6.1.0 New Features," Integrated Environmental Solutions, Boston." />
Araştırma Makalesi
BibTex RIS Kaynak Göster

BIM-BASED ENERGY ANALYSIS AND DESIGN TOOLS FOR LEED CERTIFICATION

Yıl 2021, Cilt: 26 Sayı: 3, 987 - 1002, 31.12.2021
https://doi.org/10.17482/uumfd.915932

Öz

Green building rating systems (GBRSs) are developed to assist Architecture, Engineering, and Construction (AEC) professionals to measure building performance and fulfill the requirements of sustainable design and construction. Designing high-performance buildings according to GBRSs with the use of Building Information Modeling (BIM)-based energy analysis and design tools promotes sustainable construction, helps reduction of carbon footprint, and overall eases the green building certification process. Although previous studies addressed the use of BIM in LEED (Leadership in Environmental and Energy Design) certification; limited number of studies focused on using BIM-based tools for examining credits and requirements of LEED v4. The objective of this study is to demonstrate in what ways BIM-based energy analysis and design tools can support project teams in pursuit of LEED certification for residential projects. A literature review and case study were conducted, and Autodesk Revit Green Building Studio, eQUEST, EnergyPlus, and IES-VE tools were examined in terms of achieving LEED v4 Building Design and Construction for Multifamily Midrise rating system credits. Results demonstrate that these tools can perform 17 LEED credits. This study determines the pros and cons of these four BIM-based tools in terms of the LEED v4 BD+C MM rating system. This study also contributes to the AEC industry and literature with four decision-making flowcharts that are developed as guidelines for AEC professionals to conduct BIM-based LEED certification processes more effectively.

Kaynakça

  • 1. International Energy Agency, (2019). “2019 global status report for buildings and construction: Towards a zero-emission, efficient and resilient buildings and construction sector.” Global Alliance for Buildings and Construction, International Energy Agency and the United Nations Environment Programme. Access address: www.iea.org or www.globalabc.org. (Accessed in: 15.11.2019)
  • 2. Redmond, T. (2016). "What proportion of the world's natural resources are used by the construction industry?" Access address: https://www.quora.com/What-proportion-of-the-worlds-natural-resources-are-used-by-the-construction-industry. (Accessed in: 15.11.2019)
  • 3. Kibert, J. (1994) "Principles and a Model of Sustainable Construction." Proceedings of the First International Conference on Sustainable Construction, pp. 1-9.
  • 4. Kibert, C. (2016). Sustainable Construction: Green Building Design and Delivery, 4th Edition. ISBN: 978-1-119-05517-4, 2016.
  • 5. Sacks, R., Eastman, C., Lee, G. and Teicholz, P. (2018) BIM Handbook: A Guide to Building Information Modeling for Owners, Designers, Engineers, Contractors, and Facility Managers, 3rd Edition. Wiley. Access address: https://www.wiley.com/en-ao/BIM+Handbook:+A+Guide+to+Building+Information+Modeling+for+Owners,+Designers,+Engineers,+Contractors,+and+Facility+Managers,+3rd+Edition-p-9781119287537. (Accessed in: 20.10.2020)
  • 6. Wong, K. and Fan, Q. (2013), "Building information modelling (BIM) for sustainable building design", Facilities, 31(3/4), 138-157. doi: 10.1108/02632771311299412.
  • 7. Schwartz, Y. and Raslan, R. (2013). "Variations in results of building energy simulation tools, and their impact on BREEAM and LEED ratings: A case study." Energy and Buildings, 62, 350-359. doi: 10.1016/j.enbuild.2013.03.022.
  • 8. Edwards, R., Lou, E., Bataw, Kamaruzzaman, S.N. and Johnson, C. (2019) "Sustainability-led design: Feasibility of incorporating whole-life cycle energy assessment into BIM for refurbishment projects." Journal of Building Engineering, 24, 100697. doi:10.1016/j.jobe.2019.01.027.
  • 9. Suzer, O. (2019). "Analyzing the compliance and correlation of LEED and BREEAM by conducting a criteria- based comparative analysis and evaluating dual-certified projects." Building and Environment, 147, 158-170. doi:10.1016/j.buildenv.2018.09.001.
  • 10. F. Jalaei, Jalaei, F. and Mohammadi, S. (2020) "An integrated BIM-LEED application to automate sustainable design assessment framework at the conceptual stage of building projects." Sustainable Cities and Society, 53, 101979. doi:10.1016/j.scs.2019.101979.
  • 11. Rastogi, A. Choi, J.K., Hong, T. and Lee, M. (2017). "Impact of different LEED versions for green building certification and energy efficiency rating system: A Multifamily Midrise case study." Applied Energy, 205, 732-740. doi:10.1016/j.apenergy.2017.08.149.
  • 12. Larsen, T.S., Rohde, L., Jønsson, K.T., Rasmussen, B., Jensen, R.L., Knudsen, H.N., Witterseh, T. and Beköd, G. (2020) "IEQ-Compass- A tool for holistic evaluation of potential indoor environmental quality." Building and Environment, 172, 106707. doi:10.1016/j.buildenv.2020.106707
  • 13. Jin, R. Zhong, B., Ma, L., Hashemi, A. and Ding, L. (2019). "Integrating BIM with building performance analysis in project life-cycle." Automation in Construction, 106, 102861. doi:10.1016/j.autcon.2019.102861
  • 14. Azhar, S. Carlton, W.A., Olsen, D. and Ahmad, I. (2010). "Building information modeling for sustainable design and LEED® rating analysis." Automation in Construction, 20(2), 217-224. doi: 10.1016/j.autcon.2010.09.019
  • 15. Wu, P. Mao, C., Wang, J., Song, Y. and Wang, X. (2016). "A decade review of the credits obtained by LEED v2.2 certified green building projects." Building and Environment, 167-178. doi:10.1016/j.buildenv.2016.03.026
  • 16. Doan, D.T., Ghaffarianhoseini, A., Naismith, N., Zhang, T., Ghaffarianhoseini, A. and Tookey, J. (2017). "A critical comparison of green building rating systems.” Building and Environment, 123, 243-260. doi:10.1016/j.buildenv.2017.07.007
  • 17. Lu, Y. Wu, Z., Chang, R. and Li, Y. (2017). "Building Information Modeling (BIM) for green buildings: A critical review and future directions." Automation in Construction, 83, 137-144. doi: 10.1016/j.autcon.2017.08.024
  • 18. He, Y. Kvan, T., Liuac, M. and Liac, B. (2018). "How green building rating systems affect designing green." Building and Environment, 133, 19-31. doi:10.1016/j.buildenv.2018.02.007
  • 19. Ansah, M.K. Chen, X., Yang, H., Lu, L. and Lam, P.T.I. (2019). "A review and outlook for integrated BIM application in green building assessment". Sustainable Cities and Society, 48, 101576. doi:10.1016/j.scs.2019.101576
  • 20. Seyis, S.(2020). “Mixed method review for integrating building information modeling and life-cycle assessments”. Building and Environment, 173 (2020), 106703. doi:10.1016/j.buildenv.2020.106703
  • 21. Seyis S (2015). A decision making support model to determine appropriate credits for green building certification based on project delivery attributes. PhD Dissertation, Politecnico di Milano, Milan, Italy.
  • 22. Seyis, S. and Ergen, E. (2017). “A decision making support tool for selecting green building certification credits based on project delivery attributes”. Building and Environment, 126(12), 107–118. doi: doi.org/10.1016/j.buildenv.2017.09.028
  • 23. Seyis, S. (2019). “Pros and Cons of Using Building Information Modeling in the AEC Industry”. Journal of Construction Engineering and Management, 145(8), 04019046. doi:10.1061/(ASCE)CO.1943-7862.0001681
  • 24. Solla, M., Ismail, L.H. and Milad, A. (2019). "Measuring the feasibility of using of BIM application to facilitate GBI assessment process," Journal of Building Engineering, 25, 100821. doi: 10.1016/j.jobe.2019.100821
  • 25. Li, J., Li, N., Afsari, K., Peng, J., Wu, Z. and Cui, H. (2019). "Integration of Building Information Modeling and Web Service Application Programming Interface for assessing building surroundings in early design stages." Building and Environment, 153, 91-100. doi:10.1016/j.buildenv.2019.02.024
  • 26. Rezaallah, A., Bolognesi, C.M. and Khoraskani, R.A. (2012). “LEED and BREAAM; Comparison between policies, assessment criteria and calculation methods.” 1st International Conference on Building Sustainability Assessment.
  • 27. Jalaei, F. and Jrade, A. (2015). " Integrating building information modeling (BIM) and LEED system at the conceptual design stage of sustainable buildings." Sustainable Cities and Society, 18, 95-107. doi:10.1016/j.scs.2015.06.007
  • 28. Carvalho, J.P., Bragança, L. and Mateus, R. (2019). "Optimising building sustainability assessment using BIM." Automation in Construction, 102, 170-182. doi:10.1016/j.autcon.2019.02.021
  • 29. Jiang, B., Song, Y., Li, H.X., Lau, S.S.Y. and Lei, Q. (2020). "Incorporating biophilic criteria into green building rating tools: Case study of Green Mark and LEED." Environmental Impact Assessment Review, 82, 106380. doi:10.1016/j.eiar.2020.106380
  • 30. Worden, K. Hazer, M., Pyke, C. and Trowbridge, M. (2020). "Using LEED green rating systems to promote population health." Building and Environment, 172(4), 106550. doi:10.1016/j.buildenv.2019.106550
  • 31. Kumar, S., Mehany, M. and S. H. M. (2020). "Optimizing the cost, LEED credits, and time trade-offs using a genetic algorithmic model." Canadian Journal of Civil Engineering, 47(5), 596-608. doi: 10.1139/cjce-2018-0774
  • 32. Stanley, S. (2016). "U.S. Green Building Council Announces Top 10 Countries and Regions for LEED Green Building, USGBC. Access address: https://www.usgbc.org/articles/us-green-building-council-announces-top-10-countries-and-regions-leed-green-building. (Accessed in: 20.11.2019)
  • 33. DOE2, (2016). The Home of DOE-2 based Building Energy Use and Cost Analysis Software. Available at: http://doe2.com/
  • 34. EnergyPlus, (2019). Available at: https://energyplus.net/ (Accessed in: 01.10.2019)
  • 35. International Sustainability Consulting Developers of the IES, (2010). <Virtual Environment>, "<Virtual Environment> 6.1.0 New Features," Integrated Environmental Solutions, Boston.
  • 36. USGBC, (2016). "LEED v4 for Building Design and Construction.". Access address: https://www.usgbc.org/resources/leed-v4-building-design-and-construction-current-version . (Accessed in: 20.11.2019)
  • 37. Muller, (2014). ASHRAE Standard 62.1 The IAQ Procedure and LEED. Georgia, Doraville, USA, Federal Interagency Committee on Indoor Air Quality (CIAQ).
  • 38. Energy Star, (2019). Access address: https://www.energystar.gov/ (Accessed in: 01.10.2019)

LEED Sertifikasyonu için BIM tabanlı Enerji Analizi ve Tasarım Araçları

Yıl 2021, Cilt: 26 Sayı: 3, 987 - 1002, 31.12.2021
https://doi.org/10.17482/uumfd.915932

Öz

Yeşil bina derecelendirme sistemleri (YBDS), mimarlık, mühendislik ve inşaat profesyonellerinin bina performansını ölçmelerine ve sürdürülebilir tasarım ve inşaat gereksinimlerini karşılamalarına yardımcı olmak için geliştirilmiştir. Yapı Bilgi Modellemesi (YBM) tabanlı enerji analizi ve tasarım araçlarının kullanımıyla YBDS'ye göre yüksek performanslı binalar tasarlamak sürdürülebilir inşaatı teşvik eder, karbon ayak izinin azaltılmasına yardımcı olur ve genel olarak yeşil bina sertifikasyon sürecini kolaylaştırır. Önceki çalışmalar, LEED sertifikası için YBM kullanımını ele almış olsa da; sınırlı sayıda çalışma LEED v4'ün kredilerini ve gereksinimlerini incelemek için YBM tabanlı araçları kullanmaya odaklanmıştır. Bu çalışmanın amacı, YBM tabanlı enerji analizi ve tasarım araçlarının konut projeleri için LEED sertifikası alma yolunda proje ekiplerini hangi yollarla destekleyebileceğini göstermektir. Bunun için literatür incelemesi ve vaka çalışması gerçekleştirilmiş; Autodesk Revit Green Building Studio, eQUEST, EnergyPlus, ve IES-VE araçları LEED v4 Bina Tasarımı ve İnşaatı (BD + C) Multifamily Midrise (MM) derecelendirme sistemi kredileri açısından incelenmiştir. Sonuçlar, bu araçların 17 krediyi gerçekleştirebileceğini göstermektedir. Bu çalışma, LEED v4 BD + C MM derecelendirme sistemi kredileri açısından bu dört YBM tabanlı aracın artılarını ve eksilerini belirlemektedir. Bu çalışma ayrıca inşaat sektörü uzmanlarının YBM tabanlı LEED sertifikasyon süreçlerini daha etkin bir şekilde yürütmeleri için yol haritası olarak geliştirilen dört karar verme akış şeması ile inşaat sektörüne ve literatüre katkıda bulunmaktadır.  

Kaynakça

  • 1. International Energy Agency, (2019). “2019 global status report for buildings and construction: Towards a zero-emission, efficient and resilient buildings and construction sector.” Global Alliance for Buildings and Construction, International Energy Agency and the United Nations Environment Programme. Access address: www.iea.org or www.globalabc.org. (Accessed in: 15.11.2019)
  • 2. Redmond, T. (2016). "What proportion of the world's natural resources are used by the construction industry?" Access address: https://www.quora.com/What-proportion-of-the-worlds-natural-resources-are-used-by-the-construction-industry. (Accessed in: 15.11.2019)
  • 3. Kibert, J. (1994) "Principles and a Model of Sustainable Construction." Proceedings of the First International Conference on Sustainable Construction, pp. 1-9.
  • 4. Kibert, C. (2016). Sustainable Construction: Green Building Design and Delivery, 4th Edition. ISBN: 978-1-119-05517-4, 2016.
  • 5. Sacks, R., Eastman, C., Lee, G. and Teicholz, P. (2018) BIM Handbook: A Guide to Building Information Modeling for Owners, Designers, Engineers, Contractors, and Facility Managers, 3rd Edition. Wiley. Access address: https://www.wiley.com/en-ao/BIM+Handbook:+A+Guide+to+Building+Information+Modeling+for+Owners,+Designers,+Engineers,+Contractors,+and+Facility+Managers,+3rd+Edition-p-9781119287537. (Accessed in: 20.10.2020)
  • 6. Wong, K. and Fan, Q. (2013), "Building information modelling (BIM) for sustainable building design", Facilities, 31(3/4), 138-157. doi: 10.1108/02632771311299412.
  • 7. Schwartz, Y. and Raslan, R. (2013). "Variations in results of building energy simulation tools, and their impact on BREEAM and LEED ratings: A case study." Energy and Buildings, 62, 350-359. doi: 10.1016/j.enbuild.2013.03.022.
  • 8. Edwards, R., Lou, E., Bataw, Kamaruzzaman, S.N. and Johnson, C. (2019) "Sustainability-led design: Feasibility of incorporating whole-life cycle energy assessment into BIM for refurbishment projects." Journal of Building Engineering, 24, 100697. doi:10.1016/j.jobe.2019.01.027.
  • 9. Suzer, O. (2019). "Analyzing the compliance and correlation of LEED and BREEAM by conducting a criteria- based comparative analysis and evaluating dual-certified projects." Building and Environment, 147, 158-170. doi:10.1016/j.buildenv.2018.09.001.
  • 10. F. Jalaei, Jalaei, F. and Mohammadi, S. (2020) "An integrated BIM-LEED application to automate sustainable design assessment framework at the conceptual stage of building projects." Sustainable Cities and Society, 53, 101979. doi:10.1016/j.scs.2019.101979.
  • 11. Rastogi, A. Choi, J.K., Hong, T. and Lee, M. (2017). "Impact of different LEED versions for green building certification and energy efficiency rating system: A Multifamily Midrise case study." Applied Energy, 205, 732-740. doi:10.1016/j.apenergy.2017.08.149.
  • 12. Larsen, T.S., Rohde, L., Jønsson, K.T., Rasmussen, B., Jensen, R.L., Knudsen, H.N., Witterseh, T. and Beköd, G. (2020) "IEQ-Compass- A tool for holistic evaluation of potential indoor environmental quality." Building and Environment, 172, 106707. doi:10.1016/j.buildenv.2020.106707
  • 13. Jin, R. Zhong, B., Ma, L., Hashemi, A. and Ding, L. (2019). "Integrating BIM with building performance analysis in project life-cycle." Automation in Construction, 106, 102861. doi:10.1016/j.autcon.2019.102861
  • 14. Azhar, S. Carlton, W.A., Olsen, D. and Ahmad, I. (2010). "Building information modeling for sustainable design and LEED® rating analysis." Automation in Construction, 20(2), 217-224. doi: 10.1016/j.autcon.2010.09.019
  • 15. Wu, P. Mao, C., Wang, J., Song, Y. and Wang, X. (2016). "A decade review of the credits obtained by LEED v2.2 certified green building projects." Building and Environment, 167-178. doi:10.1016/j.buildenv.2016.03.026
  • 16. Doan, D.T., Ghaffarianhoseini, A., Naismith, N., Zhang, T., Ghaffarianhoseini, A. and Tookey, J. (2017). "A critical comparison of green building rating systems.” Building and Environment, 123, 243-260. doi:10.1016/j.buildenv.2017.07.007
  • 17. Lu, Y. Wu, Z., Chang, R. and Li, Y. (2017). "Building Information Modeling (BIM) for green buildings: A critical review and future directions." Automation in Construction, 83, 137-144. doi: 10.1016/j.autcon.2017.08.024
  • 18. He, Y. Kvan, T., Liuac, M. and Liac, B. (2018). "How green building rating systems affect designing green." Building and Environment, 133, 19-31. doi:10.1016/j.buildenv.2018.02.007
  • 19. Ansah, M.K. Chen, X., Yang, H., Lu, L. and Lam, P.T.I. (2019). "A review and outlook for integrated BIM application in green building assessment". Sustainable Cities and Society, 48, 101576. doi:10.1016/j.scs.2019.101576
  • 20. Seyis, S.(2020). “Mixed method review for integrating building information modeling and life-cycle assessments”. Building and Environment, 173 (2020), 106703. doi:10.1016/j.buildenv.2020.106703
  • 21. Seyis S (2015). A decision making support model to determine appropriate credits for green building certification based on project delivery attributes. PhD Dissertation, Politecnico di Milano, Milan, Italy.
  • 22. Seyis, S. and Ergen, E. (2017). “A decision making support tool for selecting green building certification credits based on project delivery attributes”. Building and Environment, 126(12), 107–118. doi: doi.org/10.1016/j.buildenv.2017.09.028
  • 23. Seyis, S. (2019). “Pros and Cons of Using Building Information Modeling in the AEC Industry”. Journal of Construction Engineering and Management, 145(8), 04019046. doi:10.1061/(ASCE)CO.1943-7862.0001681
  • 24. Solla, M., Ismail, L.H. and Milad, A. (2019). "Measuring the feasibility of using of BIM application to facilitate GBI assessment process," Journal of Building Engineering, 25, 100821. doi: 10.1016/j.jobe.2019.100821
  • 25. Li, J., Li, N., Afsari, K., Peng, J., Wu, Z. and Cui, H. (2019). "Integration of Building Information Modeling and Web Service Application Programming Interface for assessing building surroundings in early design stages." Building and Environment, 153, 91-100. doi:10.1016/j.buildenv.2019.02.024
  • 26. Rezaallah, A., Bolognesi, C.M. and Khoraskani, R.A. (2012). “LEED and BREAAM; Comparison between policies, assessment criteria and calculation methods.” 1st International Conference on Building Sustainability Assessment.
  • 27. Jalaei, F. and Jrade, A. (2015). " Integrating building information modeling (BIM) and LEED system at the conceptual design stage of sustainable buildings." Sustainable Cities and Society, 18, 95-107. doi:10.1016/j.scs.2015.06.007
  • 28. Carvalho, J.P., Bragança, L. and Mateus, R. (2019). "Optimising building sustainability assessment using BIM." Automation in Construction, 102, 170-182. doi:10.1016/j.autcon.2019.02.021
  • 29. Jiang, B., Song, Y., Li, H.X., Lau, S.S.Y. and Lei, Q. (2020). "Incorporating biophilic criteria into green building rating tools: Case study of Green Mark and LEED." Environmental Impact Assessment Review, 82, 106380. doi:10.1016/j.eiar.2020.106380
  • 30. Worden, K. Hazer, M., Pyke, C. and Trowbridge, M. (2020). "Using LEED green rating systems to promote population health." Building and Environment, 172(4), 106550. doi:10.1016/j.buildenv.2019.106550
  • 31. Kumar, S., Mehany, M. and S. H. M. (2020). "Optimizing the cost, LEED credits, and time trade-offs using a genetic algorithmic model." Canadian Journal of Civil Engineering, 47(5), 596-608. doi: 10.1139/cjce-2018-0774
  • 32. Stanley, S. (2016). "U.S. Green Building Council Announces Top 10 Countries and Regions for LEED Green Building, USGBC. Access address: https://www.usgbc.org/articles/us-green-building-council-announces-top-10-countries-and-regions-leed-green-building. (Accessed in: 20.11.2019)
  • 33. DOE2, (2016). The Home of DOE-2 based Building Energy Use and Cost Analysis Software. Available at: http://doe2.com/
  • 34. EnergyPlus, (2019). Available at: https://energyplus.net/ (Accessed in: 01.10.2019)
  • 35. International Sustainability Consulting Developers of the IES, (2010). <Virtual Environment>, "<Virtual Environment> 6.1.0 New Features," Integrated Environmental Solutions, Boston.
  • 36. USGBC, (2016). "LEED v4 for Building Design and Construction.". Access address: https://www.usgbc.org/resources/leed-v4-building-design-and-construction-current-version . (Accessed in: 20.11.2019)
  • 37. Muller, (2014). ASHRAE Standard 62.1 The IAQ Procedure and LEED. Georgia, Doraville, USA, Federal Interagency Committee on Indoor Air Quality (CIAQ).
  • 38. Energy Star, (2019). Access address: https://www.energystar.gov/ (Accessed in: 01.10.2019)
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular İnşaat Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Senem Seyis 0000-0002-9133-9899

Gürşans Güven Işın 0000-0002-6943-8567

Berkant Bayar 0000-0001-7358-4682

Yayımlanma Tarihi 31 Aralık 2021
Gönderilme Tarihi 14 Nisan 2021
Kabul Tarihi 8 Kasım 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 26 Sayı: 3

Kaynak Göster

APA Seyis, S., Güven Işın, G., & Bayar, B. (2021). BIM-BASED ENERGY ANALYSIS AND DESIGN TOOLS FOR LEED CERTIFICATION. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 26(3), 987-1002. https://doi.org/10.17482/uumfd.915932
AMA Seyis S, Güven Işın G, Bayar B. BIM-BASED ENERGY ANALYSIS AND DESIGN TOOLS FOR LEED CERTIFICATION. UUJFE. Aralık 2021;26(3):987-1002. doi:10.17482/uumfd.915932
Chicago Seyis, Senem, Gürşans Güven Işın, ve Berkant Bayar. “BIM-BASED ENERGY ANALYSIS AND DESIGN TOOLS FOR LEED CERTIFICATION”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 26, sy. 3 (Aralık 2021): 987-1002. https://doi.org/10.17482/uumfd.915932.
EndNote Seyis S, Güven Işın G, Bayar B (01 Aralık 2021) BIM-BASED ENERGY ANALYSIS AND DESIGN TOOLS FOR LEED CERTIFICATION. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 26 3 987–1002.
IEEE S. Seyis, G. Güven Işın, ve B. Bayar, “BIM-BASED ENERGY ANALYSIS AND DESIGN TOOLS FOR LEED CERTIFICATION”, UUJFE, c. 26, sy. 3, ss. 987–1002, 2021, doi: 10.17482/uumfd.915932.
ISNAD Seyis, Senem vd. “BIM-BASED ENERGY ANALYSIS AND DESIGN TOOLS FOR LEED CERTIFICATION”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 26/3 (Aralık 2021), 987-1002. https://doi.org/10.17482/uumfd.915932.
JAMA Seyis S, Güven Işın G, Bayar B. BIM-BASED ENERGY ANALYSIS AND DESIGN TOOLS FOR LEED CERTIFICATION. UUJFE. 2021;26:987–1002.
MLA Seyis, Senem vd. “BIM-BASED ENERGY ANALYSIS AND DESIGN TOOLS FOR LEED CERTIFICATION”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 26, sy. 3, 2021, ss. 987-1002, doi:10.17482/uumfd.915932.
Vancouver Seyis S, Güven Işın G, Bayar B. BIM-BASED ENERGY ANALYSIS AND DESIGN TOOLS FOR LEED CERTIFICATION. UUJFE. 2021;26(3):987-1002.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr