Research Article
BibTex RIS Cite

Alüminyum Yüzey Plakası / Genişletilmiş Polipropilen Köpük Çekirdekli Sandviç Levhaların Çarpışma Enerjisi Sönümleme ve Mukavemet Özelliklerinin Deneysel Olarak İncelenmesi

Year 2022, Volume: 27 Issue: 3, 941 - 960, 31.12.2022
https://doi.org/10.17482/uumfd.1114963

Abstract

Son on yılda gelişen elektrikli araç endüstrisi nedeniyle araç gövdelerinde ağırlık azaltma çalışmaları büyük önem kazanmıştır. Köpük dolgulu sandviç yapılar, elektrikli bireysel ve toplu taşıma araçlarının gövdelerinde hem ağırlık azaltma hem de mukavemet koşulları sağlaması açısından en ideal malzemeler olarak öne çıkmaktadır. Bu çalışmada, alüminyum levhalar arasına iki farklı yoğunluktaki EPP köpükler yerleştirilmiş ve iki yapının EVA esaslı yapıştırıcı ile birleştirilmesiyle sandviç yapılar elde edilmiştir. Üretilen sandviç yapıların basma ve eğilme davranışları statik ve dinamik yükleme koşulları altında incelenmiştir. Yapılan testler ile sandviç yapıların dayanımları ve absorbe ettikleri enerji miktarları deneysel olarak hesaplanmış ve karşılaştırılmıştır. Elde edilen sonuçlara göre, tüm testlerde daha yoğun olan D2 köpüğünün, düşük yoğunluklu D1 köpüğüne göre yaklaşık 1.4 ila 2.05 kat daha fazla mukavemet sergilediği gözlemlenmiştir. D2 köpüğü absorbe ettiği enerji açısından diğer köpüğe göre 1,25 ila 2,5 kat daha fazla enerji sönümlemiştir. Bu durumun aksi bir davranış yapılan testlerde sadece dinamik basma testinde meydana gelmiştir. Sandviç yapıların hasar sonrası davranışı incelendiğinde, hasarın sonrasındaki 72 saat sonunda D2 köpüğün orijinal boyutuna çok benzer boyutlara geri döndüğü ve daha fazla deformasyonu geri verdiği gözlemlenmiştir.

References

  • 1. Arifurrahman, F., Budiman, B. A., & Aziz, M. (2018). On the lightweight structural design for electric road and railway vehicles using fiber reinforced polymer composites–a review. International Journal of Sustainable Transportation Technology, 1(1), 21-29.
  • 2. Baek, S., Song, J., Lee, H. C., Park, S. Y., Song, K. H., Lee, S., & Kim, D. (2022). Robust bonding and microstructure behavior of aluminum/high-strength steel lap joints using resistance element welding process for lightweight vehicles: Experimental and numerical investigation. Materials Science and Engineering: A, 833, 142378.
  • 3. Burd, J. T. J., Moore, E. A., Ezzat, H., Kirchain, R., & Roth, R. (2021). Improvements in electric vehicle battery technology influence vehicle lightweighting and material substitution decisions. Applied Energy, 283, 116269.
  • 4. Evans, D. and Morgan, T., "Engineering Thermoplastic Energy Absorbers for Bumpers," SAE Technical Paper 1999-01-1011, 1999, https://doi.org/10.4271/1999-01-1011.
  • 5. Galos, J., & Mouritz, A. P. (2019, June). Mechanical behaviour of multifunctional sandwich composites with embedded lithium-ion polymer batteries. In 13TH INTERNATIONAL CONFERENCE ON THE MECHANICAL BEHAVIOUR OF MATERIALS (p. 148).
  • 6. Güçlü, H., Türkoğlu, İ. K., & Can, Y. (2020). Finite-element analysis of EPP foam core/self-reinforced PP sandwich structures. Emerging Materials Research, 9(4), 1250-1257.
  • 7. Höhne, C. C., Gettwert, V., Kilian, S., Tillner, B., Jahn, I., & Menrath, A. (2022). PP‐GF‐EPP sandwich structures as housing materials for rechargeable energy storage system of electric vehicles: Investigations into flame retardancy. SPE Polymers.
  • 8. Huang, H., Yang, X., Yan, Q., Xiang, Z., & Xu, S. (2022). Crashworthiness analysis and multiobjective optimization of bio-inspired sandwich structure under impact load. Thin-Walled Structures, 172, 108840.
  • 9. Huo, X., Liu, H., Luo, Q., Sun, G., & Li, Q. (2020). On low-velocity impact response of foam-core sandwich panels. International Journal of Mechanical Sciences, 181, 105681.
  • 10. Li, Z., Duan, L. B., Cheng, A. G., Yao, Z. P., Chen, T., & Yao, W. (2019). Lightweight and crashworthiness design of an electric vehicle using a six-sigma robust design optimization method. Engineering Optimization, 51(8), 1393-1411.
  • 11. Mo, F., Zhao, S., Yu, C., Xiao, Z., & Duan, S. (2018). Design of a conceptual bumper energy absorber coupling pedestrian safety and low-speed impact requirements. Applied bionics and biomechanics, 2018.
  • 12. Nasirzadeh, R., & Sabet, A. R. (2014). Study of foam density variations in composite sandwich panels under high velocity impact loading. International Journal of Impact Engineering, 63, 129-139.
  • 13. Pan, Y., Xiong, Y., Dai, W., Diao, K., Wu, L., & Wang, J. (2020). Crush and crash analysis of an automotive battery-pack enclosure for lightweight design. International Journal of Crashworthiness, 1-10.
  • 14. Reyes, A., & Børvik, T. (2018). Quasi-static behaviour of crash components with steel skins and polymer foam cores. Materials Today Communications, 17, 541-553.
  • 15. Rosenthal, S., Maaß, F., Kamaliev, M., Hahn, M., Gies, S., & Tekkaya, A. E. (2020). Lightweight in automotive components by forming technology. Automotive Innovation, 3(3), 195-209.
  • 16. Rumianek, P., Dobosz, T., Nowak, R., Dziewit, P., & Aromiński, A. (2021). Static mechanical properties of expanded polypropylene crushable foam. Materials, 14(2), 249.
  • 17. Shu, C., Zhao, S., & Hou, S. (2018). Crashworthiness analysis of two-layered corrugated sandwich panels under crushing loading. Thin-Walled Structures, 133, 42-51.
  • 18. Thiagarajan, S., & Munusamy, R. (2020). Experimental and numerical study of composite sandwich panels for lightweight structural design. International Journal of Crashworthiness, 1-12.
  • 19. Türkoğlu, İ. K., Kasım, H., & Yazıcı, M. (2022). Experimental investigation of 3D-printed auxetic core sandwich structures under quasi-static and dynamic compression and bending loads. International Journal of Protective Structures. https://doi.org/10.1177/20414196221079366
  • 20. Vinayagar, K., Muthusamy, C., Nagaraj, G., & Sridhar, R. (2020). Review on Crashworthiness Studies of Foam Filled Thin Walled Structures. International Advanced Research Journal in Science, Engineering and Technology, 7, 60-69.
  • 21. Volpe, V., Lanzillo, S., Affinita, G., Villacci, B., Macchiarolo, I., & Pantani, R. (2019). Lightweight high-performance polymer composite for automotive applications. Polymers, 11(2), 326.
  • 22. Wang, J., Waas, A. M., & Wang, H. (2013). Experimental and numerical study on the low-velocity impact behavior of foam-core sandwich panels. Composite Structures, 96, 298-311.
  • 23. Wang, Z., Wang, X., Liu, K., Zhang, J., & Lu, Z. (2021). Crashworthiness index of honeycomb sandwich structures under low-speed oblique impact. International Journal of Mechanical Sciences, 208, 106683.
  • 24. Xiong, F., Wang, D., Chen, S., Gao, Q., & Tian, S. (2018). Multi-objective lightweight and crashworthiness optimization for the side structure of an automobile body. Structural and Multidisciplinary Optimization, 58(4), 1823-1843.
  • 25. Yu, L., Gu, X., Qian, L., Jiang, P., Wang, W., & Yu, M. (2021). Application of tailor rolled blanks in optimum design of pure electric vehicle crashworthiness and lightweight. Thin-Walled Structures, 161, 107410.

EXPERIMENTAL INVESTIGATION OF CRUSH ENERGY ABSORPTION AND STRENGTH PROPERTIES OF SANDWICH PLATES WITH ALUMINUM FACESHEET/ EXPANDED POLYPROPYLENE FOAM CORE

Year 2022, Volume: 27 Issue: 3, 941 - 960, 31.12.2022
https://doi.org/10.17482/uumfd.1114963

Abstract

Due to the developing electric vehicle industry in the last decade, weight reduction studies on vehicle bodies have gained great importance. Foam core sandwich structures stand out as the most ideal materials in terms of providing both weight reduction and strength conditions in the bodies of electric individual and public transportation vehicles. In this study, EPP foams with two different densities were placed between aluminum plates and sandwich structures were obtained by combining the two structures with an EVA-based adhesive. Compression and bending behaviors of the produced sandwich structures were investigated under quasi-static and dynamic loading conditions. With the tests carried out, the strength of the sandwich structures and the amount of energy they absorb were calculated and compared experimentally. According to the results obtained, it was observed that the denser D2 foam exhibited approximately 1.4 to 2.05 times more strength than the lower density D1 foam in all tests. In terms of the energy they absorb, the D2 foam absorbs 1.25 to 2.5 times more energy than the other foam. Contrary to this situation, only the dynamic compression test occurred in the tests performed. When the post-damage behavior of the sandwich structures was examined, it was also observed that the D2 foam returned to a very similar dimensions to its original size, giving more of the deformation after the damage at the end of 72 hours.

References

  • 1. Arifurrahman, F., Budiman, B. A., & Aziz, M. (2018). On the lightweight structural design for electric road and railway vehicles using fiber reinforced polymer composites–a review. International Journal of Sustainable Transportation Technology, 1(1), 21-29.
  • 2. Baek, S., Song, J., Lee, H. C., Park, S. Y., Song, K. H., Lee, S., & Kim, D. (2022). Robust bonding and microstructure behavior of aluminum/high-strength steel lap joints using resistance element welding process for lightweight vehicles: Experimental and numerical investigation. Materials Science and Engineering: A, 833, 142378.
  • 3. Burd, J. T. J., Moore, E. A., Ezzat, H., Kirchain, R., & Roth, R. (2021). Improvements in electric vehicle battery technology influence vehicle lightweighting and material substitution decisions. Applied Energy, 283, 116269.
  • 4. Evans, D. and Morgan, T., "Engineering Thermoplastic Energy Absorbers for Bumpers," SAE Technical Paper 1999-01-1011, 1999, https://doi.org/10.4271/1999-01-1011.
  • 5. Galos, J., & Mouritz, A. P. (2019, June). Mechanical behaviour of multifunctional sandwich composites with embedded lithium-ion polymer batteries. In 13TH INTERNATIONAL CONFERENCE ON THE MECHANICAL BEHAVIOUR OF MATERIALS (p. 148).
  • 6. Güçlü, H., Türkoğlu, İ. K., & Can, Y. (2020). Finite-element analysis of EPP foam core/self-reinforced PP sandwich structures. Emerging Materials Research, 9(4), 1250-1257.
  • 7. Höhne, C. C., Gettwert, V., Kilian, S., Tillner, B., Jahn, I., & Menrath, A. (2022). PP‐GF‐EPP sandwich structures as housing materials for rechargeable energy storage system of electric vehicles: Investigations into flame retardancy. SPE Polymers.
  • 8. Huang, H., Yang, X., Yan, Q., Xiang, Z., & Xu, S. (2022). Crashworthiness analysis and multiobjective optimization of bio-inspired sandwich structure under impact load. Thin-Walled Structures, 172, 108840.
  • 9. Huo, X., Liu, H., Luo, Q., Sun, G., & Li, Q. (2020). On low-velocity impact response of foam-core sandwich panels. International Journal of Mechanical Sciences, 181, 105681.
  • 10. Li, Z., Duan, L. B., Cheng, A. G., Yao, Z. P., Chen, T., & Yao, W. (2019). Lightweight and crashworthiness design of an electric vehicle using a six-sigma robust design optimization method. Engineering Optimization, 51(8), 1393-1411.
  • 11. Mo, F., Zhao, S., Yu, C., Xiao, Z., & Duan, S. (2018). Design of a conceptual bumper energy absorber coupling pedestrian safety and low-speed impact requirements. Applied bionics and biomechanics, 2018.
  • 12. Nasirzadeh, R., & Sabet, A. R. (2014). Study of foam density variations in composite sandwich panels under high velocity impact loading. International Journal of Impact Engineering, 63, 129-139.
  • 13. Pan, Y., Xiong, Y., Dai, W., Diao, K., Wu, L., & Wang, J. (2020). Crush and crash analysis of an automotive battery-pack enclosure for lightweight design. International Journal of Crashworthiness, 1-10.
  • 14. Reyes, A., & Børvik, T. (2018). Quasi-static behaviour of crash components with steel skins and polymer foam cores. Materials Today Communications, 17, 541-553.
  • 15. Rosenthal, S., Maaß, F., Kamaliev, M., Hahn, M., Gies, S., & Tekkaya, A. E. (2020). Lightweight in automotive components by forming technology. Automotive Innovation, 3(3), 195-209.
  • 16. Rumianek, P., Dobosz, T., Nowak, R., Dziewit, P., & Aromiński, A. (2021). Static mechanical properties of expanded polypropylene crushable foam. Materials, 14(2), 249.
  • 17. Shu, C., Zhao, S., & Hou, S. (2018). Crashworthiness analysis of two-layered corrugated sandwich panels under crushing loading. Thin-Walled Structures, 133, 42-51.
  • 18. Thiagarajan, S., & Munusamy, R. (2020). Experimental and numerical study of composite sandwich panels for lightweight structural design. International Journal of Crashworthiness, 1-12.
  • 19. Türkoğlu, İ. K., Kasım, H., & Yazıcı, M. (2022). Experimental investigation of 3D-printed auxetic core sandwich structures under quasi-static and dynamic compression and bending loads. International Journal of Protective Structures. https://doi.org/10.1177/20414196221079366
  • 20. Vinayagar, K., Muthusamy, C., Nagaraj, G., & Sridhar, R. (2020). Review on Crashworthiness Studies of Foam Filled Thin Walled Structures. International Advanced Research Journal in Science, Engineering and Technology, 7, 60-69.
  • 21. Volpe, V., Lanzillo, S., Affinita, G., Villacci, B., Macchiarolo, I., & Pantani, R. (2019). Lightweight high-performance polymer composite for automotive applications. Polymers, 11(2), 326.
  • 22. Wang, J., Waas, A. M., & Wang, H. (2013). Experimental and numerical study on the low-velocity impact behavior of foam-core sandwich panels. Composite Structures, 96, 298-311.
  • 23. Wang, Z., Wang, X., Liu, K., Zhang, J., & Lu, Z. (2021). Crashworthiness index of honeycomb sandwich structures under low-speed oblique impact. International Journal of Mechanical Sciences, 208, 106683.
  • 24. Xiong, F., Wang, D., Chen, S., Gao, Q., & Tian, S. (2018). Multi-objective lightweight and crashworthiness optimization for the side structure of an automobile body. Structural and Multidisciplinary Optimization, 58(4), 1823-1843.
  • 25. Yu, L., Gu, X., Qian, L., Jiang, P., Wang, W., & Yu, M. (2021). Application of tailor rolled blanks in optimum design of pure electric vehicle crashworthiness and lightweight. Thin-Walled Structures, 161, 107410.
There are 25 citations in total.

Details

Primary Language English
Subjects Composite and Hybrid Materials
Journal Section Research Articles
Authors

İbrahim Kürşad Türkoğlu 0000-0003-4627-4894

Early Pub Date December 9, 2022
Publication Date December 31, 2022
Submission Date May 10, 2022
Acceptance Date October 5, 2022
Published in Issue Year 2022 Volume: 27 Issue: 3

Cite

APA Türkoğlu, İ. K. (2022). EXPERIMENTAL INVESTIGATION OF CRUSH ENERGY ABSORPTION AND STRENGTH PROPERTIES OF SANDWICH PLATES WITH ALUMINUM FACESHEET/ EXPANDED POLYPROPYLENE FOAM CORE. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 27(3), 941-960. https://doi.org/10.17482/uumfd.1114963
AMA Türkoğlu İK. EXPERIMENTAL INVESTIGATION OF CRUSH ENERGY ABSORPTION AND STRENGTH PROPERTIES OF SANDWICH PLATES WITH ALUMINUM FACESHEET/ EXPANDED POLYPROPYLENE FOAM CORE. UUJFE. December 2022;27(3):941-960. doi:10.17482/uumfd.1114963
Chicago Türkoğlu, İbrahim Kürşad. “EXPERIMENTAL INVESTIGATION OF CRUSH ENERGY ABSORPTION AND STRENGTH PROPERTIES OF SANDWICH PLATES WITH ALUMINUM FACESHEET/ EXPANDED POLYPROPYLENE FOAM CORE”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 27, no. 3 (December 2022): 941-60. https://doi.org/10.17482/uumfd.1114963.
EndNote Türkoğlu İK (December 1, 2022) EXPERIMENTAL INVESTIGATION OF CRUSH ENERGY ABSORPTION AND STRENGTH PROPERTIES OF SANDWICH PLATES WITH ALUMINUM FACESHEET/ EXPANDED POLYPROPYLENE FOAM CORE. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 27 3 941–960.
IEEE İ. K. Türkoğlu, “EXPERIMENTAL INVESTIGATION OF CRUSH ENERGY ABSORPTION AND STRENGTH PROPERTIES OF SANDWICH PLATES WITH ALUMINUM FACESHEET/ EXPANDED POLYPROPYLENE FOAM CORE”, UUJFE, vol. 27, no. 3, pp. 941–960, 2022, doi: 10.17482/uumfd.1114963.
ISNAD Türkoğlu, İbrahim Kürşad. “EXPERIMENTAL INVESTIGATION OF CRUSH ENERGY ABSORPTION AND STRENGTH PROPERTIES OF SANDWICH PLATES WITH ALUMINUM FACESHEET/ EXPANDED POLYPROPYLENE FOAM CORE”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 27/3 (December 2022), 941-960. https://doi.org/10.17482/uumfd.1114963.
JAMA Türkoğlu İK. EXPERIMENTAL INVESTIGATION OF CRUSH ENERGY ABSORPTION AND STRENGTH PROPERTIES OF SANDWICH PLATES WITH ALUMINUM FACESHEET/ EXPANDED POLYPROPYLENE FOAM CORE. UUJFE. 2022;27:941–960.
MLA Türkoğlu, İbrahim Kürşad. “EXPERIMENTAL INVESTIGATION OF CRUSH ENERGY ABSORPTION AND STRENGTH PROPERTIES OF SANDWICH PLATES WITH ALUMINUM FACESHEET/ EXPANDED POLYPROPYLENE FOAM CORE”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 27, no. 3, 2022, pp. 941-60, doi:10.17482/uumfd.1114963.
Vancouver Türkoğlu İK. EXPERIMENTAL INVESTIGATION OF CRUSH ENERGY ABSORPTION AND STRENGTH PROPERTIES OF SANDWICH PLATES WITH ALUMINUM FACESHEET/ EXPANDED POLYPROPYLENE FOAM CORE. UUJFE. 2022;27(3):941-60.

Announcements:

30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.