Research Article
BibTex RIS Cite

Pb ve Naftalen ile Kirlenmiş Toprakların Sıfır Değerlikli Demir Nanotanecikleri (SDDN) ve Biyolojik Arıtımla İyileştirilmesi

Year 2022, Volume: 27 Issue: 1, 57 - 70, 30.04.2022
https://doi.org/10.17482/uumfd.990044

Abstract

Ağır metal ve organik kirleticilerin bir arada bulunduğu kirlenmiş sahaların arıtımı farklı ve yenilikçi arıtım yaklaşımlarının uygulanmasını zorunlu kılmaktadır. Bu iki kirletici grubunun birbirinden farklı özellikleri sorunun çözümünü zorlaştırmaktadır. Son dönemde, sıfır değerlikli demir nanotanecikleri (SDDN) ve biyolojik arıtımın beraber kullanıldığı teknolojiler halojenli organik kirleticilerin giderimi üzerine uygulanmıştır. Ancak bu prosesin ağır metal ve organik kirleticilerin bir arada bulunduğu toprakların arıtımında kullanımı incelenmemiştir. Bu çalışmada SDDN uygulaması, biyolojik arıtımın dışarıdan müdahale olmadan (bioattenuation) ve nütrient ilavesi ile gerçekleştirilmesi (biostimulation) stratejileriyle beraber Pb ve naftalen ile kirletilen topraklara laboratuvar ölçekli reaktörlerde uygulanmıştır. Toprak Pb fraksiyonları ve naftalen konsantrasyonu 90 gün boyunca periyodik analizlerle takip edilmiştir. SDDN uygulaması, Pb‘nin değişebilir ve karbonatlara bağlı fraksiyonlarının toplamda 66,2 % olan oranını, 25,8 – 37,2 % bandına indirerek, metalin hareketliliğini ve biyoelverişliliğini önemli ölçüde düşürmüştür. SDDN uygulaması ayrıca 38,8 – 58,5 % aralığında naftalen giderimi sağlamıştır. SDDN uygulaması nütrient ilavesi ile gerçekleştirildiğinde (biostimulation) anlamlı düzeyde biyolojik naftalen giderimi gerçekleştiği görülmüştür. En yüksek genel naftalen giderim oranı (76,7 %) SDDN uygulaması ile nütrient ilavesinin birlikte uygulanmasıyla elde edilmiştir.

Supporting Institution

TÜBİTAK

Project Number

117Y203

References

  • 1. Al-Saleh, E.S. and Obuekwe, C. (2005) Inhibition of hydrocarbon bioremediation by lead in a crude oil-contaminated soil, International Biodeterioration & Biodegradation, 56, 1-7. doi: 10.1016/j.ibiod.2004.11.003
  • 2. Bose, S., Kumar, P.S., Vo, DV.N., Rajamohan, N. and Saravanan, N. (2021) Microbial degradation of recalcitrant pesticides: a review, Environmental Chemistry Letters, 19, 3209–3228. doi: 10.1007/s10311-021-01236-5
  • 3. Cang, L., Fan, G.P., Zhou, D.M. and Wang, Q.Y. (2013) Enhanced-electrokinetic remediation of copper-pyrene co-contaminated soil with different oxidants and pH control, Chemosphere, 90, 2326-2331. doi:10.1016/j.chemosphere.2012.10.062
  • 4. Chang, M. C. and Kang, H. Y. (2009) Remediation of pyrene contaminated soil by synthesized nanoscale zero-valent iron particles, Journal of Environmental Science and Health Part A, 44,576-582. doi: 10.1080/10934520902784609
  • 5. Chang, M. C., Shu, H.Y., Hsieh, W. P. and Wang, M. C. (2005) Using nanoscale zerovalent iron for the remediation of polycyclic aromatic hydrocarbons contaminated soil, Journal of Air Waste Management Association, 55,1200-1207. doi: 10.1080/10473289.2005.10464703
  • 6. Dong, Z.Y., Huang, W.H., Xing, D.F. and Zhang, H.F. (2013) Remediation of soil cocontaminated with petroleum and heavy metals by the integration of electrokinetics and biostimulation, Journal of Hazardous Materials, 260, 399-408. doi: 10.1016/j.jhazmat.2013.05.003
  • 7. Gasparatos, D., Mavromati, G., Kotsovilis, P. and Massas, I. (2015) Fractionation of heavy metals and evaluation of the environmental risk for the alkaline soils of the Thriassio plain: a residential, agricultural, and industrial area in Greece, Environmental Earth Sciences, 74, 1099-1108. doi: 10.1007/s12665-015-4096-1
  • 8. Gil-Diaz, M., Ortiz, L.T., Costa, G., Alonso, J., Rodriguez-Membibre, M.L., Sanchez- Fortun, S., Perez-Sanz, A., Martin, M. and Lobo, M.C. (2014) Immobilization and Leaching of Pb and Zn in an Acidic Soil Treated with Zerovalent Iron Nanoparticles (nZVI): Physicochemical and Toxicological Analysis of Leachates, Water Air and Soil Pollution, 225. doi: 10.1007/s11270-014-1990-1
  • 9. Jiang, D.N., Zeng, G.M., Huang, D.L., Chen, M., Zhang, C., Huang, C. and Wan, J. (2018) Remediation of contaminated soils by enhanced nanoscale zero valent iron, Environmental Research, 163, 217-227. doi: 10.1016/j.envres.2018.01.030
  • 10. Kahraman, B.F., Altin, A., Altin, S., Bayik, G.D. (2017) Biostimulation of n-alkane degradation in diesel fuel-spiked soils, Soil and Sediment Contamination, 26:486-500. doi:10.1080/15320383.2017.1355351
  • 11. Li, Q., Chen, Z.S., Wang, H.H., Yang, H., Wen, T., Wang, S.Q., Hu, B.W., Wang, X.K. (2021) Removal of organic compounds by nanoscale zerovalent iron and its composites. Science of the Total Environment, 792:148546. doi:10.1016/j.scitotenv.2021.148546
  • 12. O'Carroll, D., Sleep, B., Krol, M., Boparai, H. and Kocur, C. (2013) Nanoscale zero valent iron and bimetallic particles for contaminated site remediation, Advances in Water Resources, 51, 104-122. doi: 10.1016/j.advwatres.2012.02.005
  • 13. Oleszczuk, P. and Koltowski, M. (2017) Effect of co-application of nano-zero valent iron and biochar on the total and freely dissolved polycyclic aromatic hydrocarbons removal and toxicity of contaminated soils, Chemosphere, 168,1467-1476. doi: 10.1016/j.chemosphere.2016.11.100.
  • 14. Pasinszki, T. and Krebsz, M. (2020) Synthesis and Application of Zero-Valent Iron Nanoparticles in Water Treatment, Environmental Remediation, Catalysis, and Their Biological Effects, Nanomaterials, 10. doi: 10.3390/nano10050917
  • 15. Perez, R.M., Cabrera, G., Gomez, J.M., Abalos, A. and Cantero, D. (2010) Combined strategy for the precipitation of heavy metals and biodegradation of petroleum in industrial wastewaters, Journal of Hazardous Materials, 182, 896-902. doi: 10.1016/j.jhazmat.2010.07.003
  • 16. Sneath, H.E., Hutchings, T.R. and de Leij, F.A.A.M. (2013) Assessment of biochar and iron filing amendments for the remediation of a metal, arsenic and phenanthrene cocontaminated spoil, Environmental Pollution, 178, 361-366. doi: 10.1016/j.envpol.2013.03.009
  • 17. Sprocati, A.R., Alisi, C., Tasso, F., Marconi, P., Sciullo, A., Pinto, V., Chiavarini, S., Ubaldi, C. and Cremisini, C. (2012) Effectiveness of a microbial formula, as a bioaugmentation agent, tailored for bioremediation of diesel oil and heavy metal cocontaminated soil, Process Biochemistry, 47, 1649-1655. doi: 10.1016/j.procbio.2011.10.001
  • 18. Tessier, A., Campbell, P. G. C. and Bisson, M. (1979) Sequential extraction procedure for the speciation of particulate trace metals, Analytical Chemistry, 51(7), 844-851. doi: 10.1021/ac50043a017
  • 19. Yin, H., Tan, N., Liu, C., Wang, J., Liang, X., Qu, M., Feng, X., Qiu, G., Tan, W. and Liu, F. (2016) The associations of heavy metals with crystalline iron oxides in the polluted soils around the mining areas in Guangdong Province, China, Chemosphere, 161, 181-189. doi: 10.1016/j.chemosphere.2016.07.018
  • 20. Zhao Q., Li X., Xiao S., Peng W. and Fan W. (2021) Integrated remediation of sulfate reducing bacteria and nano zero valent iron on cadmium contaminated sediments, Journal of Hazardous Materials, 406, 124680. doi: 10.1016/j.jhazmat.2020.124680
  • 21. Zhao, X., Liu, W., Cai, Z., Han, B., Qian, T. and Zhao, D. (2016) An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation, Water Research, 245-266. doi: 10.1016/j.watres.2016.05.019

TREATMENT OF Pb – NAPHTHALENE CO – CONTAMINATION IN SOILS BY ZERO VALENT IRON NANOPARTICLES (NZVI) AND BIOREMEDIATION

Year 2022, Volume: 27 Issue: 1, 57 - 70, 30.04.2022
https://doi.org/10.17482/uumfd.990044

Abstract

The co-contamination of soils with heavy metals and organic contaminants is a problem that requires a different and innovative approach to remediate these kinds of sites. The different nature of these two contaminant groups makes the problem complicated. Recently, zero-valent iron nanoparticles (nZVI) application has been integrated with bioremediation to be used for the remediation of halogenated organics. However, the use of this process for the remediation of co-contaminated soils has not been investigated. In this study, nZVI application integrated with bioremediation approaches (bioattenuation and biostimulation) was applied to Pb and naphthalene spiked soils in laboratory-scale reactors. Soil Pb fractions and naphthalene concentrations were monitored for 90 days. The nZVI decreased the mobility and bioavailability of Pb significantly by reducing exchangeable and carbonate bound fractions from 66.2 % to 25.8 – 37.2 % range. The nZVI also caused naphthalene degradation in the range of 38.8 – 58.5 %. Significant biodegradation of naphthalene occurred at samples subjected to nZVI and biostimulation. The highest overall naphthalene degradation (76.7 %) was obtained from the nZVI application which was integrated with biostimulation.

Project Number

117Y203

References

  • 1. Al-Saleh, E.S. and Obuekwe, C. (2005) Inhibition of hydrocarbon bioremediation by lead in a crude oil-contaminated soil, International Biodeterioration & Biodegradation, 56, 1-7. doi: 10.1016/j.ibiod.2004.11.003
  • 2. Bose, S., Kumar, P.S., Vo, DV.N., Rajamohan, N. and Saravanan, N. (2021) Microbial degradation of recalcitrant pesticides: a review, Environmental Chemistry Letters, 19, 3209–3228. doi: 10.1007/s10311-021-01236-5
  • 3. Cang, L., Fan, G.P., Zhou, D.M. and Wang, Q.Y. (2013) Enhanced-electrokinetic remediation of copper-pyrene co-contaminated soil with different oxidants and pH control, Chemosphere, 90, 2326-2331. doi:10.1016/j.chemosphere.2012.10.062
  • 4. Chang, M. C. and Kang, H. Y. (2009) Remediation of pyrene contaminated soil by synthesized nanoscale zero-valent iron particles, Journal of Environmental Science and Health Part A, 44,576-582. doi: 10.1080/10934520902784609
  • 5. Chang, M. C., Shu, H.Y., Hsieh, W. P. and Wang, M. C. (2005) Using nanoscale zerovalent iron for the remediation of polycyclic aromatic hydrocarbons contaminated soil, Journal of Air Waste Management Association, 55,1200-1207. doi: 10.1080/10473289.2005.10464703
  • 6. Dong, Z.Y., Huang, W.H., Xing, D.F. and Zhang, H.F. (2013) Remediation of soil cocontaminated with petroleum and heavy metals by the integration of electrokinetics and biostimulation, Journal of Hazardous Materials, 260, 399-408. doi: 10.1016/j.jhazmat.2013.05.003
  • 7. Gasparatos, D., Mavromati, G., Kotsovilis, P. and Massas, I. (2015) Fractionation of heavy metals and evaluation of the environmental risk for the alkaline soils of the Thriassio plain: a residential, agricultural, and industrial area in Greece, Environmental Earth Sciences, 74, 1099-1108. doi: 10.1007/s12665-015-4096-1
  • 8. Gil-Diaz, M., Ortiz, L.T., Costa, G., Alonso, J., Rodriguez-Membibre, M.L., Sanchez- Fortun, S., Perez-Sanz, A., Martin, M. and Lobo, M.C. (2014) Immobilization and Leaching of Pb and Zn in an Acidic Soil Treated with Zerovalent Iron Nanoparticles (nZVI): Physicochemical and Toxicological Analysis of Leachates, Water Air and Soil Pollution, 225. doi: 10.1007/s11270-014-1990-1
  • 9. Jiang, D.N., Zeng, G.M., Huang, D.L., Chen, M., Zhang, C., Huang, C. and Wan, J. (2018) Remediation of contaminated soils by enhanced nanoscale zero valent iron, Environmental Research, 163, 217-227. doi: 10.1016/j.envres.2018.01.030
  • 10. Kahraman, B.F., Altin, A., Altin, S., Bayik, G.D. (2017) Biostimulation of n-alkane degradation in diesel fuel-spiked soils, Soil and Sediment Contamination, 26:486-500. doi:10.1080/15320383.2017.1355351
  • 11. Li, Q., Chen, Z.S., Wang, H.H., Yang, H., Wen, T., Wang, S.Q., Hu, B.W., Wang, X.K. (2021) Removal of organic compounds by nanoscale zerovalent iron and its composites. Science of the Total Environment, 792:148546. doi:10.1016/j.scitotenv.2021.148546
  • 12. O'Carroll, D., Sleep, B., Krol, M., Boparai, H. and Kocur, C. (2013) Nanoscale zero valent iron and bimetallic particles for contaminated site remediation, Advances in Water Resources, 51, 104-122. doi: 10.1016/j.advwatres.2012.02.005
  • 13. Oleszczuk, P. and Koltowski, M. (2017) Effect of co-application of nano-zero valent iron and biochar on the total and freely dissolved polycyclic aromatic hydrocarbons removal and toxicity of contaminated soils, Chemosphere, 168,1467-1476. doi: 10.1016/j.chemosphere.2016.11.100.
  • 14. Pasinszki, T. and Krebsz, M. (2020) Synthesis and Application of Zero-Valent Iron Nanoparticles in Water Treatment, Environmental Remediation, Catalysis, and Their Biological Effects, Nanomaterials, 10. doi: 10.3390/nano10050917
  • 15. Perez, R.M., Cabrera, G., Gomez, J.M., Abalos, A. and Cantero, D. (2010) Combined strategy for the precipitation of heavy metals and biodegradation of petroleum in industrial wastewaters, Journal of Hazardous Materials, 182, 896-902. doi: 10.1016/j.jhazmat.2010.07.003
  • 16. Sneath, H.E., Hutchings, T.R. and de Leij, F.A.A.M. (2013) Assessment of biochar and iron filing amendments for the remediation of a metal, arsenic and phenanthrene cocontaminated spoil, Environmental Pollution, 178, 361-366. doi: 10.1016/j.envpol.2013.03.009
  • 17. Sprocati, A.R., Alisi, C., Tasso, F., Marconi, P., Sciullo, A., Pinto, V., Chiavarini, S., Ubaldi, C. and Cremisini, C. (2012) Effectiveness of a microbial formula, as a bioaugmentation agent, tailored for bioremediation of diesel oil and heavy metal cocontaminated soil, Process Biochemistry, 47, 1649-1655. doi: 10.1016/j.procbio.2011.10.001
  • 18. Tessier, A., Campbell, P. G. C. and Bisson, M. (1979) Sequential extraction procedure for the speciation of particulate trace metals, Analytical Chemistry, 51(7), 844-851. doi: 10.1021/ac50043a017
  • 19. Yin, H., Tan, N., Liu, C., Wang, J., Liang, X., Qu, M., Feng, X., Qiu, G., Tan, W. and Liu, F. (2016) The associations of heavy metals with crystalline iron oxides in the polluted soils around the mining areas in Guangdong Province, China, Chemosphere, 161, 181-189. doi: 10.1016/j.chemosphere.2016.07.018
  • 20. Zhao Q., Li X., Xiao S., Peng W. and Fan W. (2021) Integrated remediation of sulfate reducing bacteria and nano zero valent iron on cadmium contaminated sediments, Journal of Hazardous Materials, 406, 124680. doi: 10.1016/j.jhazmat.2020.124680
  • 21. Zhao, X., Liu, W., Cai, Z., Han, B., Qian, T. and Zhao, D. (2016) An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation, Water Research, 245-266. doi: 10.1016/j.watres.2016.05.019
There are 21 citations in total.

Details

Primary Language English
Subjects Environmental Engineering
Journal Section Research Articles
Authors

Bekir Fatih Kahraman 0000-0002-0298-8118

Ahmet Altın 0000-0001-9398-3111

Project Number 117Y203
Publication Date April 30, 2022
Submission Date September 7, 2021
Acceptance Date February 10, 2022
Published in Issue Year 2022 Volume: 27 Issue: 1

Cite

APA Kahraman, B. F., & Altın, A. (2022). TREATMENT OF Pb – NAPHTHALENE CO – CONTAMINATION IN SOILS BY ZERO VALENT IRON NANOPARTICLES (NZVI) AND BIOREMEDIATION. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 27(1), 57-70. https://doi.org/10.17482/uumfd.990044
AMA Kahraman BF, Altın A. TREATMENT OF Pb – NAPHTHALENE CO – CONTAMINATION IN SOILS BY ZERO VALENT IRON NANOPARTICLES (NZVI) AND BIOREMEDIATION. UUJFE. April 2022;27(1):57-70. doi:10.17482/uumfd.990044
Chicago Kahraman, Bekir Fatih, and Ahmet Altın. “TREATMENT OF Pb – NAPHTHALENE CO – CONTAMINATION IN SOILS BY ZERO VALENT IRON NANOPARTICLES (NZVI) AND BIOREMEDIATION”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 27, no. 1 (April 2022): 57-70. https://doi.org/10.17482/uumfd.990044.
EndNote Kahraman BF, Altın A (April 1, 2022) TREATMENT OF Pb – NAPHTHALENE CO – CONTAMINATION IN SOILS BY ZERO VALENT IRON NANOPARTICLES (NZVI) AND BIOREMEDIATION. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 27 1 57–70.
IEEE B. F. Kahraman and A. Altın, “TREATMENT OF Pb – NAPHTHALENE CO – CONTAMINATION IN SOILS BY ZERO VALENT IRON NANOPARTICLES (NZVI) AND BIOREMEDIATION”, UUJFE, vol. 27, no. 1, pp. 57–70, 2022, doi: 10.17482/uumfd.990044.
ISNAD Kahraman, Bekir Fatih - Altın, Ahmet. “TREATMENT OF Pb – NAPHTHALENE CO – CONTAMINATION IN SOILS BY ZERO VALENT IRON NANOPARTICLES (NZVI) AND BIOREMEDIATION”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 27/1 (April 2022), 57-70. https://doi.org/10.17482/uumfd.990044.
JAMA Kahraman BF, Altın A. TREATMENT OF Pb – NAPHTHALENE CO – CONTAMINATION IN SOILS BY ZERO VALENT IRON NANOPARTICLES (NZVI) AND BIOREMEDIATION. UUJFE. 2022;27:57–70.
MLA Kahraman, Bekir Fatih and Ahmet Altın. “TREATMENT OF Pb – NAPHTHALENE CO – CONTAMINATION IN SOILS BY ZERO VALENT IRON NANOPARTICLES (NZVI) AND BIOREMEDIATION”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 27, no. 1, 2022, pp. 57-70, doi:10.17482/uumfd.990044.
Vancouver Kahraman BF, Altın A. TREATMENT OF Pb – NAPHTHALENE CO – CONTAMINATION IN SOILS BY ZERO VALENT IRON NANOPARTICLES (NZVI) AND BIOREMEDIATION. UUJFE. 2022;27(1):57-70.

Announcements:

30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.