., Guo, M., Zhang, G. (2014) A new digital control system based on the double closed-loop for the full-bridge inverter, The International Journal of Advanced Manufacturing Technology, 77(1–4), 241–248, doi: 10.1007/s00170-014-6463-6
  • Fiore, J.M. (2016) Operational amplifiers & linear integrated circuits: theory and application, Independently published, 1–589, ISBN13: 978–1796856897
  • Giaccone, L., Cirimele, V., Canova, A. (2020) Mitigation solutions for the magnetic field produced by MFDC spot welding guns, IEEE Transactions on Electromagnetic Compatibility, 62(1), 83–92, doi: 10.1109/temc.2018.2877805
  • Hofstötter, N., Krapp, J. (2018). Data sheet skyper 32pro r, Semikron, Erişim Adresi: https://www.semikron.com/dl/service-support/downloads/download/semikron-datasheet-skyper-32-pro-r-l6100202.pdf, (Erişim Tarihi: 07.05.2021)
  • Jenney, C.L., O’Brien, A. (2001) Welding handbook, Vol. 1: Welding Science and Technology (9th ed.), Woodhead Publishing Ltd., 1–985, ISBN–10: 0871716577
  • Jun, Y., Li, G., Liu, H., Yang, G., Ling, G. (2016) Design of a flexible rogowski coil with active integrator applied in lightning current collection. 33rd International Conference on Lightning Protection (ICLP), 1–7, doi: 10.1109/iclp.2016.7791472
  • Keller, P. (2013) Measuring magnetic field transients, Magn. Tech.Int., 57–60.
  • Klopcic, B., Stumberger, G., & Dolinar, D. (2007) Iron core saturation of a welding transformer in a medium frequency resistance spot welding system caused by the asymmetric output rectifier characteristics, 2007 IEEE Industry Applications Annual Meeting, 2319– 2326, doi: 10.1109/07ias.2007.350
  • Li, W., Feng, E., Cerjanec, D., Grzadzinski, G.A. (2004) Energy consumption in AC and MFDC resistance spot welding, Sheet Metal Welding Conference XI, Sterling Heights, MI, 1–12.
  • Liu, Y., Lin, F., Zhang, Q., Zhong, H. (2011) Design and construction of a Rogowski coil for measuring wide pulsed current. IEEE Sensors Journal, 11(1), 123–130, doi: 10.1109/jsen.2010.2052034
  • Lund, S.H.J., Billeschou, P., Larsen, L.B. (2019) High-bandwidth active impedance control of the proprioceptive actuator design in dynamic compliant robotics, Actuators, 8(4), 71–103, doi: 10.3390/act8040071
  • Ramboz, J.D. (1995) Machinable Rogowski coil, design and calibration, Proceedings of 1995 IEEE Instrumentation and Measurement Technology Conference - IMTC ’95, 329–334, doi: 10.1109/imtc.1995.515151
  • Ray, W.F., Hewson, C.R. (2000) High performance Rogowski coil current tranducers, IEEE Industry Applications Conference, 5, 3083–3090.
  • Rezaee, M., Heydari, H. (2010) Design modification of Rogowski coil for current measurement in low frequency, Iranian Journal of Electrical & Electronic Engineering, Vol. 6, No. 4, 232–238.
  • Semikron (2013). Skm200gb12t4 Fast IGBT Module Data Sheet, Erişim Adresi: https://www.semikron.com/dl/service-support/downloads/download/semikron-datasheet-skm200gb12t4-22892060.pdf (Erişim Tarihi: 07.05.2021)
  • Tapashetti, P., Gupta, A., Mithlesh, C., Umesh, A.S. (2012) Design and simulation of op amp integrator and its applications, International Journal of Engineering and Advanced Technology (IJEAT), ISSN: 2249 – 8958, Volume-1, Issue-3, 12–19.
  • Texas Instruments (2019). TMS320x2806x Technical Reference Manual, Erişim Adresi: https://www.ti.com/lit/ug/spruh18h/spruh18h.pdf (Erişim Tarihi: 07.05.2021)
  • Wang, X., Zhou, K., Shen, S. (2021) Intelligent parameters measurement of electrical structure of medium frequency DC resistance spot welding system, Measurement, 171, 108795–108806, doi: 10.1016/j.measurement.2020.108795
  • Ward, D.A., Exon, J.L.T. (1993) Using Rogowski coils for transient current measurements, Engineering Science and Education Journal, 2(3), 105–113, doi: 10.1049/esej:19930034
  • Xia, Y. J., Zhang, Z. D., Xia, Z. X., Zhu, S. L., & Zhang, R. (2015) A precision analogue integrator system for heavy current measurement in MFDC resistance spot welding, Measurement Science and Technology, 27(2), 025104–025114, doi: 10.1088/0957-0233/27/2/025104
  • Zhang, Y., Liu, J., Bai, G., & Feng, J. (2012) Analysis of damping resistor’s effects on pulse response of self-integrating Rogowski coil with magnetic core, Measurement, 45(5), 1277–1285, doi: 10.1016/j.measurement.2012.01.009
  • Zhou K., Cai, L. (2011) Improvement in control system for the medium frequency direct current resistance spot welding system, Proceedings of the 2011 American Control Conference, 2657–2663, doi: 10.1109/acc.2011.5990827
  • Zhou, K., Li, H. (2020) A comparative study of single-phase AC and medium frequency DC resistance spot welding using finite element modeling, IEEE Access, 8, 107260–107271, doi: 10.1109/access.2020.3000794
  • Zhou, K., Yao, P. (2017) Review of application of the electrical structure in resistance spot welding, IEEE Access, 5, 25741–25749, doi: 10.1109/access.2017.2771310
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Elektrik Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Can Özensoy 0000-0003-4878-2606

Murat Uyar 0000-0001-7243-7939

Yayımlanma Tarihi 31 Ağustos 2021
Gönderilme Tarihi 26 Mayıs 2021
Kabul Tarihi 13 Temmuz 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 26 Sayı: 2

Kaynak Göster

APA Özensoy, C., & Uyar, M. (2021). ORTA FREKANS DOĞRU AKIM DİRENÇ NOKTA KAYNAK SİSTEMLERİ İÇİN AKIM ÖLÇÜM DEVRESİ TASARIMI VE GERÇEKLENMESİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 26(2), 401-420. https://doi.org/10.17482/uumfd.943314
AMA Özensoy C, Uyar M. ORTA FREKANS DOĞRU AKIM DİRENÇ NOKTA KAYNAK SİSTEMLERİ İÇİN AKIM ÖLÇÜM DEVRESİ TASARIMI VE GERÇEKLENMESİ. UUJFE. Ağustos 2021;26(2):401-420. doi:10.17482/uumfd.943314
Chicago Özensoy, Can, ve Murat Uyar. “ORTA FREKANS DOĞRU AKIM DİRENÇ NOKTA KAYNAK SİSTEMLERİ İÇİN AKIM ÖLÇÜM DEVRESİ TASARIMI VE GERÇEKLENMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 26, sy. 2 (Ağustos 2021): 401-20. https://doi.org/10.17482/uumfd.943314.
EndNote Özensoy C, Uyar M (01 Ağustos 2021) ORTA FREKANS DOĞRU AKIM DİRENÇ NOKTA KAYNAK SİSTEMLERİ İÇİN AKIM ÖLÇÜM DEVRESİ TASARIMI VE GERÇEKLENMESİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 26 2 401–420.
IEEE C. Özensoy ve M. Uyar, “ORTA FREKANS DOĞRU AKIM DİRENÇ NOKTA KAYNAK SİSTEMLERİ İÇİN AKIM ÖLÇÜM DEVRESİ TASARIMI VE GERÇEKLENMESİ”, UUJFE, c. 26, sy. 2, ss. 401–420, 2021, doi: 10.17482/uumfd.943314.
ISNAD Özensoy, Can - Uyar, Murat. “ORTA FREKANS DOĞRU AKIM DİRENÇ NOKTA KAYNAK SİSTEMLERİ İÇİN AKIM ÖLÇÜM DEVRESİ TASARIMI VE GERÇEKLENMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 26/2 (Ağustos 2021), 401-420. https://doi.org/10.17482/uumfd.943314.
JAMA Özensoy C, Uyar M. ORTA FREKANS DOĞRU AKIM DİRENÇ NOKTA KAYNAK SİSTEMLERİ İÇİN AKIM ÖLÇÜM DEVRESİ TASARIMI VE GERÇEKLENMESİ. UUJFE. 2021;26:401–420.
MLA Özensoy, Can ve Murat Uyar. “ORTA FREKANS DOĞRU AKIM DİRENÇ NOKTA KAYNAK SİSTEMLERİ İÇİN AKIM ÖLÇÜM DEVRESİ TASARIMI VE GERÇEKLENMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 26, sy. 2, 2021, ss. 401-20, doi:10.17482/uumfd.943314.
Vancouver Özensoy C, Uyar M. ORTA FREKANS DOĞRU AKIM DİRENÇ NOKTA KAYNAK SİSTEMLERİ İÇİN AKIM ÖLÇÜM DEVRESİ TASARIMI VE GERÇEKLENMESİ. UUJFE. 2021;26(2):401-20.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr